
Investigating Distributed Simulation at The Ford Motor Company

Simon J.E. Taylor

Leif Bøhli

Centre for Applied Simulation Modeling

Brunel University

Uxbridge, Middlesex, UB8 3PH, UK

E-mail: Simon.Taylor@brunel.ac.uk

Leif.Bohli@brunel.ac.uk

Xiaoguang Wang

Stephen J. Turner

Parallel and Distributed Computing Centre

Nanyang Technological University

Nanyang Avenue, 639798 Singapore

E-mail: ASSJTurner@ntu.edu.sg,

xgwang@pmail.ntu.edu.sg

John Ladbrook

Dunton Engineering Centre

Ford Motor Company

Mail 15/4a-F04-D

Basildon, Essex, SS15 6EE, UK

Email:ladbroo@ford.com

Abstract

Engine production is a complex process that

requires the manufacturing and assembly of a wide
variety of components to create a varied product mix.

Simulation plays a key role in the planning process of

a new production line to determine if it can meet

expected demand. However, these simulations can be

very time consuming and can often take up to a day to

execute a single run. This paper investigates how
distributed simulation based on the IEEE 1516 High

Level Architecture and the emerging standard COTS

Simulation Package Interoperability Product

Development Group (CSPI-PDG) Type I

Interoperability Reference Model could be used to

reduce the time taken for a single simulation run. CSP
interoperability and the problem of integrating CSPs

with HLA software (the runtime infrastructure) are

presented. New prototype benchmarking software, the

COTS Simulation Package Emulator (CSPE), which is

being developed to investigate distributed simulation
problems, is discussed. The paper then develops a

case study of how this was used to investigate the

feasibility of using distributed simulation at Ford. The

paper discusses results obtained from this case study

and suggests that distributed simulation could indeed

be beneficial to Ford.

1. Introduction

The production of an engine is a complex process

involving the manufacture and assembly of a wide

variety of components to create a range of different

possible engine types (different capacities, fuel

injection options, petrol/diesel, etc.). The requirement

for different engines is determined by expected

customer demand. When planning a new engine

production line to meet this expected demand, many

complex factors such as machine cost and reliability,

partially built engine test, repair and recycle time, and

varying operator shift patterns and availability must be

taken into account. In this area, discrete-event

simulation is used as the main decision support

technique. The planning process is therefore a

repeating cycle of production layout creation, model

building and simulation, and reporting to determine if

new lines can meet expected demand. The COTS

simulation package (CSP) WITNESS [14] is used to

support modelling and simulation in this process.

Figure 1 shows a typical simulation process used in

the design of an engine production line. The aim of

this process is typically to determine the sensitivity of

a line to changes in factors as outlined above. As can

be seen, the process begins when a new production line

layout becomes available. A new model is then built

and process data is obtained. Validation is then

performed on model output and, as the layout cannot

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be modified, the process data is scrutinized against

expected production capacity. Experiments are then

run on the model. The ramifications of results from

these experiments are then considered and this is

repeated until no further experimentation is required.

Get New Layout

Build Model (FAST)

Get Process Data

Validate Model Output

Run Experiments

Process Results

Valid?

More?

End

Start

Figure 1. Engine production line simulation
process

As part of an on-going collaboration between the

Centre for Applied Simulation Modeling at Brunel

University (UK), the Dunton Engineering Centre at

The Ford Motor Company (UK) and the Parallel and

Distributed Computing Centre, Nanyang

Technological University (Singapore), work is being

carried out to reduce the cycle time of the simulation

study involved in this process. Opportunities that have

been identified include the reduction of the time taken

to build models, to perform a run of a single model, to

perform experimentation with the model, and to

collaborate with the various stakeholders and the

simulation team. These are addressed as follows: by a

spreadsheet-based front-end (FAST) to WITNESS that,

to a certain extent, automates model building; by

investigation carried out in this paper; by distributing

experimentation over many processors; and by using

groupware [8]. All, apart from distributing the run of a

single model have met with varying degrees of success.

