
Energy Optimization of Memory Intensive Parallel Workloads

Trehan, C., Karakonstantis, G., Vandierendonck, H., & Nikolopoulos, D. (2016). Energy Optimization of Memory
Intensive Parallel Workloads. In Proceedings of 28th ACM Symposium on Parallelism in Algorithms and
Architectures. (pp. 251-252). ACM. DOI: 10.1145/2935764.2935811

Published in:
Proceedings of 28th ACM Symposium on Parallelism in Algorithms and Architectures

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 the author. Publication Rights Licensed to ACM.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33595655?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/energy-optimization-of-memory-intensive-parallel-workloads(4a098a91-13d0-49f8-a73f-4db8cdfbbdcb).html

Energy optimization of memory intensive parallel
workloads

Brief Announcement

Chhaya Trehan
c.trehan@qub.ac.uk

Hans vandierendonck
h.vandierendonck@qub.ac.uk

Georgios Karakonstantis
G.Karakonstantis@qub.ac.uk

Dimitrios S. Nikolopoulos
d.nikolopoulos@qub.ac.uk

School of Electronics, Electrical Engineering and Computer Science
Queen’s University of Belfast

Belfast, UK

ABSTRACT
Energy consumption is an important concern in modern
multicore processors. The energy consumed by a multi-
core processor during the execution of an application can
be minimized by tuning the hardware state utilizing knobs
such as frequency, voltage etc. The existing theoretical work
on energy minimization using Global DVFS (Dynamic Volt-
age and Frequency Scaling), despite being thorough, ignores
the time and the energy consumed by the CPU on memory
accesses and the dynamic energy consumed by the idle cores.
This article presents an analytical energy-performance model
for parallel workloads that accounts for the time and the
energy consumed by the CPU chip on memory accesses in
addition to the time and energy consumed by the CPU on
CPU instructions. In addition, the model we present also ac-
counts for the dynamic energy consumed by the idle cores.
The existing work on global DVFS for parallel workloads
shows that using a single frequency for the entire duration
of a parallel application is not energy optimal and that vary-
ing the frequency according to the changes in the parallelism
of the workload can save energy. We present an analytical
framework around our energy-performance model to predict
the operating frequencies (that depend upon the amount of
parallelism) for global DVFS that minimize the overall CPU
energy consumption. We show how the optimal frequencies
in our model differ from the optimal frequencies in a model
that does not account for memory accesses. We further show
how the memory intensity of an application affects the op-
timal frequencies.

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Keywords
Energy Optimization; Global DVFS; Convvex Programming;
Memory Intensive; Parallel Applications; Multicore

1. INTRODUCTION
While Silicon is available in abundance to build proces-

sors, the energy required to power them is not. Energy
consumption and performance turn out to be the two most
important and contradicting design criteria for the mod-
ern multicore processors. The practice of dealing with the
two contradicting goals by optimizing one while imposing
a threshold on the other leads to two flavors of energy-
performance optimization called the laptop problem and the
server problem. In the laptop problem, the goal is to maxi-
mize the performance given a fixed energy budget and in the
server problem, the goal is to minimize the energy consump-
tion given a fixed performance budget [1]. We deal with the
server problem in this article.

The power consumption a CMP (Chip Multi Processor)
is an increasing function of the operating frequency of the
chip and thus can be reduced by reducing the frequency.
Dynamic Voltage and Frequency Scaling (DVFS) is a popu-
lar energy minimization technique. Most of the theoretical
work on the energy-delay trade off deals with the local dy-
namic voltage and frequency scaling [3], where frequency
can be set separately for each core. We study the prob-
lem of energy minimization under a performance constraint
using global DVFS where all the cores on the chip are set
to run on the same frequency. While local DVFS has more
freedom in choosing clock frequencies and can therefore save
more energy, it is not easy to implement.

Often when we think of parallelism, we think of perfor-
mance gains and we tend to ignore its ramifications on en-
ergy consumption. The fact that we can gain performance
by increasing parallelism allows us to save energy by re-
ducing the frequency without violating a performance con-
straint. The relationship of parallelism with energy and per-
formance was first studied by Sangyeun and Melhem [2].
Gerards et al [3] further formalized the problem for task
graphs. They showed that using a single clock frequency
during the execution of an application does not lead to op-
timal energy consumption. They presented an approach
for varying the frequency according to the variations in the
amount of parallelism assigning a separate frequency to each
number of active cores. The analytical model of [3], how-
ever, completely ignores the energy consumed by the CPU
while it waits for data accesses to the main memory. Since it
does not account for the time overhead of the access latency
of memory, it can lead to an imprecise estimate of the slack
between the time to completion and the given performance
budget. The CPU energy optimization techniques that save
energy by decreasing the operating frequencies of the cores
at the cost of an increased delay need to be tuned to account
for the memory access latencies. Another assumption in [3]
is that the frequency of the idle cores can be brought down
to zero by techniques like clock gating. This is not always
possible in reality, the idle cores can’t be completely shut
down and do consume some dynamic energy. In this article,
we present a new model for the energy and performance of
multicore systems that accounts for the energy consumed by
the CMP while waiting for memory accesses in addition to
the energy consumed on CPU instructions without ignoring
the dynamic energy consumed by the idle cores.

