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Summary 

The acute respiratory distress syndrome  presents as hypoxia, bilateral pulmonary infiltrates on 

chest imaging, and the absence of heart failure sufficient to account for this clinical state. 

Management is largely supportive, focusing on protective mechanical ventilation, and the avoidance 

of fluid overload. Patients with severe hypoxaemia can be managed with early short-term use of 

neuromuscular blockade, prone position ventilation or extra-corporeal membrane oxygenation. The 

use of inhaled nitric oxide is rarely indicated and both β2 agonists and late steroids should be 

avoided. Mortality currently remains at approximately 30%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

The acute respiratory distress syndrome (ARDS) is a form of non-cardiogenic pulmonary oedema, 

due to alveolar injury secondary to an inflammatory process, either pulmonary or systemic in origin. 

This syndrome presents as acute hypoxaemia with bilateral pulmonary infiltrates on chest imaging, 

not wholly due to heart failure.  

 

Definitions 

As a syndrome, ARDS is characterised by the presence of several criteria. Since the original 

description by Ashbaugh and colleagues in 1967,1 four definitions have been used to determine the 

presence of this condition (Table 1).2–5 The American European Consensus Conference definition3 

(AECC), published in 1994, provided the first agreed and widely used definition. However, this 

definition had numerous limitations across all four diagnostic criteria  (Table 2). Due to the 

limitations in the AECC definition, the European Society of Intensive Care Medicine began a 

consensus process to generate an improved definition for ARDS. The Berlin definition,5 published 

in 2012, was validated on over four thousand patient's data and, based on hypoxaemia, categorises 

ARDS as mild (200 mm Hg < PaO2/FiO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FiO2 ≤ 200 

mm Hg), or severe (PaO2/FiO2 ≤ 100 mm Hg). The most important updates to the ARDS definition 

are the stipulation of a minimum positive end-expiratory pressure (PEEP) of 5 cmH20, (as PEEP 

can increase oxygenation, which is a key criterion of the syndrome, this was to establish a minimum 

standard for mechanical ventilation), the acknowledgement that ARDS can be diagnosed in the 

presence of cardiac failure, a requirement for new respiratory failure, or worsening of chronic 

respiratory disease, within a seven day period, and the inclusion of chest computed tomography 

(CT) as an alternative form of imaging for the demonstration of lung infiltrates. 

 

Epidemiology 

The landmark ARMA study, published in 2000, demonstrated the benefits of a low tidal volume, 

low airway pressure ventilatory strategy in ARDS and marked the establishment of lung protective 

ventilation as the standard of care for patients with ARDS.6 Despite this advance, ARDS remains a 

highly prevalent condition, with, in the lung-protective era, estimated incidences per 100,000 

patients per year of 34 in the USA7 and approximately 5 to 7 in Europe.8–10 Its epidemiology is 

likely under reported in less developed systems, where, due to resource limitations, few patients 

meet the current definition for its diagnosis, despite 4% of all hospital admissions having a clinical 

state comparable to ARDS.11 Seven percent of ICU patients, and 16% of those receiving 

mechanically ventilation, suffer from this condition.12 Based on control group survival in recent 

randomized controlled trials, 28-day mortality is currently approximately 20 to 40%.  A further 15 



to20% of these patients with ARDS will die by 12 months, largely due to co-morbidities rather than 

a residual ARDS effect.13 The recent LUNGSAFE study found that ARDS remains common and 

has a mortality of approximately 40%, confirming the global burden of ARDS.14 Although general 

ICU survivors show no reduction in health-related quality of life, for survivors of ARDS, full 

recovery is often limited. Many suffer muscle wasting and limiting weakness as well as 

neuropsychiatric illness, including cognitive impairment, anxiety, depression and post-traumatic 

stress disorder.15–17 Six years after ICU discharge, just over 50% have returned to work.18 Despite 

these extra-pulmonary deficits, respiratory function returns close to normal.16  

 

Risk Factors 

The development of ARDS has been described in the setting of numerous illnesses and injuries, 

broadly categorised as being pulmonary or systemic in origin. Pneumonia is the most common risk 

factor for the development of ARDS, and along with aspiration has the highest associated mortality, 

while trauma-related ARDS has the lowest.7 Inappropriately administered mechanical ventilation is 

an important contributor to both the development and worsening of ARDS.6,19  

 

This ventilator-induced lung injury (VILI) may occur from several mechanisms, including 

excessive lung stretch (volutrauma)20 or pressure (barotrauma), repetitive alveolar open and closing, 

causing a shearing injury (atelectrauma), as well as potential oxygen toxicity. These processes also 

drive excessive systemic inflammation, with the ability to induce non-pulmonary organ failure 

(biotrauma).21  In a randomized controlled trial in 150 critically ill mechanically ventilated patients 

without ARDS, ventilation with 10 ml/kg predicted body weight (PBW), in comparison with 6 

ml/kg PBW, was associated with a five-fold increase in the odds of developing ARDS.19  This 

finding has been substantiated in a further randomized controlled trial in 400 patients at risk of 

pulmonary complications undergoing general anaesthesia for major abdominal surgery. A non-lung 

protective ventilatory strategy of 10 to 12 ml/kg tidal volume ventilation with zero PEEP was 

compared with lung-protective ventilation of 6 to 8 ml/kg tidal volume with PEEP of 6 to 8 cmH20 

plus a recruitment manoeuvre every 30 minutes. The lung-protective group had less major 

complications (10·5% vs 27·5%; RR 0·40, 95% CI 0·24 to 0·68; P=0·001), required less respiratory 

support by day 7 (5% vs 17%; RR 0·29, 95% CI, 0·14 to 0·61; P=0·001) and had a shorter hospital 

stay (11 vs 13 days, difference -2·45 days; 95% CI -4·17 to -0·72; P=0·006). 