Building on previous work that investigated the use

of distributed simulation at Ford with an alternative

production line layout [11] and contemporary work of

the Simulation Interoperability Standards Organization

(SISO) CSP Interoperability Product (standards)

Development Group CSPI-PDG [9], this paper

investigates the feasibility of using distributed

simulation techniques based on the IEEE 1516 High

Level Architecture and the CSPI-PDG Type I

Interoperability Reference Model to reduce the time

taken for a single simulation run. WITNESS, like

many CSPs, does not have interoperability

functionality. This is entirely reasonable as the need

for distributed simulation in this area has recently

emerged. As this does not currently exist, it is

impossible to demonstrate the possible benefits of

distributed simulation to a stakeholder. Without this

demonstration, the stakeholder cannot express demand

for this functionality to the CSP vendor. To solve this,

this paper also discusses the development of a CSP

Emulator (CSPE) that allows us to perform feasibility

studies and to demonstrate to stakeholders the possible

benefits of adopting this technology. This work is of

particular interest to our collaboration and, we hope,

the wider simulation community as the execution of a

engine production simulation can take over a day to

run. Given that experimentation usually requires many

runs of a simulation, any possible speedup will

therefore represent a significant reduction in the cycle

time of a simulation study and, possibly, make it

possible for additional experimentation to take place

that would not be otherwise possible.

Our paper is structured as follows. CSP

interoperability and the problem of integrating CSPs

with HLA software (the runtime infrastructure) are

introduced in section 2. Sections 3 and 4 outline our

approach and the prototype benchmarking software

CSPE that is being developed to investigate distributed

simulation problems as presented in this introduction.

Our case study of how this was used to investigate the

feasibility of distributed simulation at Ford is presented

in section 5. Section 6 discusses the results obtained

from our study and the implications for Ford (and other

similar stakeholders). Section 7 concludes the paper

with a summary and a short discussion of further work.

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

2. CSP Interoperability

Consider a model of a factory built in a single CSP.

To simulate the factory model, the CSP will use the

resources of the single computer on which it runs.

However, consider the possibility of dividing the

model so that it runs on two computers. The “split”

model would run in two CSPs running on two

computers. Why would we do this? We do this in the

hope of reducing the time taken to simulate the factory

by a factor of two. This proposition is not at all new

and is one of the main drivers of the field of distributed

simulation [2]. However, it is relatively new to users

of CSPs and is, with a few limited exceptions,

currently not possible. Let us explore why.

Briefly, a federation is composed of CSPs/model

federates that exchange data via a runtime

infrastructure (RTI) in a time synchronized manner as

specified by the IEEE 1516 High Level Architecture

(figure 2). Two factories, F1 and F2, generically

interact as denoted by the black double-headed arrow.

Each model consists of an arrival source Soi, a queue

Qi, a workstation Wi, a resource Ri, and an exit sink

Sii (where i is the factory identifier). Different types of

information might be exchanged. For example, entities

might be passed between models (i.e. the two factories

are linked together – entities leave F1 at Si1 and arrive

in F2 at So2) and the resources R1 and R2 might be

shared to reflect a shared set of machinists that can

operate workstations W1 and W2. If this was the case,

factory F1 must publish and send information to the

RTI in an agreed format and time synchronized manner

and factory F2 must subscribe to and receive that

information in the same agreed certain format and time

synchronized manner, i.e. both federates must agree on

a common representation of data and both must use the

RTI in a similar way. Further, the “passing” of entities

and the sharing of resources require different

distributed simulation protocols.

Why is this then not possible? Firstly, there is the

issue of how a CSP can be integrated with the HLA

RTI and secondly, there is the issue of an agreed

format and communication protocol. We now consider

each issue.

2.1 CSP/RTI integration

Stra burger [7] analyzed the requirements for CSP

integration from the perspective of being part of a

distributed simulation and the perspective of the

programming paradigm. The distributed simulation

perspective requires that the CSP should provide an

interface at least to connect to an RTI that is capable of

exchanging data in a commonly agreed format via a

commonly agreed time synchronization protocol. The

programming paradigm requires that in addition to this,

special consideration must be given to the ambassador

paradigm of the HLA [4]; the CSP must be able to

communicate with the HLA RTI via the

RTIAmbassador and implement the corresponding

FederateAmbassador. The approach taken to the

programming paradigm can be classified as either

explicit or implicit from the viewpoint of the modeler.

