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Abstract 

Engine production is a complex process that 

requires the manufacturing and assembly of a wide 
variety of components to create a varied product mix.  

Simulation plays a key role in the planning process of 

a new production line to determine if it can meet 

expected demand.  However, these simulations can be 

very time consuming and can often take up to a day to 

execute a single run.  This paper investigates how 
distributed simulation based on the IEEE 1516 High 

Level Architecture and the emerging standard COTS 

Simulation Package Interoperability Product 

Development Group (CSPI-PDG) Type I 

Interoperability Reference Model could be used to 

reduce the time taken for a single simulation run.  CSP 
interoperability and the problem of integrating CSPs 

with HLA software (the runtime infrastructure) are 

presented.  New prototype benchmarking software, the 

COTS Simulation Package Emulator (CSPE), which is 

being developed to investigate distributed simulation 
problems, is discussed.  The paper then develops a 

case study of how this was used to investigate the 

feasibility of using distributed simulation at Ford.  The 

paper discusses results obtained from this case study 

and suggests that distributed simulation could indeed 

be beneficial to Ford.  

1. Introduction 

The production of an engine is a complex process 

involving the manufacture and assembly of a wide 

variety of components to create a range of different 

possible engine types (different capacities, fuel 

injection options, petrol/diesel, etc.).  The requirement 

for different engines is determined by expected 

customer demand.  When planning a new engine 

production line to meet this expected demand, many 

complex factors such as machine cost and reliability, 

partially built engine test, repair and recycle time, and 

varying operator shift patterns and availability must be 

taken into account.  In this area, discrete-event 

simulation is used as the main decision support 

technique. The planning process is therefore a 

repeating cycle of production layout creation, model 

building and simulation, and reporting to determine if 

new lines can meet expected demand.  The COTS 

simulation package (CSP) WITNESS [14] is used to 

support modelling and simulation in this process.   

Figure 1 shows a typical simulation process used in 

the design of an engine production line.  The aim of 

this process is typically to determine the sensitivity of 

a line to changes in factors as outlined above.  As can 

be seen, the process begins when a new production line 

layout becomes available.  A new model is then built 

and process data is obtained.  Validation is then 

performed on model output and, as the layout cannot 
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be modified, the process data is scrutinized against 

expected production capacity.  Experiments are then 

run on the model.  The ramifications of results from 

these experiments are then considered and this is 

repeated until no further experimentation is required. 

Get New Layout

Build Model (FAST)

Get Process Data

Validate Model Output

Run Experiments

Process Results

Valid?

More?

End

Start

Figure 1. Engine production line simulation 
process 

As part of an on-going collaboration between the 

Centre for Applied Simulation Modeling at Brunel 

University (UK), the Dunton Engineering Centre at 

The Ford Motor Company (UK) and the Parallel and 

Distributed Computing Centre, Nanyang 

Technological University (Singapore), work is being 

carried out to reduce the cycle time of the simulation 

study involved in this process.  Opportunities that have 

been identified include the reduction of the time taken 

to build models, to perform a run of a single model, to 

perform experimentation with the model, and to 

collaborate with the various stakeholders and the 

simulation team.  These are addressed as follows: by a 

spreadsheet-based front-end (FAST) to WITNESS that, 

to a certain extent, automates model building; by 

investigation carried out in this paper; by distributing 

experimentation over many processors; and by using 

groupware [8].  All, apart from distributing the run of a 

single model have met with varying degrees of success.   