  

Genetics 

The search for potential genes conferring susceptibility to the development of ARDS or altering 

outcome from ARDS is methodologically complex. Genotype, phenotype, race, environment, 



injury, and therapy interact in variable and uncertain ways to contribute to clinical outcomes.  To 

date over 40 candidate genes associated with the development or outcome from ARDS have been 

identified, although these investigations have either largely lacked the methodological robustness to 

provide clear answers, or have yet to be replicated.22 Some of the more promising genes include 

angiotensin converting enzyme, extracellular superoxide dismutase 3, interleukin-10, myosin light 

chain kinase, nuclear factor erythroid 2-related factor, pre-B cell colony-enhancing factor, 

surfactant protein B, tumour necrosis factor and vascular endothelial growth factor.23 The search for 

a genetic susceptibility to either the onset, or worsening, of ARDS may prove difficult until issues 

with the specificity of the ARDS definition (see the section “Controversies & Uncertainties”) and 

improved phenotyping of patients with ARDS are addressed . However, a gene with a clearer 

association with ARDS is the angiotensin-converting enzyme gene.  This came to prominence 

during the SARS epidemic, where the ACE-2 protein, which contributes to the regulation of 

pulmonary vascular permeability, was identified as the receptor for the novel coronavirus 

responsible for SARS.24 This suggests ACE inhibition could be a potential therapeutic target worth 

investigating. 

 

Pathogenesis 

Following the onset of the primary illness, the inflammatory alveolar injury occurring has been 

described in terms of three sequential phases (Figure 1), although there is considerable overlap.25 

The process begins with the exudative phase and immune-cell mediated destruction of the 

permeability barriers  of the alveolar epithelial-interstitial-endothelial complex, allowing plasma, 

plasma proteins and cellular content to successively flood the interstitium and airspace. Classically 

ARDS is recognised to be a neutrophil driven disease, however, experimental data have shown that 

alveolar neutrophilia can occur without increased alveolar permeability.26 In addition, it is 

increasingly recognised that cells from the innate (including macrophages27 and platelets28) and 

adaptive immune systems are involved in the pathogenesis of ARDS.29  Further neutrophils and 

macrophages are recruited to this inflammatory focus, propagating the initial insult. The 

inflammatory exudate produced physically interacts with surfactant, initially causing dysfunction, 

followed by, as the epithelial injury progresses, loss of surfactant production, impeding  alveolar 

patency. The loss of epithelial ion channels impairs the generation of osmotic forces required to 

return oedema fluid to the interstitium. These injuries, plus the development of hyaline membranes 

and decreased pulmonary compliance, result in disrupted gaseous diffusion.  Alveolar vascular 

damage also occurs, with increased permeability co-existing with altered vasomotor tone, both 

vasoconstriction and vasodilation, as well  microthrombi. Pulmonary hypertension results, 

increasing right ventricular afterload. This right ventricular dysfunction may be further exacerbated 



by mechanical ventilation and fluid overload. This combination of epithelial and endothelial 

damage results in worsening ventilation-perfusion mismatch and loss of hypoxic pulmonary 

vasoconstriction, leading to refractory hypoxia. 

 

The proliferative phase marks attempts at recovery, with restoration of the type II alveolar cell 

population, and subsequent differentiation into type I alveolar cells. Regeneration of a functioning 

epithelial layer permits the clearance of exudative fluid into the interstitium, whilst remaining debris 

is cleared by inflammatory cells. Vasomotor tone begins to return to normal, microthrombi are 

cleared and pulmonary hypertension lessens. As reparation continues, shunt reduces leading to 

improved oxygenation, matched by better lung mechanics and recovering pulmonary compliance. 

The third fibrotic phase develops inconsistently, consisting of the failure of removal of alveolar 

collagen, which is laid down early in the injury process, combined with the development of cystic 

changes, limiting functional recovery.  Diffuse alveolar damage (DAD) is considered to be the 

pathognomic pathological finding of ARDS,5  is defined by the presence of hyaline membranes, and 

can be found either at lung biopsy or autopsy.  However, DAD is not specific for  ARDS, as DAD 

can also occur in the absence of the criteria for ARDS,30 and many patents who fulfil the diagnostic 

criteria for ARDS do not have DAD.31 Clinical patterns have been recognised in patients with 

ARDS; for example, those with a pulmonary cause suffer more consolidation and less alveolar 

collapse and interstitial oedema than those of non-pulmonary causes.32 More recently, ARDS 

subphenotypes have been described, categorised by clinical and biological characteristics with 

differing clinical outcomes and response to treatment,33,34 with a hyper-inflammatory phenotype 

being associated with worse metabolic acidosis, higher vasopressor requirements and increased 

mortality, as well as a better response to higher PEEP. These subphenotypes will provide further 

mechanistic insight to the pathophysiology of ARDS, which is likely to inform the development of 

personalised therapies. 