The explicit approach requires that the modeler must

add HLA synchronization and communication to the

CSP/model and the implicit, or transparent, approach

requires that all this functionality is hidden from the

modeler (the functionality is built into the CSP and/or

interfacing software between the CSP and RTI).

Figure 2. COTS simulation package interoperability

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

However, as modelers wish to benefit from any

possible speedup due to distributed simulation without

the cost burden of the extra skills and training required

by the explicit approach, the implicit approach is more

appropriate in the work described in this paper.

However, to achieve this, a CSP needs new features to

enable a model built using the package to join a

distributed simulation. Some work has been done in

this area to suggest new features to be added to CSPs

in general to provide transparent interoperability

functionality [6].

2.2 Interoperability standards

In addition to the transparency requirements of the

implicit approach, there is the problem of agreeing a

common standard data exchange format and protocol,

i.e. an agreed interoperability standard. In 2004, the

CSPI-PDG (Commercial-Off-The-Shelf Simulation

Package Interoperability Product Development Group)

was approved by the IEEE affiliated Simulation

Interoperability Standards Organization (SISO) [9].

Previously known as the HLA CSPI Forum, the Group

is dedicated to creating a standardized approach to

support the interoperation of discrete event models

created in CSPs using the IEEE 1516 High Level

Architecture. One of the first issues identified by the

CSPI-PDG was the problem of developing a data

exchange format and protocol that satisfied all

interoperability requirements of distributed simulation

with CSPs. The solution to this was the development

of a set of Interoperability Reference Models (IRMs)

[9]. Each IRM is intended to “capture” a particular

interoperability requirement. Currently, these are:

• Type I: Asynchronous Entity Passing

• Type II: Synchronous Entity Passing

(Bounded Buffer)

• Type III: Shared Resources

• Type IV: Shared Events

• Type V: Shared Data Structures

• Type VI: Shared Conveyor

Each is intended to be supported by an

Interoperability Framework (IF) and a data exchange

specification. For example, the Type I IRM

Asynchronous Entity Passing deals with the common

requirement of transferring entities between simulation

models. In the Type II IRM Synchronous Entity

Passing, the input model can transfer entities only

when it makes sure that the destination side is not

blocked (workstation) or not full (queue) in the

receiving model. A solution (an IF) for Type I is

intuitively simpler than one for Type II. The IRMs

therefore allow progress to be made towards a general

solution while providing “intermediate” well-formed

solutions on the way. Further, a data exchange

specification for entities is under development that

supports the representation needs of both Type I & II

IRMs (other specifications will be created to support

the other IRMs) [9]. It is intended that the IF solutions

to each IRM will be complementary but capable of

operating independently.

In addition to the standards outlined above, a set of

COTS Simulation Package Emulators (CSPEs) is being

created. As described above, there are currently no

CSPs with an efficient interface capable of supporting

the IRMs. This is unsurprising as the IRMs are still

undergoing product development. However, as

redevelopment of CSPs is costly, and progress towards

the IFs must be made to create standardized CSP

interoperability, a benchmark is needed to compare

different possible solutions. This is the purpose of the

CSPEs.

This section has outlined some of the problems of

CSP interoperability and approaches being taken to

create a standardized solution. We will now describe

progress made towards the Type I IF on the basis of the

Type I IRM.

3. Integrating a CSP with the HLA: Type I

IRM

The Type I IRM (Asynchronous Entity Passing)

represents models that interact on the basis of entities;

models are linked together so that one model may

“pass” an entity to another at a given timestamp. The

reason why this is termed “asynchronous” is that there

is no immediate or direct feedback when an entity is

passed (this does not mean to say that no feedback can

exist, just that it must happen at a different time to

when an entity is passed).