1.1 Model
We consider an application running on a multicore pro-

cessor. The application itself consists of a set T of N tasks,

denoted by {T1,TN}. The application can be depicted
as a labeled DAG (Directed Acyclic Graph) where nodes
represent the tasks and the (Directed) edges represent the
precedence constraints (figure: 1). A task Ti is character-
ized by two attributes, namely: the compute workload: cwi
and the data workload: dwi. The compute work load (label
of the corresponding node in the task graph) is the num-
ber of clock cycles required to perform the computations of
the task. The data workload is the number of memory ac-
cesses a task has to make during its execution. We assume
an application wide parameter called data to CPU quotient
d which is the ratio of data to compute workloads of the
application. We consider an overall deadline tbudget for the
entire application.

Power Model: As is common in literature, we consider
two components of power, the dynamic power and the static
power. Assuming f is the frequency of all the cores at some
time t, the dynamic power of an active core at time t can be
expressed as a function of frequency as pDynamicActive(f) =
c1fα

The constant c1 > 0 is a characteristic of the computing
platform and the exponent α is a constant(≥ 2). At any
given point in time, an inactive core consumes relatively
less dynamic power owing to its reduced activity factor. We
model this difference in dynamic power of active and inactive
cores by assuming that the constant c1 for inactive cores is
less than the c1 for active cores. Assuming c1′ to be the

constant for inactive cores such that the ratio K = c1′

c1
< 1,

the dynamic power of an inactive core can be expressed as
pDynamicInactive(f) = c1′fα. The static power can also be
expressed as an affine function of frequency pStatic(f) =
c2f + c3

At a given point in time, with m active cores running at
an operating frequency of f , the total power of the processor
chip can be expressed as:

pm(f) = [m+ k(M −m)]c1fα + c2f + c3 (1)

where M is the total number of cores on the chip. This
is a convex and increasing function in f . From this point
on, we will denote [m + k(M − m)] as m′ for the sake of
brevity. Dividing equation 1 on both sides by f gives energy
per CPU cycle which we will denote as p̄m henceforth

p̄m(f) = m′c1fα−1 + c2 +
c3

f
(2)

Before we go into the details of selecting the optimal fre-
quencies in our model, we take a short diversion to un-
derstand what an interval (t1, t2) in our model looks like
and how the presence of memory accesses during an interval
change the dynamics of energy optimization. In any inter-
val during the execution, all the active cores are performing
some memory accesses uniformly interleaved with the CPU
instruction cycles. In any such interval, not all of the CPU
cycles produced can be counted towards the work done (in-
structions) by the CPU. Moreover the time spent on memory
accesses is independent of frequency whereas the time spent
on executing the instructions can be increased (decreased)
by decreasing (increasing) the frequency. We can think of
an interval without any memory accesses like a spring and
frequency as a force, the spring can be wound\unwound by
applying the force. DVFS schemes for energy optimization
exploit this ability to stretch an interval by decreasing the
frequency to minimize energy consumption at the cost of

increased delays. An interval with memory accesses can be
thought of as composed of many springs with some rigid
material placed between them. Applying a force can only
compress or decompress the springs and the rigid material
(memory accesses) does not yield at all to the changes in
frequency. Thus, only a portion of interval can be stretched
by decreasing the frequency thus leading to a lesser potential
for reduction in energy by decreasing the frequency.

Parallelism and Energy-Performance model: The
overall energy consumption of an application can be ex-
pressed in terms of the amount of parallelism. In interest of
brevity, we refer the reader to go through [3] to fully appre-
ciate the concept of power modelling in terms of parallelism.
For an application with N tasks running on a processor
with M cores, its amount of parallelism for a given sched-
ule can be defined formally as a vector [w1, w2, ...wm...wM],
where wm is the total number of CPU cycles for which ex-
actly m cores are active. Using the idea that a constant
frequency for a fixed number of cores (parallelism) leads
to an optimal energy consumption [3] ,the task of global
DVFS for energy optimization is reduced to finding a vector
f = [f1, f2, ...fm...fM] of frequencies where fm is the opti-
mal frequency to be used when m cores are active. Energy
consumed when m cores are active can be expressed as the
product of energy per cycle p̄m from equation 2 and wm. For
a given amount of parallelism wm , wmd accesses to memory
are made, where d is the application wide data to CPU work-
load ratio. The CPU keeps clocking at a frequency fm for the
duration of these wmd memory accesses. If ta is the latency
of memory accesses, (wmd)ta is the duration for which the
CPU waits for memory accesses. The additional cycles ex-
pended per core on memory accesses for wm is thus wmdtafm
. The total energy consumed by the CPU in terms of par-
allelism and the corresponding frequencies can be expressed
as Etotal(f1, f2,fM) =

∑M
m=1[p̄m(fm)(wm + wmdtafm)]

The time to completion of an application for a given sched-
ule can also be expressed in terms of parallelism and the
corresponding frequencies as
tcompletion(f1, f2,fM) =

∑M
m=1

wm
fm

+
∑M
m=1 wmdta

2. MAIN RESULTS
In this section, we present the main results of our research

so far. We investigate how do the optimal frequencies relate
to the memory intensity (data to CPU workload ratio, d)
of an application and whether and how the relationship be-
tween optimal frequencies and the number of active cores
change in the presence of memory accesses. We present our
results in the form of three lemmas.