 

Diagnosis and Monitoring 

The BERLIN definition for ARDS is an evolution of the AECC definition (Table 1), which was 

recognised to have numerous flaws. The revised definition, while improved, is recognised to still 

have limitations. Several investigational modalities are potentially helpful in monitoring the clinical 

course (Figure 2).  

 

Sequential imaging via both chest radiography and CT (Figure 3) provide qualitative measures of 

disease evolution, in addition to specific quantitative measures of oedema, aeration and 

recruitability with CT.  Extra-vascular lung water, reflective of the degree of pulmonary oedema, 



may be measured with a PiCCO monitor and is associated with mortality in patients with 

ARDS.35,36 Similarly, lung ultrasound (Figure 3) may be used to estimate extravascular lung 

water,30,38 as well as allow the differentiation of ARDS from cardiogenic pulmonary oedema.39  

Pulmonary wedge 40 and central venous pressures40,41 have  little correlation with volaemic status or 

fluid responsiveness and  are unlikely to offer benefit in routine management. Unsurprisingly, 

neither offer benefit over the other in the management of ARDS.42 

 

The ratio of the partial pressure of arterial oxygen to the fractional inspiratory concentration of 

oxygen (PaO2/FiO2) is a measure of oxygenation, and used to categorise ARDS as mild, moderate 

or severe (Table 1). Although easy to calculate, it is an imperfect measure, due to its variability with 

differing levels of PEEP43 and tidal volume.44 The oxygenation index, the product of mean airway 

pressure and fractional inspiratory concentration of oxygen, divided by the arterial partial pressure 

of oxygen is an alternative to PaO2/FiO2 and may be superior, due to its inclusion of mean airway 

pressure, which is reflective of PEEP.45 Respiratory system compliance aids in the monitoring of 

pulmonary mechanics, although it was not included in the Berlin Definition as it lacked additional 

discriminatory value.5 Pulmonary dead space fraction is associated with mortality in ARDS, having 

an odds ratio of 1·45 (95 % CI 1·15 to 1·83; P=0·002), although is technically challenging to 

measure and not frequently used.46  Bronchoalveolar lavage permits sampling of the alveolar space 

and aids in the identification of infectious causes of ARDS, as well as diagnosing malignancy or 

haemorrhage. 

 

The absence of a biomarker to define the diagnosis, responsiveness to therapy and prognosis of 

ARDS is problematic and limits progress in the field.47,48 Differing pathologies damage lung tissue 

in diverse ways, producing inconsistent signals from numerous injured cell types. These signals are 

further confounded by age, co-morbidities and iatrogenic effects such as excessive fluid balance and 

harmful ventilation. Numerous candidate biomarkers (Figure 2) have been investigated, however, at 

present a single, clear biomarker has proved difficult to find. Biomarkers have been measured in 

both blood and bronchoalveolar lavage fluid, but at present are too inaccurate for clinical use.  

Combinations of biomarkers may identify specific phenotypes of patients with ARDS who may 

respond differentially to therapies, but further work is required to confirm these initial findings.33  

 

Open lung biopsy remains the gold standard for diagnosing DAD.  Small, single centre 

observational studies in highly selected patient populations using open lung biopsy report low 

specificity of the clinical diagnosis of ARDS for the presence of DAD.30,49–51 The majority of 

patients with ARDS undergoing this procedure have resulting alterations in management,49–53 



improved outcomes,52 with a relatively low level of significant morbidity.30,49–53 These studies are 

limited by their selective nature, where open lung biopsy is usually reserved for nonresolving 

ARDS, plus their constrained ability to examine the entire lung. Open lung biopsy is usually 

reserved for exceptional cases where there is a genuine diagnostic dilemma and a lack of response 

to therapy. 

 

Management 

Management of ARDS can be categorized as specific, supportive and that of the underlying 

causative condition (Figure 4). Specific measures include both maintenance of gas exchange and 

manipulation of the underlying pathophysiology. Supportive therapies include sedation, 

mobilisation, nutrition, and venous thromboembolism prophylaxis. 

 

Conventional Mechanical Ventilation 

Four randomized controlled trials published between 1998 and 1999 provided mixed results 

regarding the optimal tidal volume in ARDS.54–57 The landmark ARMA study,6 published in 2000 

by the ARDSnet group, compared a traditional ventilatory strategy of 12 ml/kg PBW tidal volume 

in combination with a plateau airway pressure ≤ 50 cm H20, with a lower tidal volume of 6 ml/kg 

PBW in combination with a plateau airway pressure ≤ 30 cm H20 in 861 mechanically ventilated 

patients with ARDS. The study was stopped early, as, despite initially worse oxygenation, lower 

tidal volume ventilation was associated with a 9% absolute mortality reduction (39·8% vs 31·0%, 

P=0·007; 95 % CI, 2·4% to 15·3%), with increased ventilator-free days (10±11 vs 12±11; 

p=0·007). Importantly, less injurious ventilation was associated with more non-pulmonary organ 

failure-free days (12±11 vs 15±11; p=0·006). Tidal volume was estimated from PBW, which is 

dependent on height and gender, and calculated as 50 + 0·91 x (height in cm - 152·4) for males and 