Building on previous work that investigated the use 

of distributed simulation at Ford with an alternative 

production line layout [11] and contemporary work of 

the Simulation Interoperability Standards Organization 

(SISO) CSP Interoperability Product (standards) 

Development Group CSPI-PDG [9], this paper 

investigates the feasibility of using distributed 

simulation techniques based on the IEEE 1516 High 

Level Architecture and the CSPI-PDG Type I 

Interoperability Reference Model to reduce the time 

taken for a single simulation run.  WITNESS, like 

many CSPs, does not have interoperability 

functionality.  This is entirely reasonable as the need 

for distributed simulation in this area has recently 

emerged.  As this does not currently exist, it is 

impossible to demonstrate the possible benefits of 

distributed simulation to a stakeholder.  Without this 

demonstration, the stakeholder cannot express demand 

for this functionality to the CSP vendor.  To solve this, 

this paper also discusses the development of a CSP 

Emulator (CSPE) that allows us to perform feasibility 

studies and to demonstrate to stakeholders the possible 

benefits of adopting this technology. This work is of 

particular interest to our collaboration and, we hope, 

the wider simulation community as the execution of a 

engine production simulation can take over a day to 

run.  Given that experimentation usually requires many 

runs of a simulation, any possible speedup will 

therefore represent a significant reduction in the cycle 

time of a simulation study and, possibly, make it 

possible for additional experimentation to take place 

that would not be otherwise possible.    

Our paper is structured as follows.  CSP 

interoperability and the problem of integrating CSPs 

with HLA software (the runtime infrastructure) are 

introduced in section 2.  Sections 3 and 4 outline our 

approach and the prototype benchmarking software 

CSPE that is being developed to investigate distributed 

simulation problems as presented in this introduction.  

Our case study of how this was used to investigate the 

feasibility of distributed simulation at Ford is presented 

in section 5.  Section 6 discusses the results obtained 

from our study and the implications for Ford (and other 

similar stakeholders).  Section 7 concludes the paper 

with a summary and a short discussion of further work. 
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2. CSP Interoperability 

Consider a model of a factory built in a single CSP.  

To simulate the factory model, the CSP will use the 

resources of the single computer on which it runs.  

However, consider the possibility of dividing the 

model so that it runs on two computers.  The “split” 

model would run in two CSPs running on two 

computers.  Why would we do this?  We do this in the 

hope of reducing the time taken to simulate the factory 

by a factor of two.  This proposition is not at all new 

and is one of the main drivers of the field of distributed 

simulation [2].  However, it is relatively new to users 

of CSPs and is, with a few limited exceptions, 

currently not possible.  Let us explore why. 

Briefly, a federation is composed of CSPs/model 

federates that exchange data via a runtime 

infrastructure (RTI) in a time synchronized manner as 

specified by the IEEE 1516 High Level Architecture 

(figure 2).  Two factories, F1 and F2, generically 

interact as denoted by the black double-headed arrow.  

Each model consists of an arrival source Soi, a queue 

Qi, a workstation Wi, a resource Ri, and an exit sink 

Sii (where i is the factory identifier).  Different types of 

information might be exchanged.  For example, entities 

might be passed between models (i.e. the two factories 

are linked together – entities leave F1 at Si1 and arrive 

in F2 at So2) and the resources R1 and R2 might be 

shared to reflect a shared set of machinists that can 

operate workstations W1 and W2.  If this was the case, 

factory F1 must publish and send information to the 

RTI in an agreed format and time synchronized manner 

and factory F2 must subscribe to and receive that 

information in the same agreed certain format and time 

synchronized manner, i.e. both federates must agree on 

a common representation of data and both must use the 

RTI in a similar way.  Further, the “passing” of entities 

and the sharing of resources require different 

distributed simulation protocols.   

Why is this then not possible?  Firstly, there is the 

issue of how a CSP can be integrated with the HLA 

RTI and secondly, there is the issue of an agreed 

format and communication protocol.  We now consider 

each issue. 

2.1 CSP/RTI integration 

Stra burger [7] analyzed the requirements for CSP 

integration from the perspective of being part of a 

distributed simulation and the perspective of the 

programming paradigm. The distributed simulation 

perspective requires that the CSP should provide an 

interface at least to connect to an RTI that is capable of 

exchanging data in a commonly agreed format via a 

commonly agreed time synchronization protocol.  The 

programming paradigm requires that in addition to this, 

special consideration must be given to the ambassador 

paradigm of the HLA [4]; the CSP must be able to 

communicate with the HLA RTI via the 

RTIAmbassador and implement the corresponding 

FederateAmbassador.  The approach taken to the 

programming paradigm can be classified as either 

explicit or implicit from the viewpoint of the modeler. 