Lemma 1. It holds for every pair n,m ∈ {1, 2,M} such
that m ≥ n and wm, wn > 0 that:

1. for an optimal solution f = [f1, f2,fM] to the con-
strained energy optimization problem, fm

fn
lies in the

interval [α
√

n′
m′ , 1].

2. for an optimal solution f = [f1, f2,fM] to the con-
strained energy optimization problem without the static

energy, fm
fn

lies in the interval [α
√

n′
m′ ,

α+1

√
n′
m′].

Lemma 2. for an optimal solution f = [f1, f2,fM]
to the constrained energy optimization problem without the

static energy, the following holds for every pair n,m ∈ {1, 2,M}
with wm, wn > 0:

α
√
m′[α− 1 + αdtafm]fm = α

√
n′[α− 1 + αdtafn]fn (3)

Lemma 2 shows the relationship between the frequencies for
two different parallel regions of a given schedule of an appli-
cation. This is in contrast to the corresponding relationship
in [3], which is, α

√
nfn = α

√
mfm.

Including d and k (m′ instead of m), makes the relation
more precise, this is particularity important in the case of
memory intensive applications.

Having a relationship between the optimal frequencies for
different parallel regions of a schedule, the next natural step
is to be able to analytically relate an optimal frequency for a
parallel region to the optimal frequency of the serial region.
Lemma 3 gives such a relation for α = 2.

Lemma 3. For α = 2, the ratio xm = fm
f1

, of the optimal
frequency fm for a parallel region of the schedule with m
active cores and the optimal frequency f1 for the serial region
is a solution to the following cubic equation:

m′

1′
2dtaf1x3m +

m′

1′
x2m − (2dtaf1 + 1) = 0 (4)

where 1′ is a constant equal to KM + (1−K)

Note that it is possible for a schedule to have no serial region
at all (w1 = 0). The purpose of expressing xm in terms
of f1 and m′ is to help understand by how much does the
frequency for a given parallelization differ from f1. One can
think of f1 as a reference frequency for a given hardware
and application combination such that each of the optimal
parallel frequencies fm is related to the reference frequency
f1 by multiplicative factor xm.

Coming back to equation 4, the coefficient of the cubic
term is a product of the parallelization m′, the memory
characteristic 2dta of the workload and the reference serial
frequency f1 which depends upon the deadline and the mem-
ory intensity of the application. For the sake of analysis we
call the term 2dtaf1, the memory overload factor.

A careful analysis of equation 4 in relation to the memory
overload factor reveals that as 2dtaf1 changes from 0 to 1,
the optimal ratio changes very quickly and attains the mid

point of 2

√
1
m

and 3

√
1
m

and then it changes more slowly and

later becomes almost constant close to 3

√
1
m

. So, as mem-

ory overhead increases, the optimal frequency for m active
cores tends to be inversely proportional to 3

√
m. Without

accounting for the memory accesses or for CPU intensive
applications on the other hand the optimal frequency for
m active cores is inversely proportional to 2

√
m. Thus the

accounting for memory accesses does not allow as much re-
duction in frequencies for parallel regions as predicted by the
model in [3] which ignores the memory accesses altogether.
This confirms that the energy savings predicted by [3] are
over optimistic especially in the case of memory intensive
applications (with a high memory intensity, d) running on
a slow hardware (with a high access delay, ta) on a tight
performance budget (with a high reference frequency, f1).
In general, from lemma 1 and generalizing the above exposi-
tion, it can be established that the optimal frequency for m
active cores for a memory intensive application (with αdTaf1
sufficiently large) is inversely proportional to alpha+1

√
m.

3. REFERENCES
[1] A. Benoit, P. Renaud-Goud, and Y. Robert. Models

and complexity results for performance and energy
optimization of concurrent streaming applications.
International Journal of High Performance Computing
Applications, 25(3):261–273, 2011.

[2] S. Cho and R. Melhem. On the interplay of
parallelization, program performance, and energy
consumption. Parallel and Distributed Systems, IEEE
Transactions on, 21(3):342–353, March 2010.

[3] J. L. H. Marco E.T. Gerards and J. Kuper. On the
interplay between global dvfs and scheduling tasks with
precedence constraints. IEEE TRANSACTIONS ON
COMPUTERS, 64(06), 2015.

T

T

T

T

T

T11

2

3

4

5

6

1

5

6

12

14

4

10

Node labels (below each node): compute workload

Figure 1: A task dependency graph

