
COTS Simulation Package (CSP) Interoperability – A Solution to
Synchronous Entity Passing

Xiaoguang Wang Stephen John Turner
School of Computer Engineering, Nanyang Technological University

Singapore 639798
xgwang@pmail.ntu.edu.sg assjturne@ntu.edu.sg

Simon J E Taylor
School of Information Systems, Computing and Maths, Brunel University

Uxbridge, UB8 3PH UK
Simon.Taylor@brunel.ac.uk

Abstract

In this paper we examine Commercial-Off-The-
Shelf (COTS) Simulation Package (CSP)
interoperability for one type of distributed simulation
problem, namely synchronous entity passing.
Synchronous entity passing is also referred to as the
bounded buffer interoperability reference model. It
deals with the case where for entities passed between
models the receiving queue is bounded or the receiving
workstation has limited capacity. This means the
sending model must check the status of the receiving
model before it can send entities. Correspondingly, the
receiving model should update the status information
dynamically when it changes. Similar to the work done
on asynchronous entity passing, the High Level
Architecture is chosen as the underlying standard to
support reuse and interoperability. To simplify the
integration of the CSP and the HLA, a middleware
layer called DSManager is provided. Some new
problems generated for synchronous entity passing are
discussed and solutions are proposed together with a
description of their implementation. Two sets of
experiments are conducted to evaluate the solutions
using a CSP Emulator (CSPE) which supports both
standalone and distributed simulation.

1. Introduction

Commercial-Off-The-Shelf (COTS) Simulation
Package (CSP) interoperability aims to enable
distributed simulation by linking multiple simulation
components built using appropriate CSPs (possibly
from different companies, even in geographically
dispersed locations). A CSP supports the creation of a

discrete event simulation model using some kind of
visual interactive modeling interface. Examples of
CSPs include: Simul8, Witness, Arena and ProModel.
The advent of the High Level Architecture [1] makes it
possible to link together these CSPs. The HLA
standard was originally developed by the U.S.
Department of Defense (DoD) and later adopted as an
IEEE standard to facilitate interoperability and
reusability. It provides a common technical framework
for the interoperability of simulation models.

In 2005, the CSPI-PDG (COTS Simulation Package
Interoperability - Product Development Group) [2] was
approved by the Simulation Interoperability Standards
Organization (SISO). Previously known as the HLA
CSPI Forum, it is dedicated to creating a standardized
approach to support the interoperation of discrete event
models created in CSPs using the IEEE 1516 High
Level Architecture. The Interoperability Reference
Models (IRMs) are one set of products produced by the
CSPI-PDG. The aim of the IRMs is to categorize the
integration problem into different requirements,
thereby providing an easy way to create solutions for
each specific integration problem. There are six IRMs
currently identified by the CSPI-PDG.

 Based on previous work [3] to successfully link
some of the CSPs with the HLA, a generic architecture
[4] was proposed for CSP interoperability using
middleware named DSManager that adopts an implicit
approach from the modeler’s point of view. While the
explicit approach needs the modeler (those who
develop the model using the CSP) to enhance the
model with HLA functionality, the implicit approach
means all HLA functionality is hidden from the
modeler since the CSP and its underlying middleware
handle all the HLA synchronization and

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

communication. Obviously, the implicit approach
makes it easier for the modeler to link simulation
models together. In this way, the modeler only needs to
focus on designing the model components without
intervention due to the need of interoperability.

However, currently CSPs are heterogeneous in
terms of their properties and extensibility, and different
CSPs have different degrees of capabilities for their
external interfaces. This makes it extremely difficult to
find a general approach for the integration. To solve
this problem, a CSP Emulator (CSPE) [5] was
designed to emulate the functionality and interface to a
CSP and this can be used to investigate and compare
various interoperability approaches. Based on the
CSPE, the requirements for the integration of CSPs
and the HLA were investigated and interfaces were
proposed for asynchronous entity passing, the Type I
Interoperability Reference Model (IRM) [6].

While asynchronous entity passing focuses on the
general problem of entity representation specification,
synchronous entity passing (CSPI-PDG Type II IRM)
represents another more complicated type of model. In
the Type II IRM, the sending model may transfer
entities into a bounded queue or a workstation with
limited capacity in the receiving model. Thus, entities
can be transferred only when the sending model is sure
that the destination side is not full (queue) or blocked
(workstation). This introduces a synchronous feature
into the model, which can be solved by exchanging
status information dynamically between the models.