In terms of minimum technological support of the

logical link between the two models, all that is required

is the transmission of timestamped entity information

between one model and another in such a way that the

receiving model receives the timestamped entity

information in the correct order with its own events.

This is the reason why this IRM has been termed

“asynchronous”, there is no synchronous message

exchange needed to transfer the entity information

between the two models (as is required in the Type II

IRM). An IF solution to this Type I IRM must

therefore be able to:

• transfer timestamped entity information from one

model to another via a timestamped message ,

• allow a model to correctly receive timestamped

entity messages from one or more models, and

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

• correctly coordinate this information with the

receiving model events being processed by the

COTS simulation package.

In the development of a Type I IF to support this,

we have proposed a generic architecture for our

interoperability frameworks with the incorporation of a

DSManager library and extended RTI [12]. The

DSManager provides a generic interface consisting of a

set of functions to be invoked by the CSP or CSPE (see

Section 4) when necessary. The C++ / Java-based RTI

is wrapped by “normal” C functions, that can easily be

integrated with most of the current CSPs written in C,

C++, Java or VB. The DSManager also interacts with

the extended RTI which is developed using a

middleware approach [3]. In this extended RTI, known

as RTI+, appropriate synchronization algorithms are

designed in order to improve the simulation

performance and relieve the user from the burden of

time management. Examples are a shared state

manager [3] for conservative synchronization and a

rollback controller [13] for optimistic synchronization.

Our architecture also supports other functions

related to distributed simulation, such as the setting of

appropriate lookahead values. For example, for

benchmarking purposes, a lookahead value can be set

and the synchronization approach to be used can be

declared. We now introduce our CSPE benchmark

software for the Type I IRM.

4. A Type I CSPE

As previously discussed, the range of CSPE

benchmarks are intended to facilitate the study of CSP

interoperability. The CSPE described in this paper in

intended, for now at least, for Type I IRMs. It builds

on a previous incarnation described in [10] and

represents an important stage in the evolution of the

CSPE benchmarks. The main differences are increased

functionality and a more flexible user interface for

building representative models. This means that this

version of the benchmark can investigate a wider range

of problems than previously possible.

In our version of CSPE, as with many CSPs, an

entity passes through a variety of simulation objects.

There are four basic types of simulation objects: entry

point, queue (bin or storage), workstation (machine)

and exit point. The modeler can define the attributes

and property of each entity type, and assign and link

necessary simulation objects to process each entity.

Entities can be specified either as being “internal”

(generated and consumed with the model), or as

arriving from another model and/or leaving to another

model. If the latter of these are chosen, the name of

the source model (arriving from…) and/or destination

model (leaving to…) must be specified. Additionally,

entry and exits points to and from the model must be

specified. Note that in this version of CSPE, for each

external entry point, only one type of entity will arrive

from only one source model. The modeler can use

other external entry points if there are entities from

other source models or more than one type of entity

from the same model. For exit points, we recognize

that if more than one entity leaves a model at the same

time then, as with CSP routing, some tie-breaking rule

is needed to schedule the ordering of these

simultaneous events. In CSPE, the approach used is to

assign a different priority to each external exit. The

higher the priority (lower value), the earlier (in real

time) the entity will be sent out.

A model built using CSPE can be a standalone

model or part of a distributed simulation. The modeler

needs to choose one and only one of the component

models as a controller model. The controller model is

in charge of managing the creation and termination of

the distributed simulation. The number of component

models in the distributed simulation is only needed by

the controller model. It is used for the initialization

phase of the simulation execution. Each component

model also should give the name of the distributed

simulation, and the name of the FED Configuration

File which is used to supply the RTI with all necessary

federation execution details during the creation of a

new federation [1]. As discussed in the previous

section, in addition to managing the execution of the

local model, the CSPE must interact with the

DSManager. This includes forwarding necessary

information describing the distributed simulation to the

DSManager, transferring entities from external exit

points, and receiving entities from the DSManager and

passing them to the corresponding external entry

points. Internally, our CSPE uses the three-phase

approach to perform the simulation of the model [5].

