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Abstract. Recently there has been an increasing interest in the development of
new methods using Pareto optimality to deal with multi-objective criteria (for
example, accuracy and architectural complexity). Once one has learned a model
based on their devised method, the problem is then how to compare it with the
state of art. In machine learning, algorithms are typically evaluated by comparing
their performance on different data sets by means of statistical tests. Unfortu-
nately, the standard tests used for this purpose are not able to jointly consider
performance measures. The aim of this paper is to resolve this issue by devel-
oping statistical procedures that are able to account for multiple competing mea-
sures at the same time. In particular, we develop two tests: a frequentist procedure
based on the generalized likelihood-ratio test and a Bayesian procedure based on
a multinomial-Dirichlet conjugate model. We further extend them by discovering
conditional independences among measures to reduce the number of parameter
of such models, as usually the number of studied cases is very reduced in such
comparisons. Real data from a comparison among general purpose classifiers is
used to show a practical application of our tests.

1 Introduction

In many real applications of machine learning, we often need to consider the trade-
off between multiple conflicting objectives. For instance, measures like accuracy and
architectural complexity are clearly two different (possibly conflicting) criteria. This
issue can be tackled by considering a multi-objective decision making approach.

There are two main approaches to multi-objective decision making. The weighted-
sum approach, which consists of transforming the original multi-objective problem into
a single-objective problem by using a weighted formula; The Pareto approach, which
considers directly the original multi-objective problem and searches for non-dominated
solutions, that is, solutions that are not worse than any other solution with respect to all
criteria.

In a weighted-sum approach, a multi-objective problem is transformed into a single-
objective problem by a numerical weight function that is assigned to objectives and
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2 Benavoli and de Campos

then values of the weighted criteria are combined into a single value according to the
weights. One of the reasons for its popularity is its simplicity. However, there are sev-
eral drawbacks associated to it. First, the definition of weights in these formulas is often
ad-hoc or requires great domain knowledge which might not be available. Second, the
optimal solution strongly depends on that particular weight function, which misses the
opportunity to find other models that might be actually more interesting to the user,
for instance, representing a better trade-off between different criteria. Third, a weighted
formula involving a linear combination of different criteria is meaningless in many sce-
narios, as the criteria may be non-commensurable (comparison of apples and oranges).

In the Pareto approach, instead of transforming a multi-objective problem into a
single-objective problem and then solving it by using a single-objective decision mak-
ing, a multi-objective algorithm is used to solve the original multi-objective problem.
The advantage of the Pareto approach is that it can cope with any kind of non-com-
mensurable criteria. Recently there has been an increasing interest in the development
of new learning methods able to cope simultaneously with multi-objective criteria us-
ing Pareto optimality [1,2,3,4]. The disadvantage comes from the power of the Pareto
approach in situations where a good weight function can be devised, as the Pareto ap-
proach is more conservative than using the weighted-sum idea. In this work we assume
that a good weight function is not available. Consider for instance the work in [3], where
it is proposed a multi-objective Pareto based optimization method for simultaneous op-
timization of architectural complexity and accuracy for Polynomial Neural Networks
(PNN). By using multiple data sets, they compare their method with the state-of-art
method for learning PNN, producing the results presented in Table 1.

New State of art
Accuracy Complexity Accuracy Complexity

IRIS 97.8 38.4 95.3 50.0
WINE 98.3 26.9 92.3 24.0
PIMA 72.1 28.6 65.3 37.7
BUPA 70.3 23.4 69.1 36.0

Table 1: Architectural complexity and accuracy of two learning methods for PNN [3].

Based on Table 1, [3] claims that a multi-objective approach (jointly optimizing ar-
chitectural complexity and accuracy) is clearly beneficial. Can we say that their method
is clearly better than the state of art for both criteria and also for each of them inde-
pendently? For which criterion is it superior (respectively inferior)? To answer these
questions we need a method that statistically assesses whether an algorithm is better
than another in terms of all criteria. To the best knowledge of the authors, this method
is lacking in machine learning and so it could not be used in [3].

Competing methods/algorithms are typically compared by means of a statistical test,
whose aim is to assess whether an algorithm is significantly better than another (statis-
tically comparing their performance on different data sets or problem instances). For
comparing two algorithms over a collection of data sets, the most common approaches
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are the sign test or the Wilcoxon signed-rank test [5], however these tests are only able
to cope with one performance measure (criterion) at a time, that is, they cannot consider
a multi-objective approach without resorting to the weighted-sum approach described
earlier. In this paper, we develop two tests that are able to cope jointly with multiple
performance measures without having to somehow combine them: a frequentist proce-
dure based on the generalized likelihood-ratio test and a Bayesian procedure based on
a multinomial-Dirichlet conjugate model. We further extend them by discovering con-
ditional independences among measures to reduce the number of parameters of such
models, an important add-on since usually the number of data sets on which methods
are compared is reduced. Applications of these new tests are numerous. Here we use
real data from a comparison of general purpose classification methods to show a clear
practical application of the tests.