In addition, another problem arises from the
existence of inter-model simultaneous events. For
example, entities of the same type from different
models may need to be sent into the same bounded
queue in the receiving model. If there is only space for
one entity available, only one model can successfully
transfer one such entity and all other such entities need
to wait for new space to be available. Different
orderings of these inter-model simultaneous events
may generate dramatically different simulation results.
Usually, the tie is broken by allowing the modelers to
specify different priorities for each entry point through
which the entity will be transferred into the local
model. However, it is possible one entry point may
have multiple priorities and the priority may be
changed dynamically due to some simulation activities.
This requires the priority information to be updated
and exchanged at run time. In many simulation
systems, the priority is represented by adding a hidden
field to the simulation time. In this paper, we state the
new problems introduced by synchronous entity
passing and describe the solutions and their
implementation using the DSManager and two hidden
fields appended to the simulation time. To verify the

solutions, several sets of experiments are conducted
using some typical Type II IRMs.

The rest of this paper is organized as follows:
Section 2 discusses related work in CSP
interoperability as well as the simultaneous events
problem. The special problems of synchronous entity
passing are stated in Section 3 and solutions are
provided in Section 4. Section 5 describes some issues
in implementing the solutions. To evaluate the
proposed solutions, several sets of experiments are
conducted and discussed in section 6. Conclusions and
future work are presented in Section 7.

2. Related work

2.1. CSPI Emulator (CSPE) and DSManager

As one part of the suite of CSPI-PDG standards, the
CSP Emulator (CSPE) is intended to emulate the
functionality and interface to a CSP. It supports the
creation of a standalone model or a model component
that is part of a distributed simulation. Based on the
CSPE, various interoperability approaches can be
investigated and compared. Another benefit of the
CSPE is to provide a suggestion how current CSPs
may add HLA capability to support distributed
simulation.

The CSP or CSPE integrates with the HLA through
a generic interface called DSManager. The interface
consists of a set of functions to be invoked by the CSP
or CSPE when necessary. The C++ / Java based HLA
RunTime Infrastructure (RTI) is wrapped by “normal”
C functions, that can easily be integrated with most of
the current CSPs written in C, C++, Java or VB.
Another important feature of the DSManager is to try
to hide the HLA concept from both the CSP and the
model. It is difficult to match model information
represented in the CSPs to the object/interaction
concept in the HLA standard. In addition, the
terminology between different CSPs differs as there is
no internationally recognized naming convention. The
interface adopts a generic approach based on the
concept of entity transfer, and will be proposed as a
standard by the CSPI-PDG in the future.

Based on the CSPE, the requirements for integration
of CSPs and the HLA were investigated and interfaces
were proposed for the Type I IRM. In this paper, with
new features added into the DSManager and the CSPE,
the Type II IRM synchronous entity passing is
investigated and the solutions are evaluated.

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

2.2. Simultaneous events problem

In a discrete event simulation, the events are
timestamped and executed in increasing order to ensure
causality. It is possible two or more events are
scheduled at exactly the same simulation time, or at a
slightly different simulation time but below the level of
the machine precision. These events are considered as
simultaneous events. Different orderings of the
simultaneous events may generate different simulation
results, which may conflict with the requirement of
repeatable execution of the simulation programs.
Repeatability means the execution of the simulation
should produce exactly the same results on each
execution when using the same initial state and
external inputs.

Much work has been proposed to solve this problem
[7]. Usually the solution is to execute these events in
an arbitrary order unless the modeler explicitly
specifies some tie-breaking technique, for example,
FIFO (first-in, first-out), LIFO (last-in, first-out), or
dependency order. Some tie-breaking mechanisms can
be implemented by extending the timestamp to include
additional, lower-precision bits that are hidden from
the application program [8]. With different values to
these bits, the simulation engine can ensure no two
events in the simulation contain exactly the same
timestamp. The values could be assigned based on the
specified tie-breaking techniques to satisfy the
simulation modeler’s requirements.