45·5 + 0·91 x (height in cm – 152·4) for females. Lung protective ventilation is associated with 

improved outcomes if used early in the course of ARDS,58 and reduced mortality at 2 years.59   

 

Despite the adoption of a volume and pressure limited protective ventilatory strategy, critically ill 

mechanically ventilated patients with ARDS receiving a tidal volume of 6 ml/kg and a plateau 

pressure ≤ 30 cmH20  may still be exposed to tidal hyperinflation, where the smaller than usual 

aerated section of the lung (“baby lung”)60 receives a larger than usual volume of gas, resulting in 

greater biotrauma and less ventilator-free days than those without tidal hyperinflation.61 Similarly, a 

post hoc review of the ARDSnet database failed to demonstrate a safe upper limit for plateau 

pressures in patient with ARDS.62  Volume and pressure limited ventilation may cause 

hypercapnoeic acidosis, with the overall clinical effect of protective ventilation and hypercapnoea 



being uncertain.63 Hypercapnoeic acidosis may provide protective effects in the setting of high tidal 

volume ventilation, but a beneficial effect is not seen in patients receiving lung protective 

ventilation.64   

 

PEEP prevents lung unit collapse at the end of the respiratory cycle. Beneficial effects include the 

maintenance of functional residual capacity, improving compliance and higher mean airway 

pressure, resulting in decreased shunt with enhanced oxygenation, as well as reduced atelectasis and 

biotrauma. These advantages must be weighed against the effects of raised intra-thoracic pressure, 

namely decreased venous return and increased right ventricular afterload.65  Numerous methods of 

setting the PEEP level have been described, including most recently oesophageal balloon 

manometry66. In the lung protective era, four randomized controlled trials66–69 have addressed the 

question of whether a higher or lower level is superior, with a suggestion higher PEEP may be 

beneficial. A meta analysis of three of these studies also reported a possible benefit for a higher 

PEEP setting in ARDS, with both a lower in-hospital mortality (34·1% vs 39·1%; relative risk 0·90; 

95% CI, 0·81 to 1·00; P = 0·049) and less requirement for mechanical ventilation by day 28 (hazard 

ratio, 1·16; 95% CI, 1·03 to 1·30; P=0·01).70 The EPVent randomized controlled trial, comparing 

oesophageal balloon manometry guided PEEP with the ARDSnet PEEP-FiO2 table,6 found 

oesophageal guided PEEP to provide increased oxygenation and compliance. This translated into a 

higher PEEP (18 vs 12 cm H20 on day one) with associated improved adjusted 28 day mortality, 

with a relative risk of 0·46 (95% CI, 0·19 to 1·0; P = 0·049).66 A further meta analysis, including 

this additional study, found a non-statistically significant improvement with higher PEEP values, 

with a pooled relative risk for 28 day mortality of 0·90 (95% CI 0·79 to 1·02), without a 

significantly higher risk of barotrauma (pooled relative risk 1·17, 95% CI 0·90 to 1·52).71 

 

The driving pressure, defined as the difference between plateau and end-expiratory pressures, has 

very recently been suggested as the mediator for the beneficial effects of the three main components 

of lung protective ventilation, namely low tidal volume, low plateau pressure and high PEEP.72 

Using derivation and validation cohorts from 3,562 patients recruited into nine randomized 

controlled trials, Amato reported an increase in driving pressure of 7 cmH20 was associated with 

increased 60 day mortality, with a relative risk of 1·41 (95% CI 1·31 to 1·51; P<0·001). Using the 

statistical method of multilevel mediation analysis, none of the three main components of lung 

protective ventilation were individually associated with reduced mortality, but acted via a reduced 

driving pressure to exert their beneficial effects. Driving pressure may help calibrate the mechanical 

stress delivered by the ventilator to the functional aerated lung volume. Although 6 ml/kg tidal 

volume is recognised as “low tidal volume ventilation”, in reality this is the normal tidal volume for 



most mammalian species.73 As the available functional lung volume falls in ARDS, due to collapse 

and consolidation, perhaps the delivered tidal volume should also decrease. It is also worth noting 

that while current evidence suggests it is prudent to target driving pressure, whether driving 

pressure relates causally to outcome remains to be established in a prospective, randomized 

controlled trial. This concept is currently being investigated in the setting of studies using 

extracorporeal carbon dioxide removal, to facilitate very low tidal volume or ultra-protective 

ventilation.74 Although this data for driving pressure is post hoc, observational in nature, and 

requires confirmation in a prospective study, an upper limit for driving pressure of 15 cm H20 may 

be appropriate in the interim. 