2 Joint Analysis of Performance criteria

Let M1, . . . ,Mm be a set of m performance measures (criteria) and assume that we are
going to compare two algorithms A and B by jointly using these measures.

Definition 1. We call a ‘dominance statement’ for B against A a sequence of m domi-
nance conditions:

D(BA) = [�,�,≺, . . . ,�] ,

where the comparison � (or ≺) in the i-th entry of the vector D(BA) means that algo-
rithm B is better than A (respectively, A is better than B) on measure Mi. �

Our goal is to make inferences on dominance statements by evaluating the m per-
formance measures for the algorithmsA andB on n different case studies (for instance,
data sets, problem instances, etc). In other words, we want to decide which D(BA) is
the most appropriate for A and B given tables with values M (Alg)

ij representing the j-th
measure for the algorithm Alg ∈ {A,B} in the i-th case study:

M(Alg) =


M

(Alg)
11 M

(Alg)
12 . . . M

(Alg)
1m

M
(Alg)
21 M

(Alg)
22 . . . M

(Alg)
2m

...
...

...
...

M
(Alg)
n1 M

(Alg)
n2 . . . M

(Alg)
nm

 . (1)

Given the matrix of performances M(A) and M(B), we first build the binary matrix
X = [M(B) � M(A)], whose entry xij is equal to one if algorithm B is better than
algorithm A for the j-th measure in the i-th case study and zero otherwise. We assume
that ties do not exist.3 To each matrix X we associate a count vector n, whose entries

3 If there are ties we treat a tie in a measure by a standard approach: we replicate the case with
it into two and divide the weight of such case by two (this process might need to be performed
multiple times until no ties are present in the data). Such approach preserves the sample size
and fairly allocates ties between the algorithms being compared.
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represent the counts for each one of the 2m possible dominance statements (many of
which might be zero).

Example 1. Consider the comparison of two algorithms in terms of accuracies M1

(expressed in percent values in the first row) and time M2 (in seconds, shown in the
second row) on 12 data sets:

MA =

[
85 87 87 91 91 91 94 94 94 94 94 94
8 11 11 12 12 12 16 16 16 16 16 16

]T
,

MB =

[
84 86 86 92 92 92 95 95 95 95 95 95
9 10 10 13 13 13 15 15 15 15 15 15

]T (2)

where T denotes transpose.
The matrix X = [M(B) �M(A)] is:4

X =

[
0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 0 0 0 1 1 1 1 1 1

]T
. (3)

Hence, we derive that the dominance statement [≺,≺] (or [0, 0]), which means that
B is worse than A on both measures, is observed n0 = 1 time; the statement [≺,�]
(or [0, 1]), which means that B is worse than A on the first measure but better on the
second, is observed n1 = 2 times; the statement [�,≺] (or [1, 0]) is observed n2 = 3
times; the statement [�,�] (or [1, 1]) is observed n3 = 6 times. Hence, we have that
n = [1, 2, 3, 6] (a binary order is used for the entries of n). �

The matrix X or, equivalently, the vector n, include all the information that we will
use to derive our tests. While this approach might seem to lose information because we
only account for the sign of each differenceM (Alg)

ij −M (Alg′)
ij , there is no effective way

of using the actual value of the difference across multiple measures if these measures
are assumed to be expressed in incomparable units, as in this case no procedure could
be used to compare the measures jointly or to collapse the measures into a single one in
order to run standard tests (using some weighting function; we assume that normalizing
the measures is not an option either, as it entails an additional assumption about the
measures which might not hold). On the other hand, the sign of the difference is a
proper comparable value among measures regardless of the particular meaning of each
of them. In fact, we point out that the measures M (Alg)

ij can themselves be obtained
from any arbitrary procedure (including statistical tests), as we only assume that the
sign of the difference M (Alg)

ij −M (Alg′)
ij is available (and we properly account for ties).

This provides us with a very general setting, allowing for numerous applications.