3. Problems of synchronous entity passing

The Type II IRM synchronous entity passing deals
with the case where a receiving queue is bounded or
the receiving workstation has limited capacity. An
example is shown in Figure 3.1, where the distributed
simulation (federation) is composed of two factory
models (federates), M1 and M2, interacting in the way
denoted by the arrows. Each model consists of an entry
point Eni, a queue Qi, a workstation Wi, a resource Ri,
and an exit point Exi (where i is the model identifier).
After being processed in W1, entities need to be sent
periodically via Ex1 and then entry point En2 into a
bounded queue Q2 (or a workstation with limited
capacity) in M2. It indicates the requirement that M1
containing the sending workstation W1 must, when the
processing of an entity is complete, check to determine
that there is space in Q2. If there is space available then
the entity may be transferred. Otherwise M1 must
ensure that W1 is blocked until space becomes
available. In this paper, we call the entry point
designed to receive entities from external models
‘external entry point’ and give it the abbreviation of
‘EEP’. On the sending side, the EEP in the receiving

model is referred to as the remote EEP, and on the
receiving side the EEP is referred to as the local EEP.

Figure 3.1: Synchronous entity passing

3.1. Status information

As discussed above, it is essential to update the
status information of a bounded queue or a workstation
with limited capacity in synchronous entity passing.
Different from simply updating the status information
in a standalone simulation, the status information
should also be transferred between the models. In
Figure 3.1, when Q2 becomes full, a message with a
small increment to the current simulation time is sent
back to M1, which causes M1 to block. The small
increment is added because the status event is
dependent on the entity sending event from M1. At
some later simulation time, when the entity is
processed in workstation W2, M2 clears a slot in Q2 and
sends another message with a small increment to the
current simulation time to M1, which allows new
entities to be transferred.

Due to the complexity of distributed simulation
scenarios, the status information may not be updated in
time to external models. One case is for inter-model
simultaneous events. For example, two models may
want to send entities to the same remote EEP at the
same simulation time. In the situation where there is
only space available to receive one entity, the status of
the remote EEP cannot be shown as idle for both
sending models. Another case is for passing more than
one entity with the same simulation time to the same
remote EEP from the same sending model. Suppose
two entities from M1 are waiting to be transferred into
M2 via En2. After receiving the first entity at time t, it
is possible En2 becomes blocked and the status
information of ‘blocked’ will be transferred to the
DSManager in M1 a short time later at t+ (is the
small increment due to the dependency order).
However, M1 is trying to send the second entity at t
since the new status information can only be received
at t+ . Therefore, even though the receiving model has
already updated the status of En2 as ‘blocked’ or ‘idle’
based on local information, the status of the remote
EEP may be uncertain for the DSManager in the
sending model. The possible status of a remote EEP
specified by the DSManager in the sending model can
be summarized as follows.

R1

W1Q1En1

Factory Model M1

Ex1

R2

W2Q2En2

Factory Model M2

Ex2

Bounded

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

0: idle and it is safe for the sending model to send
an entity

1: blocked
-1: uncertain since there are possibly some other

entities sent from other models to this remote
EEP at the same simulation time

-2: uncertain since the entity just sent from the local
model may cause the remote EEP to be blocked

To avoid the need for the CSP to handle the
uncertain status information (the status of a remote
EEP known by the CSP is only ‘idle’ or ‘blocked’), the
DSManager should update the status automatically and
forward ‘blocked’ to the sending model when the
status is uncertain (‘-1’ or ‘-2’). After the DSManager
is sure it is safe to send an entity from the sending
model, ‘idle’ will be returned instead.

3.2. Inter-model simultaneous events

In a standalone simulation, it is relatively easy to
order the simultaneous events in the local event list
based on some tie-breaking mechanisms. In distributed
simulation, however, there may exist some
simultaneous events transferred between different
model components. In the example discussed in section
3.1, two models may want to send entities to the same
remote EEP at exactly the same simulation time. These
simultaneous events are generated in different models
but interleave with each other, referred to as inter-
model simultaneous events.

Figure 3.2: Inter-model simultaneous events to
external entry point with single priority

Usually, the modeler will assign a priority to order
the entities from different sending models. For those
cases where no priority is explicitly specified, the
DSManager will order them in an arbitrary order. Here
our discussion is based on the assumption that the
priority is already assigned for each local EEP.