 

Atelectatic areas of lung may be re-expanded by the application of brief periods of sustained high 

transpulmonary pressure, usually followed by the application of higher levels of PEEP to maintain 

and stabilise this newly re-aerated region. Three commonly used such recruitment manoeuvres are 

sighs, sustained inflations and extended sighs.75 Brief periods of raised intrathoracic pressure also 

impede venous return to the right atrium, predisposing to hypotension. Pre-clinical data have 

reported divergent effects of recruitment manoeuvres on alveolar epithelial and endothelial 

function.76 A systematic review, based on 40 studies, found recruitment manoeuvres increased 

oxygenation, with little information regarding the long term effects of these interventions and no 

clear guidance on the usefulness of this procedure.77  

 

There are few robust randomised controlled trials to guide the choice of mode of mechanical 

ventilation. A recent Cochrane Review summarising three randomized controlled trials consisting of 

1,089 patients concluded there was insufficient evidence to promote the use of either volume- or 

pressure-controlled ventilation over the other.78 Airway pressure release ventilation is used for its 

ability to maintain a high mean airway pressure, and thus maintain alveolar recruitment, while 

permitting spontaneous ventilation. Unfortunately the evidence base is limited by suboptimal 

control groups in the studies to date and concerns regarding possible high tidal volume and mean 

airway pressure.79 Non-invasive ventilation may be tried in mild ARDS. A small study of 40 

patients reporting reduced requirement for invasive mechanical ventilation and a non-significant 

reduction in mortality with this approach.80 This result should be tempered by a much larger meta 

analysis of 540 patients documenting failure of NIV in almost 50%.81 The advent of high flow nasal 

oxygen (HFNO) allows a simpler, more tolerable form of respiratory support. An observational 

study reported a 40% requirement for invasive mechanical ventilation in a cohort of 45 patients 

with severe ARDS (mean PaO2/FiO2 137 mm Hg) treated with high flow nasal oxygen.82 As with 

noninvasive ventilation, higher illness severity was associated with an increasing likelihood of 



HFNO failure. 

 

Adjuncts to Respiratory Support 

 

Prone Positioning 

Placing a patient prone whilst receiving invasive mechanical ventilation provides many 

physiological advantages for the management of refractory hypoxaemia, including redistribution of 

consolidation from dorsal to ventral areas of the lung, removal of the weight of the heart and 

mediastinum from the lung, improved alveolar ventilation, shunt reduction with increased 

oxygenation and reduced pulmonary inflammatory cytokine production.83  Several studies84–87 

produced conflicting results regarding the efficacy of prone positioning ventilation in ARDS. 

Although it was increasingly recognised that prolonged prone positioning was associated with  

physiological improvement,88 these studies used short duration of prone ventilation. In addition, 

subsequent meta analyses89,90 suggested benefit specifically in the most hypoxaemic patients 

receiving lung protective ventilation. The PROSEVA study,91 sought to address these shortcomings. 

It randomized 466 patients with severe ARDS, defined as having a PaO2 < 150 mm Hg whilst being 

ventilated with an FiO2 ≥ 0·6, and receiving lung protective ventilation, to either the supine position 

or daily prone position sessions lasting at least 16 hours. Prone position ventilation was associated 

with reduced 28 day mortality [32·8 % vs 16 %, p<0·001; hazard ratio of 0·44 (95% CI, 0·29 to 

0·67)]. There were no additional complications associated with prone positioning, although the 

centres involved were all experienced with this technique. This magnitude of effect, whilst large, 

was predicted by a prior meta analysis.90  

 

Neuromuscular Blockade 

The hypoxaemia of severe ARDS may require excessive ventilatory support risking the 

development of VILI. Paralysis removes endogenous effort, improving respiratory mechanics and 

lowering oxygen consumption. The ACCURSY study compared cisatracurium besylate induced-

paralysis with placebo in 340 patients with early severe ARDS, and showed neuromuscular 

blockade for 48 hours, after adjustment for baseline PaO2/FiO2, plateau pressure and Simplified 

Acute Physiology II scores, resulted in a reduced adjusted hazard ratio for death at 90 days (HR 

0·68, 95% CI 0·48 to 0·98; P=0·04). Importantly, there was no difference in the rate of 

complications, including ICU-acquired weakness. Although promising, additional large clinical 

trials are required to confirm these findings. 

 

Extra-corporeal Life Support 



As mechanical ventilation is reliant on a functional alveolus for gaseous diffusion, it is unable to 

provide life saving respiratory support when a critical volume of alveolar units have failed. In 

addition to replacing endogenous alveolar gaseous exchange, extra-corporeal gas exchange, either 

extra-corporeal membrane oxygenation (ECMO), or extra-corporeal carbon dioxide removal 

(ECCO2R), allows reduction in ventilatory settings, reducing the risk of VILI. At present the 

evidence base for these interventions is limited, consisting of case series, observational cohort 

studies and one randomized controlled trial. The CESAR study, rather than directly evaluating 

ECMO in refractory hypoxaemia, compared ongoing management at a referring centre with 

management at a tertiary centre capable of providing ECMO in 180 patients.92 The cohort managed 

at the ECMO centre had a higher rate of survival without disability at six months (63% versus 47%; 

RR 0·69; 95% CI 0·05 to 0·97, P=0·03), although just 75% of this group received ECMO. Two 

observational studies, from Australia/New Zealand93 and the UK94 also reported high rates of 

survival with ECMO in H1N1 influenza A patients with refractory hypoxaemia on maximal 

ventilatory support. However, ECMO is a scarce and expensive resource, limited to specialist 

centres (Figure 4), with well recognised complications including bleeding, vascular damage, and 

risks from interhospital transfer. Despite widespread and growing use worldwide, at present there is 

an absence of level one evidence for its efficacy. In the UK, ECMO is a nationally commissioned 

service provided at a limited number of regional centres.  