3 Generalized Likelihood Ratio Test

We derive a simple null hypothesis significance test for the joint analysis of performance
measures. We denote by θk, for k = 0, . . . , 2m − 1, the probability of obtaining one of

4 An algorithm is better (�) than another when it has higher accuracy and lower computational
time.
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the 2m possible dominance statements. Hence, θk ≥ 0 and
∑2m−1
k=0 θk = 1. We have

enumerated the dominance statements according to their “binary order”, so that θ0 is
the probability of the statement [≺, . . . ,≺,≺], θ1 is the probability of [≺, . . . ,≺,�],
θ2 is the probability of [≺, . . . ,≺,�,≺], etc. Our goal is to find if there is a statement
that is significantly more likely than all others based on the observation matrix X. It is
clear that n is a sufficient statistic for this test, since its k-th entry nk corresponds to the
counts for the k-th statement. Hence, to achieve our goal, we can perform a Generalized
Likelihood Ratio Test (GLRT):

λ(n) =
maxθ∈Θ∗ L(θ|n)
maxθ∈Θ L(θ|n)

, where L(θ|n) =
2m−1∏
k=0

θnkk , (4)

θ = [θ0, . . . , θ2m−1], Θ is the simplex for θ, Θ∗ = {θ ∈ Θ : θi∗ ≤ max(θ \
θi∗)} (we abuse notation and indicate by θ \ θi∗ all thetas apart from θi∗ ) and i∗ =
argmaxi=0,...,2m−1 ni. The rationality behind Eq.(4) is that we are testing two hypoth-
esis: (H0) θi∗ ≤ max(θ \ θi∗) and (H1) θi∗ > max(θ \ θi∗). Under H0, the value of θ
which better explains the observations is the maximum likelihood estimate (MLE) sub-
ject to the constraint that θ ∈ Θ∗. Its likelihood is the numerator of Eq. (4). The value of
θ which maximizes the likelihood is instead the MLE subject to θ ∈ Θ. It is clear that
0 ≤ λ(n) ≤ 1. GLRT employs λ(n) as a test statistic and rejects H0 for small values
of λ(n), that is, when λ(n) ≤ ρ, where the value of ρ is determined by fixing the type-I
error to be α. By Wilks’ theorem, for large n, −2 log(λ(n)) is chi-square distributed
with one degree of freedom [6,7]. Hence, the rejection zone for the null hypothesis is
approximately equal to

R =
{
n : − 2 log(λ(n)) > χ2

1,α

}
, (5)

where α is the confidence level. Therefore, to apply GLRT, we must only compute λ(n).

Theorem 1. Given the count vector n, it holds that

λ(n) =

(
na+nb

2

)na+nb
nnaa nnbb

, (6)

where na is the greatest value among n0, . . . , n2m−1 and nb the second greatest. �

Proof. The maximum likelihood estimate of θ subject to the constraint θ ∈ Θ is(n0
n
,
n1
n
, . . . ,

n2m−1
n

)
,

in fact the only constraint on θ in this case is that its elements sum up to 1. The
maximum likelihood estimate of θ subject to the constraint Θ∗ = {θ ∈ Θ : θi∗ ≤
max(θ \ θi∗)} can be computed using KKT conditions of optimality for optimization
problems subject to inequality constraints. To obtain this estimate let us assume without
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loss of generality that n0 ≥ n1 ≥ n2... Note that i∗ = argmaxi=0,...,2m−1 ni and so
considering the equality constraint θi∗ = max(θ \ θi∗), we have that the maximum
likelihood estimate of θ is (nc

n
,
nc
n
,
n2
n
, . . . ,

n2m−1
n

)
,

where nc = (n0 + n1)/2. Then the likelihood ratio is

(ncn )n0 · (ncn )n1 · · · (n2m−1

n )n0

(n0

n )n0 · (n1

n )n1 · · · (n2m−1

n )n0
=
nn0+n1
c

nn0
0 nn1

1

,

which proves the theorem. �

In case na = nb, we have λ(n) = 1 and −2 log(λ(n)) = 0, so that the null hypothesis
can never be rejected. It can be shown that:

Theorem 2. The GLRT (Eq. (5)) is (asymptotically) calibrated (i.e., it controls the Type-
I error) for a prescribed significance level α obtaining the maximum type-I error when
na + nb = n. �

This can be proven using an approach similar to that described in [8, Ex. 21.2].

Example 2. In Example 1,m = 2 and Eq.(2) yields L(θ|n) = θ0θ
2
1θ

3
2θ

6
3 , where θ0 is the

probability of the statement [≺,≺], θ1 of [≺,�], θ2 of [�,≺] and θ3 of [�,�]. Hence,

na = 6, nb = 3, the statistic λ(n) = ( 9
2 )

9

3366 ≈ 0.6 and the p-value is 0.313. Given the
value of the p-value, we cannot conclude that B is better than A on both performance
measures. �

GLRTs have the disadvantage that they do not provide the probability of the hy-
potheses, but only its p-value underH0. This means that we do not have any information
about the probability of the alternative hypothesis being true. To address this issue, in
the next section we propose a Bayesian hypothesis test for testing a certain dominance
statement.