In figure 3.2, Model Mi (i = 1, … , n) generates
entities in workstation Wi, and sends them periodically
via Exi and Eni to a bounded queue Q in Model Mx. In
Mx, each local EEP Eni is assigned a different priority
for accessing Q. It is possible two or more inter-model

simultaneous events exist to transfer entities to Q. In a
standalone simulation these entities can be ordered in
the event list waiting to be processed. In distributed
simulation the entities from each sending model can be
transferred to Mx only when the sending model makes
sure there is space available in Q and no entities from
other sending models with higher priority need to be
transferred to the same queue.

Figure 3.3: Inter-model simultaneous events to
external entry point with multiple priorities

Another case is shown in Figure 3.3. The entities
may be scheduled with different priorities into multiple
queues or workstations via the same local EEP. That
means each local EEP is associated with multiple
priorities. Therefore, in addition to status information,
the priority information should also be updated
dynamically based on the simulation activities.

4. Solutions to synchronous entity passing

To address the new problems introduced by
synchronous entity passing, solutions are proposed
including extending the DSManager and introducing
two hidden fields in the timestamp representation.

4.1. Extension to DSManager

Our solution to CSP interoperability is based on a
generic interface and associated middleware named
DSManager which wraps the HLA synchronization
and communication, and provides a set of functions for
entity transfer. It provides the necessary functionality
used by the CSP simulation engine to support
distributed simulation during the whole simulation life
cycle.

As discussed in section 3.1, the status information
in the Type II IRM is transferred with the timestamp of
the current simulation time plus a small increment,
considered as a NZL (near zero lookahead) message
[9]. Lookahead represents a guarantee from a federate
(model) that it will not generate any external message
with a timestamp smaller than its current time plus the
value of the lookahead. It is critical for conservative
synchronization to achieve better performance. In the

W1

M1

…

W2

M2
…

…

Wn

Mn
…

En1

Mx

Bounded

…En2

Enn

… Q

0

1

n-1

priority

Exn

Ex2

Ex1

W1

M1 Mx

Bounded

…

W2

M2

…

W3

M3

…

…

Ex1

Q
Ex2

Ex3

0

1

En1

En2

En3

0

1 …W

Limited capacity

priority

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

Type II IRM, however, the lookahead value has to be
set to near zero due to the status information. The
DSManager will collect information from the model
and automatically set the lookahead value. The CSP
needs to tell the interface whether each local EEP is
restricted or not. Here ‘restricted’ means the local EEP
may be blocked as it is linked to a bounded queue or a
workstation with limited capacity. If any one of the
local EEPs is restricted, the DSManager has to set the
lookahead as near zero. Otherwise, a larger lookahead
may be adopted based on the scenario of the model
itself.

Other new functions need be provided to allow the
model to update and check status information. In the
model which will receive entities from an external
model, it must set the status of the local EEP each time
it changes. When necessary, it also associates the
priority information with the status since it is possible
the local EEP has different priorities when it sends
entities to different queues or workstations. The local
DSManager will transfer such information to the
DSManager for the sending model. Before the sending
model transfers entities, it will invoke the necessary
function to check the status of the appropriate remote
EEP. As discussed in section 3.1, to hide the
complicated implementation details from the CSP and
the model, the status returned by the DSManager is
only idle or blocked.

4.2. Hidden fields in timestamp representation

4.2.1. Purposes of hidden fields. Hidden fields in the
timestamp can be used to solve the problems of
simultaneous events. In the DSManager designed for
the Type II IRM, we utilize hidden fields for three
purposes.

The first purpose of the hidden fields is to represent
the small increment to the simulation time for status
information. Different CSPs may have different time
units and machine precisions in simulation execution.
It is difficult to select a suitable value as the smallest
time increment. By appending a hidden field of integer
type to the simulation time, it can ensure the small
increment will not conflict with the timestamp of any
event scheduled by the model since the hidden field is
transparent to the model layer.

Another purpose of the hidden fields is to contain
priority information to order the inter-model
simultaneous events. The lower the priority, the larger
the value of the hidden field. In this way, the events
with higher priority will be associated with a smaller
timestamp and will be processed earlier.