 

Nonconventional Mechanical Ventilation 

High frequency oscillatory ventilation (HFOV) is the provision of small tidal volumes (typically 2 

ml/kg PBW) at high frequencies of up to 900 breaths per minute, using a number of atypical 

mechanisms of gas transfer. This mode of ventilation also affords separation of oxygenation, 

dependent on FiO2 and mean airway pressure, from carbon dioxide removal, which is an active 

process, dependent on the pressure amplitude and frequency of oscillation. Two recent large 

randomized controlled trials, from Canada (OSCILLATE)95 and the UK (OSCAR),96  failed to 

show benefit from this mode of ventilation. OSCILLATE reported harm with HFOV, possibly due 

to the high mean airway pressure generated, causing haemodynamic compromise and requiring 

higher doses and duration of vasopressor, in addition to more sedation and paralysis.  

 

Pharmacotherapy 

Recent drugs to be investigated in large phase three placebo controlled, randomised studies include 

statins and β2 agonists. In addition to their cholesterol lower effects, statins have pleotropic 

properties making them an attractive potential therapy. The Irish Critical Care Trials Group's 

HARP-2 study97 examined simvastatin in 540 patients with early ARDS. This study failed to 



demonstrate improvements in short term clinical outcomes. Although the administration of 

simvastatin 80 mg was not associated with harm, there was no benefit in ventilator-free days 

(simvastatin 12·6±9 days vs control 11·5±10·4; P=0·21), nonpulmonary organ failure-free days 

(19·4±11·1 vs 17·8±11·7; P = 0·11) or 28-day mortality (22·0% vs 26·8%; P = 0·23). The US 

ARDSnet group ran a similar study, SAILS,98 exploring rosuvastatin in 745 patients with sepsis-

associated ARDS. The study was stopped for futility and found no significant difference in 60-day 

in-hospital mortality (rosuvastatin 28·5% vs placebo 24·9%; P=0·21) or ventilator-free days 

(15·1±10·8 vs 15·1±11·0; P = 0·96). Rosuvastatin was, however, associated with a small decrease 

in the number of renal and hepatic failure-free days indicating possible harm. 

 

Preclinical data indicated β2 agonists could modify a variety of mechanisms, including increasing 

alveolar fluid clearance, being cytoprotective and having anti-inflammatory properties, which 

prompted investigation of salbutamol as a potential therapy for ARDS.99,100,101 The UK BALTI-2 

study102 used intravenous salbutamol at 15 μg/kg ideal bodyweight per hour, but was terminated for 

safety reasons after recruiting just 326 patients out of a planned 1,334. Salbutamol increased 28-day 

mortality (34% vs 23%, RR 1∙47; 95% CI 1∙03–2∙08), whilst decreasing ventilator-free days and 

organfailure-free days, possibly mediated through cardiac and metabolic toxicity, in the form of 

arrhythmias and lactic acidosis. The US ARDSnet ALTA study103 examined inhaled salbutamol 

(albuterol) 5mg four hourly for up to 10 days in 282 patients, before being stopped for futility. 

There was no statistical difference in the primary outcome of ventilator-free days (albuterol 14·4 vs 

placebo 16·6; 95% CI for difference, –4·7 to 0·3; P=0·087), or secondary outcome of in-hospital 

mortality ( 23·0% vs 17·7%; 95% CI for difference, –4·0 to 14·7%; P=0·30), although patients with 

shock at baseline in the salbutamol group had fewer ICU-free days. 

 

Two other pharmacotherapies deserve mention – steroids and nitric oxide. As an inflammatory lung 

injury, the use of steroids would appear ideally suited to this condition, with their ability to dampen 

both inflammation and fibrosis. Unfortunately, despite a plethora of trials, there is inadequate 

evidence to make a definitive recommendation in favour or against the use of steroids in ARDS,104, 

105 although the US ARDSnet steroid study suggested harm if steroid therapy was started after more 

than 14 days following the onset of ARDS.106 Nitric oxide (NO) is an inhaled pulmonary 

vasodilator, which  improves ventilation/perfusion matching, resulting in increased oxygenation. 

However, this increase in oxygenation does not translate into improved patient-centred outcomes.107 

NO is associated with numerous complications including renal failure and rebound pulmonary 

hypertension.107 Various other anti-inflammatory and pathophysiologically (Figure 5) targeted 

drugs have been investigated, but fail to demonstrate robust effectiveness.108,109   



 

Supportive Therapy 

 

Fluid Management 

As ARDS is a form of pulmonary oedema, fluid therapy is vital to the management of this 

condition. Fluid excess is increasingly linked to detrimental outcomes across the spectrum of 

critical illnesses.110 A general paradigm exists of early fluid loading for resuscitation and organ 

rescue during the presentation stage of the illness, followed by fluid unloading (deresuscitation), 

either spontaneous or induced, after haemodynamic stability has been achieved.111 Fluid-induced 

lung injury (FILI) is a concept describing the development of lung injury following intravenous 

fluid administration. The rapid administration of saline in healthy volunteers can cause pulmonary 

interstitial oedema,112 while septic patients can suffer decreased oxygenation and worsening lung 

injury score with fluid bolus administration after initial resuscitation.113 

 