The explicit approach requires that the modeler must 

add HLA synchronization and communication to the 

CSP/model and the implicit, or transparent, approach 

requires that all this functionality is hidden from the 

modeler (the functionality is built into the CSP and/or 

interfacing software between the CSP and RTI). 

Figure 2. COTS simulation package interoperability 
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However, as modelers wish to benefit from any 

possible speedup due to distributed simulation without 

the cost burden of the extra skills and training required 

by the explicit approach, the implicit approach is more 

appropriate in the work described in this paper.  

However, to achieve this, a CSP needs new features to 

enable a model built using the package to join a 

distributed simulation. Some work has been done in 

this area to suggest new features to be added to CSPs 

in general to provide transparent interoperability 

functionality [6].  

2.2  Interoperability standards 

In addition to the transparency requirements of the 

implicit approach, there is the problem of agreeing a 

common standard data exchange format and protocol, 

i.e. an agreed interoperability standard.  In 2004, the 

CSPI-PDG (Commercial-Off-The-Shelf Simulation 

Package Interoperability Product Development Group) 

was approved by the IEEE affiliated Simulation 

Interoperability Standards Organization (SISO) [9]. 

Previously known as the HLA CSPI Forum, the Group 

is dedicated to creating a standardized approach to 

support the interoperation of discrete event models 

created in CSPs using the IEEE 1516 High Level 

Architecture.  One of the first issues identified by the 

CSPI-PDG was the problem of developing a data 

exchange format and protocol that satisfied all 

interoperability requirements of distributed simulation 

with CSPs.  The solution to this was the development 

of a set of Interoperability Reference Models (IRMs) 

[9].  Each IRM is intended to “capture” a particular 

interoperability requirement.  Currently, these are: 

• Type I:   Asynchronous Entity Passing 

• Type II:   Synchronous Entity Passing 

(Bounded Buffer) 

• Type III:  Shared Resources 

• Type IV:  Shared Events 

• Type V:   Shared Data Structures 

• Type VI:  Shared Conveyor 

Each is intended to be supported by an 

Interoperability Framework (IF) and a data exchange 

specification.  For example, the Type I IRM 

Asynchronous Entity Passing deals with the common 

requirement of transferring entities between simulation 

models.  In the Type II IRM Synchronous Entity 

Passing, the input model can transfer entities only 

when it makes sure that the destination side is not 

blocked (workstation) or not full (queue) in the 

receiving model.  A solution (an IF) for Type I is 

intuitively simpler than one for Type II.  The IRMs 

therefore allow progress to be made towards a general 

solution while providing “intermediate” well-formed 

solutions on the way.  Further, a data exchange 

specification for entities is under development that 

supports the representation needs of both Type I & II 

IRMs (other specifications will be created to support 

the other IRMs) [9].  It is intended that the IF solutions 

to each IRM will be complementary but capable of 

operating independently. 

In addition to the standards outlined above, a set of 

COTS Simulation Package Emulators (CSPEs) is being 

created.  As described above, there are currently no 

CSPs with an efficient interface capable of supporting 

the IRMs.  This is unsurprising as the IRMs are still 

undergoing product development.  However, as 

redevelopment of CSPs is costly, and progress towards 

the IFs must be made to create standardized CSP 

interoperability, a benchmark is needed to compare 

different possible solutions.  This is the purpose of the 

CSPEs.   

This section has outlined some of the problems of 

CSP interoperability and approaches being taken to 

create a standardized solution.  We will now describe 

progress made towards the Type I IF on the basis of the 

Type I IRM.   