The third purpose of the hidden fields is especially
for the case when the sending model needs to send
more than one entity to the same remote EEP

simultaneously, as discussed in section 3.1. These
simultaneous events should be ordered using a hidden
field in logical time.

4.2.2. Two hidden fields for synchronous entity
passing. There are two hidden fields appended to the
simulation time to support synchronous entity passing:
one is priority for priority value to order inter-model
simultaneous events (status of ‘-1’), the other is age
used to order those simultaneous events sent from the
same source model to the same remote EEP (status of
‘-2’). The small increment to the simulation time for
status information is also contained in the second
hidden field age. Thus, the logical time is defined as (t,
priority, age) where t is the simulation time shown to
the model. Importantly, the first hidden field priority
has precedence (assigned to more significant bits) over
the second hidden field age (more sensitive). Even for
the entities with the same type sent to a remote EEP
with a specific priority, it is also possible to schedule
simultaneous events with different values of age (the
first entity sent is with age 0, the second one is with
age 1, and so on). It is easier to use two hidden fields
to represent the precedence relationship instead of one
hidden field.

To ensure the status information is updated as soon
as possible, the small increment of simulation time is
added to the second hidden field, which is more
sensitive than the first one. The value sent for the small
increment is less than the value increased each time the
model needs to send another entity to the same remote
EEP. Here, we represent each age a (a is a non-
negative integer 0, 1, 2, …) as 10*a (0, 10, 20, …) and
use 5 (any value between 1 to 9 is acceptable) as the
small increment in age for status information.
Consequently, the near zero lookahead discussed
previously is also set as 5 in the second hidden field
since it is the smallest increment for the logical time.

Let us illustrate the hidden fields using the case in
Figure 3.2. Suppose the status of Q at time t is idle.
Only M1 can directly transfer an entity to Q because
the corresponding remote EEP En1 has the priority of
0. For each other sending model Mi (i = 2, 3, …, n) that
wants to transfer the aj

th (aj = 0, 1, …) entity at time t,
the DSManager sets priority as pi (pi = 1, 2, ... , n-1)
and age as 10*aj, and tries to advance time to (t, pi,
10*aj). Only when the granted time is equal to the
requested time and no status information of ‘blocked’
is received during the time advancement, is the ‘idle’
status returned to the model by the DSManager for Mi.
If the aj

th entity sent from Mi causes Q to be blocked,
the new status information will be sent to all sending
models at time (t, pi, 10*aj+5), which stops Mi sending
other entities and meanwhile allows the models,
including Mi+1 to Mn, to receive the ‘blocked’ signal

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

before their requested time is granted. In this way, the
entities from the sending models can be sent in the
correct order as specified by the priority of the
corresponding remote EEP.

5. Implementation issues

The proposed solutions are implemented in the
DSManager middleware as well as the logical
simulation time defined by the IEEE HLA standard.

5.1. DSManager

The DSManager provides an interface consisting of
a set of functions to be invoked by the CSP when a
distributed simulation is created. Through the interface,
the DSManager invokes necessary calls to the
RTIAmbassador on behalf of the CSP and transfers the
information received from the FederateAmbassador to
the CSP. The basic communication protocol between
the CSP, DSManager and RTI for CSPI-PDG Type I
IRM is described in [6]. Here we only discuss the new
features in the interface to the CSP for Type II IRM.

Figure 5.1 New features of interface for Type II
IRM

In Figure 5.1, we use model A and model B to
demonstrate the sending and receiving models
respectively. Suppose model A transfers entities to a
bounded queue or a workstation with limited capacity
in model B. On each side, there is a DSManager used
to communicate with the HLA RTI on behalf of the
model.

In the initialization phase, model A and model B
need to register the entity which is exchanged via

registerOutEntity and registerInEntity. It should be
noted that the ‘isRestricted’ information is also
provided by each local EEP in model B. If any local
EEP is restricted, the DSManager in Model B will call
modifyLookahead to modify the lookahead value to
near zero. Correspondingly, the lookahead in Model A
should also be set to near zero by the DSManager in
Model A. This information can be forwarded to the
DSManager in model A by invoking sendInteraction.
Before that, the DSManager on each side needs to
declare the interest to send or receive such information
by calling publishInteractionClass and
subscribeInteractionClass. Additionally, the
DSManager also automatically declares the interest to
send or receive the status information as well as the
priority for each EEP.

