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Local Computation in Credal Networks

Fabio Gagliardi Cozman! and Cassio Polpo de Campds

Abstract. The goal of this contribution is to discuss local computa- bility distributions p(X) is denoted byK (X). A joint credal set
tion in credal networks — graphical models that can reprieisgore- K (X) contains joint probability measures for variabXs Given
cise and indeterminate probability values. We analyzeriferénce  a credal sei(X) and an event, theupperandlower probabilities
problem in credal networks, discuss how inference algmititan  of A are defined respectively & A) = SUp, x e r(x) F{A) and
benefit from local computation, and suggest that local cdatmn  P(A) = inf,x)ex(x) P(A). The most commonly adopted scheme

can be particularly important in approximate inferenceetgms. for conditioning in credal sets is elementwise Bayes rufat(is,
conditioning is obtained by applying Bayes rule to each elem
1 INTRODUCTION of a credal set). Such an intuitive prescription, called geeeral-

ized Bayes ruldy Walley [27, 28], can be justified axiomatically

There are several graph-theoretic tools that simplify #esenta- i, various ways [19, 20, 27]. A collection of conditional de# sets
tion of large multivariate models; Bayesian networks andKda K(X|Y = y) is separately specifiedthen the setd (X |V = y1)
fields are two examples [24]. These two graphical modelsladjsp andK (X|Y = y) are unrelated fog; # y» [14].
“locality” in several dimensions: they are built from logaéces, and There are several concepts of independence that can be beed w
they are processed by local operations. These (and otreghigal ;e deals with credal sets [10, 17, 27]. In this paper we athept
models requir@reciseprobability assessments: the models are bU"tconcept ofstrong independencé/ariables X and Y are strongly
in such a way that every event is associated with a singleaidly  jgependentwhen every extreme point of the underlying credal
value. ] _ set K(X,Y) satisfies standard stochastic independenc&’ aind

A credal networkis a graphical model that relaxes the assump-y- Similarly, X andY" are strongly independent conditional @h
tion of uniqueness for probability values, while retainmgst of the  \yhen every extreme point d& (X, Y|Z = z) satisfies conditional
structure adopted in the Bayesian network formalism. Aa@reét-  5i5chastic independence for all valuesZof
work is composed of a directed acyclic graph, a collectioranfiom We can now present an appropriate definition for credal nésvo
variables, and a collection of sets of probability measuresets of  \ye must have a directed acyclic graph, a set of random vasgbhe
probability measures are used to rep_rgsent imprecisioril_"mm_er- per node), and a Markov property on the graph: Every variabie
minacy in probability values. Imprecision and indeternoinarise  gyronglyindependent of its nondescendants nonparents given its par
because beliefs may be incomplete, vague, or there may be-no rents Typically each variable is associated with a “localllextion
sources to gather/process enough information so as to &g@@ltise  f credal sets, indicated by (X |pa(X)) (wherepa(X) denotes the
probability assessment; it may also be the case that a gifandie nodes that are parents &f in the graph). Herds (X|pa(X)) de-
viduals must specify probability values and these indigldicannot  otes a collection of credal sets, one for each valuga¢fX). Usu-
agree on precise probability values. Section 2 presentss désic ally these credal sets are separately specified [18, 14, 26].
concepts on credal networks. ) ) Given a credal network, we consider the largest set of jabitie

Given a credal network, amferenceis a computation of a tight  ptions that satisfy the Markov extension (for strong irefegence),
lower or upper bound for some conditional probability. Util®  g)jeq thestrong extensiofil3]. The strong extension of a network
nately, exact inference in credal networks seems to deftigtiocal 5 the convex hull of all joint distributions that satisfyetiMarkov
approaches, as discussed in Section 3. In this contribut®ana- property with respect to standard stochastic independdseThat

lyze the inference problem in credal networks and discussthe s given a credal network with local separately specifiedtiat sets
problem can benefit from local computations. We suggestttiat  p(xy,|pa(x;)), the strong extension of the network is the convex
main use of local information is in producing efficient appnoa- hull of the set

tion schemes — noting that approximate inference methodsea

very useful elements of exact inference algorithms. IniSect we

discuss the A/R++ and the MLI algorithms, two complementarg {H p(X;|pa(X;)) :p(Xi|pa(X;) =m) € K(X;|pa(X;)=mx) p -
quite successful algorithms for approximate inferencer@dal net- P

works. (1)
Strong extensions were already implicit in the first propodar
2 CREDAL NETWORKS AND INFERENCES credal networks [7, 26] and have received considerablentaite