3. Integrating a CSP with the HLA: Type I 

IRM

The Type I IRM (Asynchronous Entity Passing) 

represents models that interact on the basis of entities; 

models are linked together so that one model may 

“pass” an entity to another at a given timestamp.  The 

reason why this is termed “asynchronous” is that there 

is no immediate or direct feedback when an entity is 

passed (this does not mean to say that no feedback can 

exist, just that it must happen at a different time to 

when an entity is passed).   

In terms of minimum technological support of the 

logical link between the two models, all that is required 

is the transmission of timestamped entity information 

between one model and another in such a way that the 

receiving model receives the timestamped entity 

information in the correct order with its own events.  

This is the reason why this IRM has been termed 

“asynchronous”, there is no synchronous message 

exchange needed to transfer the entity information 

between the two models (as is required in the Type II 

IRM).  An IF solution to this Type I IRM must 

therefore be able to: 

• transfer timestamped entity information from one 

model to another via a timestamped message , 

• allow a model to correctly receive timestamped 

entity messages from one or more models, and 
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• correctly coordinate this information with the 

receiving model events being processed by the 

COTS simulation package.     

In the development of a Type I IF to support this, 

we have proposed a generic architecture for our 

interoperability frameworks with the incorporation of a 

DSManager library and extended RTI [12]. The 

DSManager provides a generic interface consisting of a 

set of functions to be invoked by the CSP or CSPE (see 

Section 4) when necessary. The C++ / Java-based RTI 

is wrapped by “normal” C functions, that can easily be 

integrated with most of the current CSPs written in C, 

C++, Java or VB.  The DSManager also interacts with 

the extended RTI which is developed using a 

middleware approach [3]. In this extended RTI, known 

as RTI+, appropriate synchronization algorithms are 

designed in order to improve the simulation 

performance and relieve the user from the burden of 

time management. Examples are a shared state 

manager [3] for conservative synchronization and a 

rollback controller [13] for optimistic synchronization.  

Our architecture also supports other functions 

related to distributed simulation, such as the setting of 

appropriate lookahead values. For example, for 

benchmarking purposes, a lookahead value can be set 

and the synchronization approach to be used can be 

declared.  We now introduce our CSPE benchmark 

software for the Type I IRM. 

4. A Type I CSPE 

As previously discussed, the range of CSPE 

benchmarks are intended to facilitate the study of CSP 

interoperability.  The CSPE described in this paper in 

intended, for now at least, for Type I IRMs.  It builds 

on a previous incarnation described in [10] and 

represents an important stage in the evolution of the 

CSPE benchmarks.  The main differences are increased 

functionality and a more flexible user interface for 

building representative models.  This means that this 

version of the benchmark can investigate a wider range 

of problems than previously possible. 

In our version of CSPE, as with many CSPs, an 

entity passes through a variety of simulation objects. 

There are four basic types of simulation objects: entry 

point, queue (bin or storage), workstation (machine) 

and exit point. The modeler can define the attributes 

and property of each entity type, and assign and link 

necessary simulation objects to process each entity. 

Entities can be specified either as being “internal” 

(generated and consumed with the model), or as 

arriving from another model and/or leaving to another 

model.  If the latter of these are chosen, the name of 

the source model (arriving from…) and/or destination 

model (leaving to…) must be specified.  Additionally, 

entry and exits points to and from the model must be 

specified.  Note that in this version of CSPE, for each 

external entry point, only one type of entity will arrive 

from only one source model. The modeler can use 

other external entry points if there are entities from 

other source models or more than one type of entity 

from the same model.  For exit points, we recognize 

that if more than one entity leaves a model at the same 

time then, as with CSP routing, some tie-breaking rule 

is needed to schedule the ordering of these 

simultaneous events.  In CSPE, the approach used is to 

assign a different priority to each external exit. The 

higher the priority (lower value), the earlier (in real 

time) the entity will be sent out.   