4 Bayesian test

We implement the Bayesian hypothesis test by following a Bayesian estimation ap-
proach, that is, by estimating the posterior probability of the vector of parameters θ.
Given the count vector n, the likelihood of θ given the data is given by the right-hand
side of Eq. (4), which is a multinomial distribution. As prior we then consider a Dirichlet

distribution: p(θ) ∝
2m−1∏
k=0

θαk−1k , where αk > 0 are the parameters of the Dirichlet dis-

tribution. In the rest of the paper, we will always use the symmetric prior αk = 1/2m

( however, we can also use other priors such as the Jeffreys prior αk = 1
2 , or some

robust prior model [9]). By conjugacy, the posterior is also a Dirichlet with updated
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parameters nk + αk. In the Bayesian setting, to make inferences on a dominance state-
ment, we have simply to compute the posterior probabilities P (θi > max(θ\θi)|n), for
i = 0, . . . , 2m−1. This is the posterior probability that θi (associated to the i-statement)
is greater than all other θ¬i values.

Proposition 1. It holds that
2m−1∑
i=0

P (θi > max(θ \ θi)|n) = 1. �

This result follows from the simple fact that P (θi = θj |n) = 0 (i.e., since θi are
continuous variables, it is clear that P (θi = θj |n) = 0 since any probability den-
sity function on continuous variables assign probability zero to singletons). Hence, the
above posterior probabilities enclose all the available information on the dominance
statements. These probabilities can easily be computed by Monte Carlo sampling on
the space of vectors θ from the posterior Dirichlet distribution and then by counting the
fraction of times we see θi > max(θ \ θi), for every i.

Example 3. Take again Example 1. We already know that L(θ|n) = θ0θ
2
1θ

3
2θ

6
3 , where θ0

is the probability of the statement [≺,≺], θ1 of [≺,�], θ2 of [�,≺] and θ3 of [�,�]. The
posterior probabilities of hypotheses are: P (θ0 > θ¬0|n) ≈ 0.013, P (θ1 > θ¬1|n) ≈
0.051, P (θ2 > θ¬2|n) ≈ 0.136, and P (θ3 > θ¬3|n) ≈ 0.80. Hence the most probable
dominance statement is [�,�] and its probability is 0.8. These probabilities have been
computed by Monte Carlo sampling as discussed above. �

5 Bayesian Network

The columns of X = [M(B) � M(A)] can be seen as binary random variablesM =
{M1, . . . ,Mm} representing which algorithm is better according to that measure. Be-
cause of possible stochastic conditional independences between these variables, the es-
timation of a joint probability p(M) can be improved by using a Bayesian network
(BN). A BN can be defined as a triple (G,M,P), where G = (VG , EG) is a directed
acyclic graph (DAG) with VG a collection ofm nodes associated to the random variables
M (a node per variable), and EG a collection of arcs; P is a collection of conditional
probabilities p(Mi|PAi) where PAi denotes the parents of Mi in the graph (PAi may be
empty), corresponding to the relations ofEG . In a Bayesian network, the Markov condi-
tion states that every variable is conditionally independent of its non-descendants given
its parents. This structure induces a joint probability distribution by the factorization
p(M1, . . . ,Mm) =

∏
i p(Mi|PAi). Let θ be the entire vector of parameters such that

θijk = p(Mi = k|PAi = j), where k ∈ {0, 1}, j ∈ {1, ..., 2|PAi|} and i ∈ {1, . . . ,m}.
Note that this represents a different parametrization with respect to the θ of previous
sections, but a simple transformation can be used to compute those values through the
factorization expression. Given the table X with m measures and n case studies, the
structure learning problem in Bayesian networks is to find a DAG G that maximizes its
posterior probability, that is, G∗ = argmaxG∈G p(G|X), with G the set of all DAGs
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over node setM.

p(G|X) ∝ p(G) ·
∫
p(X|G,θ) · p(θ|G)dθ,

where p(θ|G) is the prior of θ for a given graph G, assumed to be a symmetric Dirichlet
with positive hyper-parameter α∗:

p(θ|G) =
m∏
i=1

2|PAi|∏
j=1

Γ (
α∗

2|PAi|
)

1∏
k=0

θ
α∗

2|PAi|+1
−1

ijk

Γ ( α∗

2|PAi|+1 )
. (7)

α∗ is usually referred to as the Equivalent Sample Size (ESS). Such computation is
known as the Bayesian Dirichlet Equivalent Uniform (BDeu) criterion [10,11], where
we assume parameter independence and modularity [12]. We also assume α∗ = 1 and
that there is no preference for any graph and set p(G) as uniform.