[1, 8, 11, 18, 29]. There are other types of extension in ttezdi
Consider a few preliminary definitions. A set of probabilityea-  ture [12], but they seem to be less amenable to local conmpatat
sures is called &redal set[23]. A credal set defined by proba- and are not further discussed in this paper.
1 Escola Politeécnica, Univ. de Sao Paulo, Sao Paulo, SilBEmail: fg- An in_fg_renge’n acredal.network is the compu_tation of Iowgr/upper
cozman@usp.br probabilities in an extension of the network Xf, is aqueryvariable
2 PUC-SP Sao Paulo, SP, Brazil. Email: cassio@pucsp.br andX g represents a set abservedvariables, then an inference is




the computation of tight bounds fef X,| X z) for one or more val-
ues ofX,. Consider the computation of a lower probability:

le,...,xn \X¢. X5 p(Xi|pa(X;))
2x1,xa\xp PXilPA(XG))

subject top(X;|pa(X;)) € K(X;|pa(X;)).

B(X,|X£) = max

@)

.....

For inferences with strong extensions, it is known that tiséridhu-
tions that minimize/maximize(X,|X ) belong to the set of ver-
tices of the extension [18].

The only credal networks that are amenable to efficient exact
ferences are polytree-shaped networks with binary vatafl8].
Other types of networks, even polytree-shaped ones, faceetr-
dous computational challenges [14]. Exact inference élyos typ-
ically examine potential vertices of the strong extensimprioduce
the required lower/upper values [2, 8, 12, 14, 15]. Appratienin-
ference algorithms can produce eitoeteror innerapproximations:
the former produce intervals that enclose the correct fitiyain-
terval between lower and upper probabilities [6, 21, 16, 26jile
the latter produce intervals that are enclosed by the copreba-
bility interval [1, 3, 2, 11]. Rather detailed overviews offérence
algorithms for imprecise probabilities have been publishg Cano
and Moral [4, 5].

3 “LOCALITY” IN CREDAL NETWORKS

A credal network is clearly defined by “local” pieces of infua-
tion, represented by the various local credal $€{s{|pa(X)). We
should expect that this modular structure would lead néyuta
local computation in inference algorithms, much like iefgze in
Bayesian networks. However, the picture is a little more glcated.

The only exact inference algorithm that is solely based on lo
cal computation is the 2U algorithm [18]. This algorithm ea
with binary variables in polytree-shaped credal netwoiks;se-
guence of operations closely resembles Pearl’s propagaticeme
for Bayesian networks [24]. As in Pearl’s propagation, thea?go-
rithm prescribes the exchange miessagebetween variables. The
2U algorithm usesnterval-valuedmessages to generate inferences.
The algorithm makes critical use of the fact that a singléophility
interval can define any credal set fobimary variable.

Several other exact inference algorithms for strong extessry
to capture global information through local messages, watlying
degrees of success. There are several schemes that minmetie
sages in Bayesian network inference [8, 12, 14], but theas isn-
portant difference:

e Inference in Bayesian networks requires the computatidoaaf

real-valued messages that summarize probabilities iaicestib-
networks. Thus a message carries local information tha¢septs
a possibly large portion of a network.

In a strong extension, local messages are not just fungtinas-
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Figure 1. Example network.

network; suppose all variables are categorical, with fategories
each. Suppose we have a number of separately specified segdal
for this network: credal set& (F'), K(B), K(L|f) for each cate-
gory of I, K(D|f, b) for each category ofF, B), andK (H|d) for
each category oD. Finally, suppose that each one of these credal
sets has exactly 3 vertices. Note that there are pos3ibigifferent
products] ], p(X;|pa(X;)) defined by Expression (1). Depending
on the characteristics of the local credal sets, all of thﬁ@eprod-
ucts may be vertices of the strong extension. Suppose ndvHths
observed and we are interested in the lower/upper probafuli L
conditional onH. Were this network a Bayesian network, the prob-
ability p(L|H) would be produced simply by combining the local
information onL, p(L|F), with the local message sent By to L,
p(F|H). With a credal network, we have to combine the local in-
formation onL, K (L|F), with the local message sent l# to L,

K (F|H). The difficulty is that this local message is a set that can
have up t2? vertices. Nothing is really gained, in terms of compu-
tational complexity, by the “locality” of the messa@& F'|H).