In a randomized controlled trial in 1,001 patient with ARDS managed with lung protective 

ventilation (FACTT),114 a detailed algorithm targeting cardiac filling pressures in the setting of 

haemodynamic stability was used to compare liberal and conservative fluid strategies. At one week, 

a conservative strategy was associated with a net neutral fluid balance, compared with a seven litre 

positive balance in the control arm, resulting in increased oxygenation, a better lung injury score, 

more ventilator-free and ICU-free days, and less blood transfusions. There was no difference in the 

primary outcome of death at 60 days (conservative strategy 25·5±1·9% vs liberal strategy 

28·4±2·0%; 95% CI for difference -2·6 to 8·4%, P=0·30) or incidence of organ failures. A follow-

up study at 2 years, however, reported an increased incidence of cognitive impairment in the 

deresuscitated group {adjusted odds ratio 3·35 (95% CI 1·16–9·70) to 5·46 (95% CI 1·92 to 

15·53).115  

 

A small randomized controlled trial, evaluating combined therapy of albumin and furosemide 

administration in 37 hypoproteinaemic patients with ARDS, demonstrated improvements in 

oxygenation, fluid balance and haemodynamics.116 A further small follow-up study by the same 

group, comparing furosemide administration with or without albumin supplementation, suggested 

the combination was superior to furosemide administration alone. The recent large randomized 

controlled trial ALBIOS, examining a strategy of albumin administration to maintain plasma 

albumin levels above 30 g/L in patients with sepsis and septic shock, did not report beneficial 

effects on respiratory SOFA score with a higher plasma albumin level, although this was not a 

specified subgroup analysis.117 Therefore it remains unclear whether albumin has a place in the 



management of ARDS. On the basis of current evidence, synthetic colloids do not have any role in 

the management of the critically ill.118  

 

Nutrition 

The EDEN study explored the effect of lower volume trophic feeding for up to six days in 1,000 

non-malnourished patients with early ARDS.119 Despite separation of calorific delivery between 

groups (approximately 400 kcal/day versus full feeding of 1,300 kcal/day), there was no difference 

in the primary outcome of ventilator-free days (14·9 vs 15·0; difference, −0·1 [95% CI, −1·4 to 

1·2]; P=0·89), or secondary outcomes of 60-day mortality (23·2% vs 22·2%; difference, 1·0% 

(95% CI, −4·1% to 6·3%); P=0·77) or infectious complications. The full feed group, however, 

received more prokinetic agents, suffered more days with increased gastric residual volume, 

vomiting, and constipation. Additionally, there was no difference in physical or cognitive function 

in survivors at year.120  

 

The ability to modulate the inflammatory response via immunonutrition, the delivery of immune 

enhancing dietary agents such as fish oils, glutamine, selenium, vitamins and other anti-oxidants, 

has long been a potential target. Early studies were suggestive of benefit, especially when used in 

ARDS.121 More recent randomised controlled trials  failed to demonstrate efficacy from a range of 

additives, both in ARDS populations122,123 and general critical care.124–126 The OMEGA study122 

compared the twice daily use of the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic  

acid, γ-linolenic acid and a mixture of antioxidants, with an isocaloric control in 272 patients with 

early ARDS also receiving enteral nutrition. Despite increasing the plasma n-3 fatty acid levels 

eight-fold, there were clear signals of harm necessitating the termination of the study, including 

decreased ventilator-free, non-pulmonary organ failure-free and ICU-free days, as well as a non-

significant increase in mortality. A subsequent small phase II study of fish oils in 90 patients with 

ARDS again failed to demonstrate benefit in this population.123 A recent meta analysis supported a 

lack of efficacy from fish oil supplementation in ARDS patients,127 while a consensus paper 

summarising current nutritional evidence does not support the administration of 

pharmaconutrients.128  

 

Sedation & Mobilisation 

There are no direct comparative studies in ARDS patients examining the optimal choice of sedative 

or depth of sedation to be obtained. In general, patients should be lightly sedated, with emphasis on 

analgesia, and a focus on avoiding benzodiazepines where possible.129 Early deep sedation in 

mechanically ventilated patients is associated with increased mortality130 while, in contrast, early 



mobilisation has been associated with improved outcomes in mechanically ventilated patients with 

acute respiratory failure.131 

 

Controversies & Uncertainties 

Despite promising preclinical and early clinical data, the overwhelming majority of large phase 2 

and 3 studies of therapeutic interventions in ARDS have failed to demonstrate efficacy. There are 

numerous reasons for this, but arguably the most important is the limited performance of the current 

definitions of ARDS in identifying patients expressing the biological target under investigation. 

Approximately half of patients who meet ARDS criteria, subsequently die and undergo post mortem 

examination, fail to demonstrate the pathognomic finding of DAD.31,132–135 These patients can suffer 

from a mixture of co-existing conditions. The studies to date demonstrating efficacy have largely 

reduced harm from VILI, a condition for which all mechanically ventilated patients are at risk, thus 

minimising the limitation of heterogeneous cohort recruitment based on the ARDS definitions. 

However, when a therapy aimed at a specific biological target is investigated, such heterogeneity 

assumes greater importance, reducing any possible effect size.  