A model built using CSPE can be a standalone 

model or part of a distributed simulation. The modeler 

needs to choose one and only one of the component 

models as a controller model. The controller model is 

in charge of managing the creation and termination of 

the distributed simulation. The number of component 

models in the distributed simulation is only needed by 

the controller model. It is used for the initialization 

phase of the simulation execution. Each component 

model also should give the name of the distributed 

simulation, and the name of the FED Configuration 

File which is used to supply the RTI with all necessary 

federation execution details during the creation of a 

new federation [1].  As discussed in the previous 

section, in addition to managing the execution of the 

local model, the CSPE must interact with the 

DSManager. This includes forwarding necessary 

information describing the distributed simulation to the 

DSManager, transferring entities from external exit 

points, and receiving entities from the DSManager and 

passing them to the corresponding external entry 

points.  Internally, our CSPE uses the three-phase 

approach to perform the simulation of the model [5].  

Our implementation of this approach has some slight 

differences as our CSPE uses two event lists (bound 

event list and conditional event list). 

5. Case Study 

At Ford our problem is this.  Engine production 

lines are complex but, on the whole, linear.  There are 

some feedback loops, such as when an engine part is 

inspected for quality and returned back via repair 

stations into the production line for reprocessing.  To 

study if distributed simulation could benefit such a 

simulation, i.e. if the simulation processing work could 

be split between different computers, a case study was 

developed at Ford.  This was based on an analysis of a 

proposed production line that was being simulated and 
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is shown in figure 3.  Actual details of this model 

cannot be reproduced here due to commercial 

confidentiality.  However, what can be revealed is that 

it is a “conventional” production line (linear with some 

feedback loops) and that the queues within the model 

were sized so that a queue within the model never 

became full (i.e. the processing times of the machines 

and the throughput of entities were balanced).  

Additionally, the numbers and distribution of the 

queues and the workstations are representative of the 

real model.  The standalone model consists of work 

stations (squares with “W”), queues (circles with “Q”), 

repair stations (squares with “R”), inspection stations 

(diamonds with “I”), entry points (“D”s with 

directional arrows outward), and an exit point (“D”s 

with directional arrow inward). Travel time between 

the different elements in the model was fixed at 10 

simulated time units. The time taken to process an 

entity passing through a work station is set at a fixed 

number of 14 simulated time units, 1 simulated time 

unit in the inspection stations and 30 simulated time 

units in the repair stations. Entities were introduced 

into the model from the entry points every 14 

simulated time units (timings relatively representative 

of the real system).  The three entry points reflect the 

three classes of engine part that need to be added to the 

engine assembly as it begins its processing.  Overall, 

the entity passing of the model conformed to the Type 

I IRM.  

Our CSPE could be used to study the feasibility of 

using distributed simulation to speed up the simulation 

of this kind of production line. Three different 

representative scenarios were considered.  These are: 

• Topology A: Engine production line model with 

two federates (Figure 4) 

• Topology B: Engine production line model with 

four federates (Figure 5) 

• Topology C: Engine production line model with  

four federates and two repair station federates 

(Figure 6) 

Each of these scenarios was chosen to reflect “real-

world” situations where the model might be developed 

by different modeling teams.  Topology A and B 

represent the division of the model into two and four 

parts respectively.  Topology C represents the further 

division of the four federate scenario with each of the 

repair stations placed in separate federates.  Note that 

in the figures additional entry/exit (source/sink) points 

have been added to the model to reflect arrival and 

departure points of the entities and that 

interconnectivity is represented by the appropriate 

designator (SiA is logically connected to SoA via 

connector A).  The number of federates were limited 

by license considerations. Many stakeholders have 

only access to a limited number of licenses of a real 

CSP and therefore scenarios based on distributed 

simulation with even six federates represent an 

investment few companies can actually afford!  