It could be possible to reduce the complexity of set-valued-m

sages in inference using redundancy elimination algosthimat is,
a message could be pre-processed before it is sent, soshmetnit
extreme elements are eliminated [5]. Such a strategy warideiv-
ably lead to “local” messages that are actually less compian the
objects they represent. However, there is a non-negligibk in-
curred by redundancy elimination algorithms, and therenarguar-
antees that the complexity reduction produced by such ighgos is
significant at all — in fact existing empirical results suggthat it is
not [14].

The difficulty in the way of local computation is that infecenin
strong extensions is essentially a global optimizatiorbjenm. Con-
sider the computation of a lower probability for variabtg condi-
tional onX ; that is, consider Expression (2). This is a non-linear
optimization problem, and no set of truly local messagesnse®
capture the complexity of the probletn.

It seems difficult to construct a truly local computation ecte

sages areetsof functions. These sets of functions also summarizethat finds solutions for Expression (2). Even though the tairgs

the credal sets in certain sub-networks. The difficulty & thlocal
set of functions may itself be an exceedingly complex objiect
fact, a set may be as complex as the sub-network it is reiagen

Thus one faces the embarassing fact that a “local” messagerédal
network can be literally as rich and complex as the wholeligld
content that the message is transmitting.

To emphasize the point discussed in the previous paragcaph,
sider the network in Figure 1. This is a very simple polytsbaped

in Expression (2) are linear and “local” with respect to theables
in the network, the objective function defined by Expresg@nis

not “local” as it contains terms from all credal sets. Howewee can
still explore “locality” in Expression (2). The first attem do so
has apparently been proposed by Andersen and Hooker [Ehtigc

3 We use the term “truly local” to indicate methods that parfmomputation
using local messages that are in fact of lower complexity ttree sub-
networks they are intended to summarize.



an alternative proposal has been derived by Campos and @ozma network, a query variabl&, and evidenc& . We can produce
[9]. The idea of Campos and Cozman’s method is to write Expreslower/upper probabilities foX, conditional onX g by creating an

sion (2) as a sequence of smaller, “local” expressionsguasitificial
variables when necessary. To illustrate this idea, considg@mple

networkA — B — C — D — E. Assume all variables in the net-

work are ternary. Computation of the upper probability{fér = eo }
using Expression (2) leads to

max Y p(eoldn) p(dnles) pleilb;) p(bjlax) plax) ,
h,i,j,k

a multilinear function with 81 nonlinear terms of degreerfolye
can transform this expression by introducing new variablesas

elimination order, and by eliminating through summatiore eari-
able at a time, excepX, [12]. This is essentially the variable elimi-
nation algorithm applied to credal networks; as discusaegkiction
3, here we must deal with sets of functions instead of singhe-f
tions. The intermediate sets of functions generated by tethoa
can be quite complex; the idea of the A/R algorithm algorilsnioi
approximate any set of functions by a single interval-vdlénc-
tion. This general idea is particularly elegant when thevoek is
polytree-shaped, because then the elimination order caepteced
by Pearl’s propagation scheme. The intermediate functitesnes-

to keep the degree at most 2. We obtain just 30 nonlinear terms S2ge$ generated in Pearl's propagation scheme are then repigced

max Y. p(eo|d;) p(d;) subject to

p(de) = Zp(dk|0j)p(0j) :
pler) = Zp(%\b;‘)p(by‘) :
p(b) = > p(belaj) play)

J

(for k = 0, 1,2), plus the linear constraints. Note that these terms

keep some of the “local” structure in the network. The résglt
multilinear programming techniques is then solved usingeyriate
techniques; the most promising exact inference algorithincifedal
networks is currently based on this idea [9]. Given the “gldbhar-
acter of the multilinear program, we do not dwell on it herewéver

there is an important point we want to make. When solving aaly m

tilinear program, particularly a large multilinear prograthe exis-
tence of approximate solutions is critical [9]. Becausenthstilinear
program has a structure that mirrors the structure of therlyidg
credal network, we can use approximate inference algositimthe
network as intermediate solutions inside the multilingagpam [9].
This is precisely the advantage of using local structuretmbilate
the multilinear program.

Given the difficulties of local computation methods in exaet
ference, and the importance of approximate inference, vaglinaisk
whether local computation is a viable idea for approximaterence.
Here the answer is clearly positive: not only there are mdgg-a
rithms for approximate inference based on local computatiot it
seems that the potential for further developments is ldrgéne next
section we discuss two recent, and quite successful, &igusifor
approximate inference based on local computation.