In order to find the graph representing the best set of conditional independences
over the space of all possible DAGs G, multiple approaches have been proposed in
the literature. Because the number of measures is hardly above 15 to 20 and they are
all binary, the combination of properties of the BDeu score [13] with a dynamic pro-
gramming algorithm [14] usually suffices. Otherwise one might use more sophisticated
ideas [15,16,17], which can deal with a greater number of variables. Given the optimal
graph G, we can employ the discovered conditional independences to write the joint
distribution forM opportunely:

p(X|G,θ) =
m∏
i=1

2|PAi|∏
j=1

θ
nij0
ij0 (1− θij0)nij1 ,

where nijk counts the number of times (Mi = k ∧ PAi = j) in the data. Com-
bined with the prior p(θ|G) of Eq. (7), this can be used to compute P (θi > max(θ \
θi)|X) by Monte Carlo sampling as before (even if different from previous sections, the
parametrization of θ used here also works for that). The advantages of using Bayesian
networks are as follows. First, by using the p(G|X), the dependence model underlying
the distribution is automatically adapted to what can be inferred from data, and so one
usually needs fewer observations to learn a good model than when working with the
full joint. Second, the graph can be used to identify relations between measures and
how they are associated, which can be for instance used to ignore measures that are not
able to help in discriminating the algorithms. Third, computations can be carried out
efficiently (at least when we restrict ourselves to a couple of tens of variables). We will
illustrate these benefits later on.

6 Experiments

In this section, we apply our tests to compare seven classifiers on 80 data sets (10 runs
of 10-folds cross-validation) and using several performance measures. We have con-
sidered the following classifiers ‘AODE’ (C1), ‘Bayes net’ (C2), ‘Bayes.NaiveBayes’
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(C3), ‘trees.J48graft’ (C4), ‘trees.RandomForest’ (C5), ‘trees.bagging’ (C6) and ‘logis-
tic’ (C7). We have performed all the experiments using WEKA [18], which implements
all such classifiers, and analyzed the results using our R package. We note that our pur-
pose is not to conclude in favor or against any of the classifiers, but to illustrate the use
of our new approaches to compare them.

6.1 Accuracy and FPR-TPR

In this experiment, we have considered three measures. Accuracy is the percentage of
correct predictions of a model, the most common measure to evaluate a classifier. For
a binary classification problem, the true positive rate (TPR) defines how many correct
positive results occur among all positive samples available during the test. The false
positive rate (FPR), on the other hand, defines how many incorrect positive results occur
among all negative samples available during the test. It is well known that accuracy is
highly dependent on TPR and FPR (in the binary case it is just a convex combination
of them). We compare the classifiers using (i) only accuracy and (ii) FPR-TPR jointly,
and expect to see a great agreement between the results of (i) and (ii) because of the
strong dependence between those measures. For (i) we use the Wilcoxon sign-rank test
(which has more power than the sign test), and our tests for (ii). Matrix (8) (left) reports
the statistical comparison of the seven classifiers performed by considering accuracy
only. The numerical values in the matrix are the p-values of Wilcoxon sign-rank test
computed on the direction (≺ or �) corresponding to the highest value of the statistic
(most likely direction to refute the null hypothesis). For instance, the meaning of the
first matrix entry is as follows: C1 has been found better than C2 with p-value close
to zero. Conversely, the first element in the second row means that C2 has been found
worse than C3 (but non-significant with p-value 0.46). All pairwise comparisons with
p-values less than α/2 (e.g, α = 0.1 or 0.05) are significant. To control the family-wise
type-I error of many pairwise comparisons, the significance level should be adjusted
by the Bonferroni correction (or other more efficient approaches) [5]. Hereafter, we
report the p-values of the frequentist tests, so the implementation of such corrections is
straightforward.



C2 C3 C4 C5 C6 C7

C1 � 0 � 0 ≺ ≺ .17 � 0 � 0

C2 ≺ .46 ≺ 0 ≺ .046 � 0 � 0

C3 ≺ 0 ≺ .048 � 0 � 0

C4 � .026 � 0 � 0

C5 � 0 � 0

C6 ≺ 0





C2 C3 C4 C5 C6 C7

C1
�
� .99 �

� .99 ≺
≺ .99 ≺

≺ .85 ≺
≺ 1 ≺

≺ 1

C2
≺
� .27 ≺

≺ 1 ≺
≺ .92 �

� 1 �
� 1

C3
≺
≺ 1 ≺

≺ .90 �
� 1 �

� 1

C4
�
� .93 �

� 1 �
� 1

C5
�
� 1 �

� 1

C6
≺
≺ 1


(8)