Figure 3. Engine production line model
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Figure 5. Engine production line model: four 
federates
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Figure 6. Engine production line model: 
four federates and two repair station 
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Figure 4. Engine production line model: two 
federates
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     To investigate different processing demands made 

by the model, something which is entirely possible 

given a real CSP, we used event granularity.  We 

define event granularity as the computation time taken 

to process an event.  In this case study, the event 

granularity is only used for each workstation to 

schedule a new event. This allows us to vary 

computation time to reflect the actions taken during the 

execution of an event (for example, updating of 

statistical counters, saves to a trace file, etc.). The 

event granularity for each experiment was set at 0.001, 

0.01, 0.1 and 1 second.  Lookahead was fixed relative 

to the travel time.  Parts were rejected and returned 

earlier in the production line 25% of the time (a 

representative and not at all realistic figure – the real 

rejection rate is confidential!).   The same number of 

entities were throughput in all experiments.  Our 

performance tests were carried out on up to six 

computers connected through an isolated 10 Mbit local 

area network.  The specifications of the machines were 

Pentium III, 650MHz, 256mb RAM, the  router was a 

Catalyst 2900 10Gb. The RTI Executive was run on a 

Toshiba Celeron 2.6GHz 450mb RAM. 

6. Results 

Figure 7 shows how execution time varies with 

event granularity and figure 8 shows how speedup 

varies with event granularity (against the runtime of 

the single model shown in figure 3).  As is possibly 

expected, the difference in execution time is negligible 

for small event granularities.  However, over an event 

granularity of 0.01, the emergent behavior appears to 

be that the distributed simulation (any topology) out 

performs the single model and that execution time 

reduces with greater numbers of processors.  A better 

demonstration of this is shown in figure 8 as over 0.01, 

with all topologies speedup increases proportionately 

as event granularity increases.  With event granularities 

of 0.01, 0.1 and 1.0 respectively, topology A has 

speedups 1.64, 1.80 and 1.98, topology B has 2.13, 

2.37 and 2.53, and topology C has 2.30, 2.58 and 2.95.  

The trend appears to be that topologies with more 

processors appear to get better speedup, even though 

the decomposition is uneven. 

What are the implications of this?  The 

representative model of figure 3 at an event granularity 

of 1.0 takes around 12 hours to execute.  This 

execution time is of a similar magnitude to that of the 

real simulation run (but in no way represents the 

number of entities of the real run – the model is more 

complex!)  A simple decomposition into four federates 

(topology B) yields, with an old RTI, a speedup of 

around 2.5.  Separating out the repair stations 

(topology C) further increases speedup to around 3.  

This represents the ability to run the real model in 

around 4-5 hours – effectively increasing the number 

of experiments per day to 2-3.  It is likely that a more 

modern RTI could further increase the speed of 

execution.  Given the constraint of limited CSP 

licenses and limited time to investigate federate 

decomposition, it appears that this feasibility study 

indicates a strong reason for Ford to adopt distributed 

simulation.   

Figure 7. Performance results for engine 
production line case study (time vs event 

granularity)
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Figure 8. Performance results for engine 
production line case study (speedup vs event 
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7. Conclusions 

This paper has investigated the possible benefit of 

distributed simulation in one area of simulation at The 

Ford Motor Company.  To achieve this, this paper has 

discussed the CSP interoperability problem and the 

development of a CSPE based on the CSPI-PDG Type 

I IRM to investigate these problems.  A short case 

study has been presented and results of 

experimentation with CSPE show that it may be 

possible to achieve a speedup in this case that could be 

beneficial to Ford. 

On the basis of this, work is on-going to develop the 

interface between our DSManager and the WITNESS 

CSP used by Ford.  This will be influenced by success 

in a sister project to this work in the semiconductor 

industry as another CSP, Autosched AP [15], has been 

successful integrated to our DSManager.  We hope to 

further develop our CSPE to support the investigation 

of Type II IRM problems [13] so that our work can 

continue to influence the development of distributed 

simulation solutions and standards in industry. 

As a final note, the importance of this work is to 

show how distributed simulation can potentially 

benefit real-world applications in an area that is 

relatively novel such that stakeholders have confidence 

(our validation of CSPE).  It is hoped that our 

contribution of an approach to feasibility studies using 

our CSPE software will inspire the study of other such 

applications. 
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