Our implementation of this approach has some slight

differences as our CSPE uses two event lists (bound

event list and conditional event list).

5. Case Study

At Ford our problem is this. Engine production

lines are complex but, on the whole, linear. There are

some feedback loops, such as when an engine part is

inspected for quality and returned back via repair

stations into the production line for reprocessing. To

study if distributed simulation could benefit such a

simulation, i.e. if the simulation processing work could

be split between different computers, a case study was

developed at Ford. This was based on an analysis of a

proposed production line that was being simulated and

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

is shown in figure 3. Actual details of this model

cannot be reproduced here due to commercial

confidentiality. However, what can be revealed is that

it is a “conventional” production line (linear with some

feedback loops) and that the queues within the model

were sized so that a queue within the model never

became full (i.e. the processing times of the machines

and the throughput of entities were balanced).

Additionally, the numbers and distribution of the

queues and the workstations are representative of the

real model. The standalone model consists of work

stations (squares with “W”), queues (circles with “Q”),

repair stations (squares with “R”), inspection stations

(diamonds with “I”), entry points (“D”s with

directional arrows outward), and an exit point (“D”s

with directional arrow inward). Travel time between

the different elements in the model was fixed at 10

simulated time units. The time taken to process an

entity passing through a work station is set at a fixed

number of 14 simulated time units, 1 simulated time

unit in the inspection stations and 30 simulated time

units in the repair stations. Entities were introduced

into the model from the entry points every 14

simulated time units (timings relatively representative

of the real system). The three entry points reflect the

three classes of engine part that need to be added to the

engine assembly as it begins its processing. Overall,

the entity passing of the model conformed to the Type

I IRM.

Our CSPE could be used to study the feasibility of

using distributed simulation to speed up the simulation

of this kind of production line. Three different

representative scenarios were considered. These are:

• Topology A: Engine production line model with

two federates (Figure 4)

• Topology B: Engine production line model with

four federates (Figure 5)

• Topology C: Engine production line model with

four federates and two repair station federates

(Figure 6)

Each of these scenarios was chosen to reflect “real-

world” situations where the model might be developed

by different modeling teams. Topology A and B

represent the division of the model into two and four

parts respectively. Topology C represents the further

division of the four federate scenario with each of the

repair stations placed in separate federates. Note that

in the figures additional entry/exit (source/sink) points

have been added to the model to reflect arrival and

departure points of the entities and that

interconnectivity is represented by the appropriate

designator (SiA is logically connected to SoA via

connector A). The number of federates were limited

by license considerations. Many stakeholders have

only access to a limited number of licenses of a real

CSP and therefore scenarios based on distributed

simulation with even six federates represent an

investment few companies can actually afford!