Matrix (8) (right) reports the comparison performed with the Bayesian test consid-
ering jointly TPR and -FPR (negative FPR so that as higher as better). In this case,
each entry of the matrix represents the most probable joint dominance and the numer-
ical value the relative probability. The first element says that C1 is jointly better than
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C2 because has higher -FPR (so lower FPR) and higher TPR and this statement holds
with posterior probability 0.99. The test using the Bayesian network model achieved
almost equal results for the probabilities (variations only because of Monte Carlo,
data not shown), because the two measures are well correlated (so the Bayesian net-
work inferred the joint model as the most probable, which reduced it to the standard
Bayesian test without the Bayesian network). Also the GLRT is consistent with the re-
sults obtained by the Bayesian test. For instance, its p-values relative to the C1 row are
0.014, 0.024, 0, 0.29, 0, 0. Apart from 0.29 all the p-values are significant for α = 0.05.
A reason to prefer GLRT to the Bayesian test is that we have shown that it is calibrated
to type-I error. On the other hand the probabilities returned by the Bayesian test have
a more direct interpretation. For this reason, in the following we will just show the re-
sults of the Bayesian test. Comparing the two matrices is clear that the results are quite
in agreement (smaller p-values correspond to higher probabilities and vice versa). The
advantage of approach with multiple measures is that it is able to jointly consider them
and thus its conclusions have additional meaning.

6.2 Accuracy, F-measure and Weighted-AUC

In this section we compare the classifiers using accuracy, F-measure and weighted-
AUC: (i) separately; (ii) considering pairwise combinations of these measures; (iii)
considering the three measures together.

For the case of Accuracy and Weighted-AUC, Matrix (9) (on the left) reports the
results of the comparison obtained considering separately each of these measures (each
cell contains the result for Accuracy on top and Weighted-AUC below it), while Ma-
trix (9) (on the right) is the result of the Bayesian joint test. For performing the sepa-
rate tests, we have used the Wilcoxon sign-rank test [5]. The numerical values in the
Matrix (9) (on the left) are the p-values of Wilcoxon sign-rank test computed on the
direction (≺ or �) corresponding to the highest value of the statistic (most likely di-
rection to refute the null hypothesis). For instance, the meaning of the comparison C1

versus C5, is as follows: C1 has been found worse than C5 in accuracy (with p-value
0.17) and better in Weighted-AUC (with p-value 0.14). All pairwise comparisons with
p-values less than α/2 (e.g, α = 0.1 or 0.05) are significant.5 Matrix (9) (on the right)
reports the comparison performed with the Bayesian test considering jointly Accuracy
and Weighted-AUC. In this case, each entry of the matrix represents the most probable
joint dominance statement and the numerical value is the relative probability. Compar-
ing the two matrices, there are two cases where the tests are in clear contradiction (in
bold) and a case (C4 vs. C7), where the joint comparison gives an evident advantage
in power. This means that C4 is better than C7 jointly on both accuracy and Weighted-
AUC, while this is not true when the two performance measures are considered sepa-
rately. Therefore, it is evident that decisions derived by a joint test can be very different
from the decisions carried out using a separate test for each performance measure. If the

5 To control the family-wise type-I error of many pairwise comparisons, the significance level
should be adjusted by the Bonferroni correction (or other more efficient approaches) [5]. Here-
after, we report the p-values of the frequentist tests, so the implementation of such corrections
is straightforward.
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goal is to compare algorithms considering jointly the measures, then it is more appro-
priate to use the new methods proposed here. The GLRT is overall consistent with the
results obtained by the Bayesian test (results not shown). For instance, its p-value for
“C4 better than C7 on both the performance measures” is almost zero (so “very” signif-
icant). One reason to prefer GLRT to the Bayesian test is that we have shown that it is
calibrated to type-I error. On the other hand, the probabilities returned by the Bayesian
test have a more direct interpretation. The choice depends on the user’s needs.