 

This raises the question as to whether the therapeutic trials which have found no difference to date 

would have returned the same results had it been possible to identify specific phenotypes responsive 

to the therapy under investigation. Constructing a trial where 50% of the study population does not 

have the biological target under investigation is problematic. This has clear implications for the 

current evidence-base for ARDS, which has been largely reliant on the AECC definition, and more 

recently the Berlin definition. In the current era of personalised therapy, it is vital a biomarker or 

panel of biomarkers is identified which can not only identify a specific population, but more 

importantly, define the responsiveness to therapy.47,48  

 
Guidelines 

Guidelines on the ventilatory management of ARDS have been issued by the Scandinavian Society 

of Anaesthesiology and Intensive Care Medicine136 and the Brazilian Association of Intensive Care 

Medicine and the Brazilian Thoracic Society.137,138 Guidelines from the American Thoracic Society 

on mechanical ventilation in adults with ARDS and the UK Intensive Care Society on the 

management of ARDS are in development. 

 

Summary 

ARDS is the clinical manifestation of an underlying acute inflammatory alveolar disorder, 

presenting as the syndrome of hypoxia, bilateral pulmonary infiltrates on chest imaging, and the 



absence of heart failure sufficient to account for this clinical state. ARDS is typically seen in 

critically ill mechanically ventilated patients, and is precipitated by a range of disorders, either 

pulmonary or systemic in origin.  Management is largely supportive, focusing on protective 

ventilation, with tidal volume of 6 ml / kg predicted body weight, higher PEEP and the avoidance of 

plateau airway pressures greater than 30 cm H20. Fluid overload should be prevented by limiting 

excessive fluid resuscitation, combined with early diuresis once haemodynamic stability has been 

restored. Patients with severe hypoxaemia should be managed with early short-term use of 

neuromuscular blockade and prone positioning ventilation, with ECMO currently reserved for those 

with the most severe disease.  β2 agonists and late steroids should be avoided, and inhaled nitric 

oxide limited to rescue therapy in those not suitable for ECMO. Mortality currently remains at 

approximately 30%. 
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Fast Facts 
 
The acute respiratory distress syndrome (ARDS) is a form of non-cardiogenic pulmonary oedema, 

due to alveolar injury secondary to an inflammatory process This syndrome presents as acute 



hypoxaemia with bilateral pulmonary infiltrates on chest imaging, not solely due to heart failure.  

Definition 

ARDS is defined by the Berlin Definition, consisting of four components in the presence of a risk 

factor: 

• an acute onset, or worsening of a pre-existing lung condition, within seven days. 

• hypoxaemia, with a PaO2 / FiO2 < 300 mmHg in the presence of a minimum positive end-

expiratory pressure (PEEP) of at least 5 cmH20. 

• either the absence of heart failure or heart failure insufficient to solely account for the 

clinical state. 

• bilateral pulmonary infiltrates on chest imaging. 

Epidemiology 

• ARDS has an estimated incidence per 100,000 patients per year of 34 in the USA and 

approximately 5 to 7 in Europe.  

• It is stratified by the  PaO2 / FiO2 into mild (< 300 mmHg), moderate (200 – 300 mm Hg) 

and severe forms (< 100 mm Hg).  

• Mortality at day 28 is approximately 20 to 40%. 

Risk Factors 

• Risk factors for ARDS are either pulmonary (pneumonia, aspiration, contusion, inhalational 

injury etc) or non-pulmonary (non-pulmonary sepsis, pancreatitis, burns, trauma etc). 

• Pneumonia and aspiration have the highest associated mortality, with trauma having the 

lowest. 

• Inappropriately delivered mechanical ventilation can both cause and worsen pre-existing 

lung injury.  

Pathogenesis 

• ARDS has been described in three sequential, although overlapping, stages– an initial 

inflammatory exudative phase, where the alveolar lining is damaged; a proliferative phase, 

where alveolar repair occurs; and a fibrotic phase, with the deposition of fibrin.  

• Diffuse alveolar damage, characterised by the presence of hyaline membranes, is considered 

the pathognomic pathological finding, but is not specific for this syndrome. 

• Ventilation-perfusion mismatch is the primary reason for the presence of hypoxaemia. 

Diagnosis 

• As ARDS is a syndrome, its presence or absence is a binary phenomenon – either the 

defining criteria are met or not.  

• Chest radiography or computed tomography can identify bilateral infiltrates reflective of 



alveolar oedema, as well as track the evolution of the condition, clarify patterns of disease, 

and possibly recruitability. 

• Echocardiography is useful to exclude significant cardiac failure. 

• Open lung biopsy may have a role in non-resolving ARDS, possibly allowing a treatable 

 cause to be identified. 

• At present, no biomarker has been identified. 

Management 

• Mechanical ventilation focuses on the delivery of a tidal volume of 6 ml/kg predicted body 

weight, a plateau pressure less than 30 cm H20, a higher rather than lower PEEP, and 

possibly a driving pressure less than 15 cm H20, 

• Prone positioning and neuromuscular blockade may be of use in severe hypoxaemia, while 

the avoidance of fluid overload is also recommended. 

• Extra-corporeal life support is used as rescue therapy for severe hypoxaemia and has 

superseded nitric oxide, which should be restricted to those unsuitable for extra-corporeal 

support. 

• No drug therapy has yet demonstrated efficacy for ARDS, with some, including  β2 

agonists, being harmful. 
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