Figure 3. Engine production line model

So

So

So

Q W Q

Q W Q

Q W Q

W Q I

QR

Q W

W Q W Q W Q W Q I Q W Si

QR

Q

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

Figure 5. Engine production line model: four
federates

Federate 4D

SiE

Q I Q W SiSoC

Federate 4C

Q W Q W Q W

QR

SoB SiC

SoE

Federate 4B

Q I Q W Q W SiBSoA

SiD

Federate 4A

So

So

So

Q W Q

Q W Q

Q W Q

W

QR

SiA

SoD

CE

B

AD

Figure 6. Engine production line model:
four federates and two repair station

federates

Federate

6E

Federate 6B

Federate 6D

SiG

Q I Q W SiSoC

Federate 6C

Q W Q W Q WSoB SoC

Q I Q W Q W SiBSoA

SiE

Federate 6A

So

So

So

Q W Q

Q W Q

Q W Q

W SiA

SoD

C

B

A

SoF

Q
R

S
iD

S
o

E

Federate

6F

Q
R

S
iF

S
o

G

D

E

G

F

Figure 4. Engine production line model: two
federates

Federation 2B

Federation 2A

So

So

So

Q W Q

Q W Q

Q W Q

W Q I

QR

Q W SiA

W Q W Q W Q W Q I Q W Si

QR

QSoA

A

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

 To investigate different processing demands made

by the model, something which is entirely possible

given a real CSP, we used event granularity. We

define event granularity as the computation time taken

to process an event. In this case study, the event

granularity is only used for each workstation to

schedule a new event. This allows us to vary

computation time to reflect the actions taken during the

execution of an event (for example, updating of

statistical counters, saves to a trace file, etc.). The

event granularity for each experiment was set at 0.001,

0.01, 0.1 and 1 second. Lookahead was fixed relative

to the travel time. Parts were rejected and returned

earlier in the production line 25% of the time (a

representative and not at all realistic figure – the real

rejection rate is confidential!). The same number of

entities were throughput in all experiments. Our

performance tests were carried out on up to six

computers connected through an isolated 10 Mbit local

area network. The specifications of the machines were

Pentium III, 650MHz, 256mb RAM, the router was a

Catalyst 2900 10Gb. The RTI Executive was run on a

Toshiba Celeron 2.6GHz 450mb RAM.

6. Results

Figure 7 shows how execution time varies with

event granularity and figure 8 shows how speedup

varies with event granularity (against the runtime of

the single model shown in figure 3). As is possibly

expected, the difference in execution time is negligible

for small event granularities. However, over an event

granularity of 0.01, the emergent behavior appears to

be that the distributed simulation (any topology) out

performs the single model and that execution time

reduces with greater numbers of processors. A better

demonstration of this is shown in figure 8 as over 0.01,

with all topologies speedup increases proportionately

as event granularity increases. With event granularities

of 0.01, 0.1 and 1.0 respectively, topology A has

speedups 1.64, 1.80 and 1.98, topology B has 2.13,

2.37 and 2.53, and topology C has 2.30, 2.58 and 2.95.

The trend appears to be that topologies with more

processors appear to get better speedup, even though

the decomposition is uneven.

What are the implications of this? The

representative model of figure 3 at an event granularity

of 1.0 takes around 12 hours to execute. This

execution time is of a similar magnitude to that of the

real simulation run (but in no way represents the

number of entities of the real run – the model is more

complex!) A simple decomposition into four federates

(topology B) yields, with an old RTI, a speedup of

around 2.5. Separating out the repair stations

(topology C) further increases speedup to around 3.

This represents the ability to run the real model in

around 4-5 hours – effectively increasing the number

of experiments per day to 2-3. It is likely that a more

modern RTI could further increase the speed of

execution. Given the constraint of limited CSP

licenses and limited time to investigate federate

decomposition, it appears that this feasibility study

indicates a strong reason for Ford to adopt distributed

simulation.

Figure 7. Performance results for engine
production line case study (time vs event

granularity)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0.001 0.01 0.1 1.0

Event Granularity

E
x
e
c
u

ti
o

n
 t

im
e

Standalone

6 Federates

2 federates

4 Federates

Figure 8. Performance results for engine
production line case study (speedup vs event

granularity)

0

0.5

1

1.5

2

2.5

3

3.5

0.001 0.01 0.1 1.0

Event Granularity

S
p

e
e
d

u
p 6 Federate

4 Federates

2 Federates

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

7. Conclusions

This paper has investigated the possible benefit of

distributed simulation in one area of simulation at The

Ford Motor Company. To achieve this, this paper has

discussed the CSP interoperability problem and the

development of a CSPE based on the CSPI-PDG Type

I IRM to investigate these problems. A short case

study has been presented and results of

experimentation with CSPE show that it may be

possible to achieve a speedup in this case that could be

beneficial to Ford.

On the basis of this, work is on-going to develop the

interface between our DSManager and the WITNESS

CSP used by Ford. This will be influenced by success

in a sister project to this work in the semiconductor

industry as another CSP, Autosched AP [15], has been

successful integrated to our DSManager. We hope to

further develop our CSPE to support the investigation

of Type II IRM problems [13] so that our work can

continue to influence the development of distributed

simulation solutions and standards in industry.

As a final note, the importance of this work is to

show how distributed simulation can potentially

benefit real-world applications in an area that is

relatively novel such that stakeholders have confidence

(our validation of CSPE). It is hoped that our

contribution of an approach to feasibility studies using

our CSPE software will inspire the study of other such

applications.