C2 C3 C4 C5 C6 C7

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ .17
� .14

� 0
� 0

� 0
� 0

≺ .46
≺ .37

≺ 0
� 0

≺ .05
� .47

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ .05
� .43

� 0
� 0

� 0
� 0

� .026
≺ 0

� 0
� 0

� 0
� .14

� 0
� 0

� 0
� 0

≺ 0
≺ 0





C2 C3 C4 C5 C6 C7

C1
�
� .99 �

� .96 ≺
� .99 ≺

≺ .64 �
� 1 �

� 1

C2
�
≺ .42 ≺

� .99 ≺
≺ .72 �

� 1 �
� 1

C3
≺
� .99 ≺

≺ .72 �
� 1 �

� 1

C4
�
≺ .56 �

� 1 �
� 1

C5
�
� 1 �

� 1

C6
≺
≺ 1


. (9)

Now we consider Weighted-AUC and F-measure together. Matrix (10) (on the left)
reports the results of the comparison based on separate tests (each cell contains the result
for Weighted-AUC on top and F-measure below it), while Matrix (10) (on the right)
regards the Bayesian joint test. There are five cases where the tests are in contradiction
(in bold). In particular, in the comparisons C2 vs. C5 and C3 vs. C5, the Bayesian test
asserts that C5 is jointly better with probability 0.91, while the separate tests do not find
a significant dominance. Again for C4 vs. C7, it is evident that the joint comparison
gives an advantage in power.



C2 C3 C4 C5 C6 C7

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ 0
� .14

� 0
� 0

� 0
� 0

� .27
≺ .37

≺ 0
� 0

≺ 0
� .47

� 0
� 0

� 0
� 0

≺ 0
� 0

≺ 0
� .43

� 0
� 0

� 0
� 0

� 0
≺ 0

� 0
� 0

� 0
� .14

� 0
� 0

� 0
� 0

≺ 0
≺ 0





C2 C3 C4 C5 C6 C7

C1
�
� .99 �

� .99 ≺
� 1 ≺

≺ .81 �
� 1 �

� 1

C2
�
≺ .37 ≺

� 1 ≺
≺ .91 �

� 1 �
� 1

C3
≺
� 1 ≺

≺ .91 �
� 1 �

� 1

C4
�
≺ .55 �

� 1 �
� 1

C5
�
� 1 �

� 1

C6
≺
≺ 1


. (10)
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Finally we consider the three performance measures together. Matrix (11) reports
the result of the Bayesian joint test.



C2 C3 C4 C5 C6 C7

C1

�
�
�
.99

�
�
�
.99

≺
≺
�
1

≺
≺
≺
.81

�
�
�
1

�
�
�
1

C2

�
�
≺
.31

≺
≺
�
1

≺
≺
≺
.91

�
�
�
1

�
�
�
1

C3

≺
≺
�
1

≺
≺
≺
.91

�
�
�
1

�
�
�
1

C4

�
�
≺
.55

�
�
�
1

�
�
�
1

C5

�
�
�
1

�
�
�
1

C6

≺
≺
≺
1


. (11)

We can then assert that C1 is better than C2 and C3 jointly on all performance
measures. Overall, C5 appears to be jointly the best classifier followed by C4. By us-
ing the Bayesian network inference to compare C4 and C5, we achieve the very same
conclusions (results not shown). The interesting outcome of that inference is that we
can graphically see the relation between measures in Figure 1, which is automatically
learned from the matrix of measures, and not surprisingly, all three measures of classi-
fication accuracy are dependent.

w-AUC F-measure Accuracy

Fig. 1: Three measures used to compare C4 and C5 and their (in)dependences.

6.3 Comparison Using Six Measures

In this section we compare the same seven classifiers but now using six performance
measures jointly: Accuracy, F-measure, weighted-AUC, Kappa statistics, root mean
squared error (RMSE), and mean absolute error (MAE). In order to illustrate the ca-
pabilities of the proposed approach, let us take on the task of comparing the classifiers
C1 and C2. By using the BN and the learned conditional (in)dependences displayed in
Figure 2, we obtain the probability of C1 to be better than C2 jointly in all six measures
to be 0.5, while the value reaches 0.9 without using the BN, which suggests that an
unreliable decision could be taken because independent measures where assumed to be
dependent (the model without the Bayesian network was learned with very few data,
about 80 cases for a parameter space of dimension 63, which is clearly insufficient).
From Figure 2 we see that RMSE and MAE are independent measures with respect
to the others and each other. With such information, we can look to their importance
separately. Using the Bayesian test for MAE we get a very low probability of 0.54 to-
wards C2, while RMSE achieves 0.99 towards C2. The other four connected measures
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in Figure 2 achieve probability 0.9999 towards C1. Hence we are able to identify the
source of this difference between the result with the Bayesian network and without it,
which clarifies the measures under which one classifier is better than the other. Further
applications are numerous, but they go beyond the scope of this work.

Accuracy F-measurew-AUC

KappaRMSE MAE

Fig. 2: Six measures used to compare classifiers C1 and C2 and their dependences.