4 THE A/R++ AND MLI ALGORITHMS

Tessem’s A/R algorithm seems to be the first local computatio

scheme for polytree-shaped credal networks: the algoritesen-
tially follows Pearl’s propagation, but approximates eaehvalued
message with interval probabilities [26]. The A/R alganitivas later
extended to general multiply connected networks, usingstrae
types of approximations [21]. Another extension of the AlBoa

interval-valued messages. Take for instance a n6dend consider
that X must send a message (Y') to its parenty’, by combining
messages received frofi’s other parents and children (here we fol-
low the terminology and notation in Pearl’s propagatioroatym).
The A/R algorithm sends upper and lower boundsXgrY').

The interval-valued functions that are used by the A/R dtigor
(and variants) can beasily produced by multilinear programming
— they are actually local versions of Expression (2)! Thus&in
the following algorithm, which we cald/R++: eliminate variables
in a credal network, but approximate the intermediate setsne-
tions by interval-valued functions, and compute thesevatevalued
functions using local multilinear programs. Here the “lBcampu-
tation generates an approximation, not an exact result.

We have conducted experiments on five sets of networks, to il-

lustrate the behaviour of inference with A/R++. Resultss@wn in
Table 1. Each test set was composed of 10 randomly generatée m
connected credal networks (generated with BNGeneratgy. [E2-
periments refer to computation of upper probabilities withevi-
dence; results refer to the most challenging inferencesah @et-
work. Table 1 indicates the topology of the test networkspdtix

ments were performed in a Pentium IV 1.7GHz, using Sherali an

Tuncbilek’'s Reformulation-Linearization algorithm foruttilinear
programming, and CPLEX as linear solver. Further detaits loa
found elsewhere [9].

Network Type of # variables # vertices A/R++

topology | variables per credal set| error
dense binary 10 2 2.8684%
Alarm binary 37 2 5.5706%
dense ternary 10 3 10.4304%
Alarm ternary 37 3 22.3293%
dense | quaternary 10 4 13.4146%

Table 1. Test sets (each with 10 networks) with average errors during
inference.

There are several methods based on local computation fer inn

approximations. An inner approximation fptX,| X ) can be gen-
erated by any method that looks for a local maxima X, |Xr)
subject to constraints imposed by local credal 3€{s¥; |pa(X;)).

rithm was proposed by Rocha and Cozman [14], where the locaMethods based on gradient descent, simulated annealingesedic

approximations are still intervals but the combinationraétvals is
performed with higher precision operations. A differemdbapprox-
imation method is to use probability trees to represent lmessages
at different levels of granularity, as done by Cano and MghlAll
such methods produce outer approximations.

The central ideas in the A/R algorithm (and its extension$ihy
et al [21] and by Rocha et al [14]) can be cast as follows. Qlarsi

programming pursue this idea [1, 2, 3, 11, 29].

A particularly successful scheme is the MLI algorithm preed
by Rocha et al [16]. The MLI algorithm tries to use the factt ttnee
non-linear problem (2) has linear constraints that aredllbo their
associated credal sets. The algorithm fixes a vertex foyewredal
set except one, and checks which vertex of the remainingatsed
minimizes/maximizep(X,|X £) (given that all the others are fixed).



The algorithm then retains the minimizing/maximizing esstand
then move to the next credal set. Now all the vertices are figed
cept for this next credal satsing the minimizing/maximizingertex
obtained in the previous step. The algorithm keeps repdtiese
steps, going over and over all the local credal sets in theatmeet-
work. The process is surely to stop: every step increasesbjbetive
function, and there is only a finite number of possible mogageh
that variables are discrete and local credal sets havelyinitany
vertices). Implementation details can be found in [16].

The MLI algorithm typically produces very accurate approai

tions. We have run it in a large number of medium-sized netsjor

and verified that in most cases it finds the exact answer, aveaysl
finds a very accurate approximation.

5 CONCLUSION

We have tried to provide a brief but coherent commentary céllo

computation in credal networks. These graphical modelsraee-
esting tools for representation of several forms of undagtaand
they have a modular (and therefore “local”) structure. lorgho-
cal computation is quite important in approximate algaorith and
less directly applicable in exact algorithms. We shoul@sstrthat
any approximate inference algorithm can be used inside ettect
inference algorithms: As the exact solution of Express@nusu-
ally employs branch-and-bound (or similar) techniques;, guid-
ing approximation can speed up exact inference in very fogmit
ways [9].

It seems that several local computation techniques couldpbe

plied to approximate inference in the near future, with aptal for
excellent results. The use of local computation in exaaririce is
also promising but remains a challenge for the most part.
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