8. Acknowledgements

The development of the CSPE described in this

work is part of a pilot project funded by the Agency for

Science, Technology and Research (A-STAR)

Thematic Strategic Research Program under the theme

“Industrial IT - Integrated Manufacturing and Service

Systems”. The authors would like to thank Thor-

Kristian Ingham and Martin Bruusgaard for their help

at Ford, as part of the MTech Program run between

NITH (Norway) and Brunel, and Malcolm Low

(SimTECH, Singapore) in the development of proto

standards in this area.

9. References

[1] DoD, High Level Architecture Federation Execution Data

(FED) File Specification – RTI 1.3 Version 3, Department of

Defense, 31 July, 1998.

[2] R.M. Fujimoto, Parallel and Distributed Simulation

Systems, John Wiley & Sons, New York, 2000.

[3] B.P. Gan, M.Y.H. Low, J.H. Wei, X.G. Wang, S.J.

Turner and W.T. Cai, “Synchronization and Management of

Shared State in HLA-Based Distributed Simulation”, Proc.

2003 Winter Simulation Conference, New Orleans, USA,

Dec. 7-10, 2003, pp. 847-854.

[4] F. Kuhl, R. Weatherly and J. Dahmann, Creating

Computer Simulation Systems: An Introduction to the High

Level Architecture, Prentice Hall PTR, 1999.

[5] M. Pidd, Computer Simulation in Management Science,

Wiley, 4th edition, 1998.

[6] M.D. Ryde and S.J.E. Taylor, “Issues Using COTS

Simulation Software Packages for the Interoperation of

Models”, Proc. 2003 Winter Simulation Conference, New

Orleans, Louisiana. Dec. 7-10, 2003, pp. 772-777.

[7] S. Stra burger, Distributed Simulation Based on the High

Level Architecture in Civilian Application Domains, PhD

Dissertation, University of Magdeburg, Germany, April

2001.

[8] S.J.E. Taylor, S. Robinson and J. Ladbrook, “An

Investigation into the Use of Net-Conferencing Groupware in

Simulation Modelling”, Journal of Computing and

Information Technology, 13, 1, 2005, pp. 1-10.

[9] S.J.E. Taylor, S.J. Turner and M.Y.H. Low, “The COTS

Simulation Interoperability Product Development Group”.

Proc. 2005 European Simulation Interoperability Workshop,

Simulation Interoperability Standards Organization, Institute

for Simulation and Training, Florida, 2005, 05E-SIW-056.

[10] S.J.E. Taylor, S.J. Turner, N. Mustafee, H. Ahlander and

R. Ayani, “COTS Distributed Simulation: A Comparison of

CMB and HLA Interoperability Approaches to Type I

Interoperability Reference Model Problems”, SIMULATION.

81, 1, 2005, pp. 33-43.

[11] S.J.E. Taylor, R. Sudra, T. Janahan, G. Tan and J.

Ladbrook, “GRIDS-SCF: An Infrastructure for Distributed

Supply Chain Simulation”, SIMULATION, 78, 5, 2002, pp.

312-320.

[12] X.G. Wang, S.J. Turner, S.J.E. Taylor, M.Y.H. Low,

B.P. Gan, “A COTS Simulation Package Emulator (CSPE)

for Investigating COTS Simulation Package

Interoperability”, Proc. 2005 Winter Simulation Conference,

to appear, 2005.

[13] X.G. Wang, S.J. Turner, M.Y.H. Low, B.P. Gan,

“Optimistic Synchronization in HLA Based Distributed

Simulation”, Proc. 18th Workshop on Parallel and

Distributed Simulation, IEEE Computer Society, 2004, pp.

225-233.

[14] www.lanner.com, viewed 3rd August 2005.

[15] www.brooks.com, viewed 3rd August 2005.

Proceedings of the 2005 Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications (DS-RT’05)
0-7695-2462-1/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:12 from IEEE Xplore. Restrictions apply.