6.4 Simulation study

Finally, we perform a simulated study to understand the benefit of using the Bayesian
networks. We study scenarios with m equal to 2, 3 and 5 measures from which we
randomly draw the multinomial parameters, that is, 22 − 1 = 3, 23 − 1 = 7 and
25 − 1 = 31 independent parameters, respectively. We label each test case as follows:
if the maximum θ is greater than the second greatest plus 0.1%, then this is labelled as
a case where there is a difference between the maximum and the others. Otherwise we
say the maximum is not greater than the others (and we force the maximum and second
greatest to be equal to each other). Then we randomly generate n samples (n =10, 20
or 50) from the distribution and run the GLRT and the Bayesian test with and without
the support of the Bayesian network to learn the underlying distribution from data. For
each test case, we record the probability that the maximum parameter is greater than the
others (or the p-value in the case of the GLRT). This procedure is repeated one thousand
times for cases where the maximum is greater (so positive cases) and one thousand
times with the maximum equal to the second greatest value (negative cases). The results
over these two thousand test cases are used to build a receiver operating characteristic
(ROC) curve according to the usual procedure: True/false positive/negative are defined
by varying the threshold for the probability (or respectively the p-value) such that the
method takes a decision of whether it is a positive or negative case. In this way, we
obtain the percentage (over two thousand test cases) of true positive, true negative, false
positive and false negative for each method for each threshold. The curves with the
GLRT (gray dashed-dotted) and the Bayesian test with the Bayesian network (black
dashed) and without it (black contiguous) are shown in Figure 3 for different values of
m and n. In all cases, the GLRT is equal or inferior to the Bayesian test, and the Bayes
test with the Bayesian network version is always equal or superior to the Bayesian test
alone.

We repeat the experiment but we now assume that the five measures are indepen-
dent from each other. In this scenario we expect the method with the Bayesian network
to be superior, as it can estimate a more appropriate joint distribution (given the limited
amount of data). Again we randomly draw the parameters of the multinomial (respect-
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(b) m = 3 and n = 10.
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(c) m = 3 and n = 20.
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(d) m = 5 and n = 50.

Fig. 3: ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with (black
dashed) and without (black contigous) the Bayesian network use during learning. Dis-
tributions and data (n samples) are generated for a domain with m measures uniformly
at random.

ing the independence assumption), then the data and we label the cases as before. The
ROC curves for this scenario are shown in Figure 4.

The area under the curves of each method and each scenario is presented in Table 2.
The values obtained by GLRT are always inferior to those of the Bayesian test. The
latter has consistently produced better results with the support of the Bayesian network
for learning the distribution. The superiority of the method with the Bayesian network
is justified by the better estimation of the joint distribution with its underlying indepen-
dence assessments.
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(b) m = 3 and n = 10.
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(c) m = 3 and n = 20.
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(d) m = 5 and n = 50.

Fig. 4: ROC curves for the GLRT (gray dashed-dotted) and the Bayesian test with (black
dashed) and without (black contigous) the Bayesian network use during learning. Dis-
tributions and data (n samples) are generated for a domain with m measures uniformly
at random assuming that all measures are independent from each other.

7 Conclusions

In machine learning and artificial intelligence, a very important task is to compare the
performance of algorithms on different case studies and to use multiple different per-
formance measures. This is typically performed using statistical tests. In this paper, we
have developed new statistical tests that are able to compare the algorithms considering
all the performance measures jointly. This allows for example to make statements such
as a classifier is jointly better than another on multiple measures as well as on partic-
ular subsets of measures, which can be identified with the use of a Bayesian network
modelling the (in)dependences among measures. With artificial and real-data examples
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m n Type GLRT Bayesian test Bayesian test + BN

2 10 indep 0.686 0.703 0.715
2 10 full 0.583 0.601 0.622
3 10 indep 0.641 0.688 0.694
3 10 full 0.530 0.555 0.577
3 20 indep 0.735 0.764 0.791
3 20 full 0.524 0.549 0.590
5 50 indep 0.735 0.790 0.822
5 50 full 0.500 0.522 0.613

Table 2: Area under the ROC curve for each of the methods in each analyzed scenario.
m is the number of measures, n the number of data points over which the measures are
compared, and Type describes whether the simulation sampled the parameters without
restriction (full) or with the forced assumption that each measure is independent of each
other (indep).

we have shown that the decisions derived by a joint test can be very different from the
decisions carried out using a separate test for each performance measure. We argue that
the ideas developed here can offer a new way for comparing algorithms using multiple
performance measures. Future work includes the exploration of applications and the
further use of the Bayesian network structure to understand the relations between per-
formance measures and their importance for the evaluation of algorithms. Moreover,
we plan to extend this approach to be able to compare multiple measure on multiple
algorithms at the same time.
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