During the simulation execution, if the status of a
local EEP is changed due to the simulation activities,
model B will inform the DSManager by calling
setExEntryStatus with the new status (‘idle’ or
‘blocked’) and current priority. Instead of increasing
the time at the model level, the hidden field age is
increased by the small increment which is transparent
to the model. Then the DSManager will transfer the
information to model A via sendInteraction.

Figure 5.2: Receive ExEntryStatus procedure

In model A, the DSManager will set the status
based on the received information (as shown in Figure
5.2). If the status is idle while the priority value is
larger than 0, it is possible entities may be transferred
to a remote EEP with a higher priority which also
shares the queue or workstation with the remote EEP
for this entity. In this case, the status is uncertain and
has be set as ‘-1’. Before transferring an entity to
model B, the CSP needs to check the status of the
corresponding remote EEP in model B using
getExEntryStatus. The DSManager will return ‘idle’ or
‘blocked’ after considering the simulation activities in
the local model in addition to the status and priority
information received from model B (as shown in
Figure 5.3). After transferring an entity via
transferEntity to model B, the DSManager in model A
will locally change the status of the corresponding

status = 0

Y

N

Y

N
received priority == 0 ?

received status == blocked ?

status = -1 status = 1

Model A RTIDSManager DSManager Model B

transferEntity(t)

getExEntryStatus

setExEntryStatus

sendInteraction

status, priority receiveInteraction

status, priority

sendInteraction

status, priority

status = -2
statusTime = t

t t tt

 tc + age(5)

t

registerOutEntity

publishInteractionClas

registerInEntity
subscribeInteractionClass

isRestricted

RestrictedInfoClass
ExEntryStatusInfoClass

subscribeInteractionClass

publishInteractionClass

RestrictedInfoClass
ExEntryStatusInfoClass

sendInteraction
receiveInteraction

…
modifyLookahead modifyLookahead

…

…
…

…

………

… …

RestrictedInfo
RestrictedInfo

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

remote EEP to ‘-2’ since the entity may cause the
remote EEP in model B to be blocked.

Figure 5.3: getExEntryStatus procedure

As we know, each model needs to advance time to
progress the whole distributed simulation. Specifically,
in the Type II IRM, the requested time forwarded to
the RTI is possibly associated with a slight increase
represented by the hidden fields. This may slow down
the simulation if the hidden fields are added for each
time request. The variable ‘needSlightIncrease’ is used
to identify whether it is necessary to set the hidden
fields in the next request to advance time. Figure 5.3
shows that it is only set to ‘true’ when the hidden field
needs to be appended. Another variable ‘statusTime’
gives the time when the new status is updated. After
sending the entity to the external model, the status is
set as ‘-2’ and the statusTime is updated to the current
logical time. However, if the current granted time is
larger than statusTime and the status is still ‘-2’, this
means there is no new status information of ‘blocked’
received from the external model. In this case, ‘idle’ is
returned to the model. Otherwise, ‘blocked’ is returned
since the status is still uncertain, and the hidden field
age should be increased enough to see whether there is
new status information received in the next request to
advance time.

Figure 5.4 shows the general procedure for time
advancement. Each model advances time by invoking
advanceTime to the DSManager. In the procedure, the
hidden fields may be added to the requested time
(requestedTime) provided by the CSP and passed to
the RTI (by calling setHiddenField method). After a
safe time is granted from the RTI, the DSManager will
clear the hidden fields and update the uncertain status
information based on the granted time and received

status information (if any) during the time
advancement. If the granted time is equal to requested
time and the status is still ‘-1’ or ‘-2’, the status is
updated to ‘0’ since that means no new status
information of ‘blocked’ is received before the
requested time during the time advancement. Finally,
the simulation time without hidden fields (by calling
getTime method) is returned to the model since the
hidden fields are transparent to the model.

Figure 5.4: advanceTime procedure

5.2. FedTime in the RTI implementation

In the HLA standard, logical time is defined as an
abstract class which allows the user to implement a
version of this class for their own purposes. This
provides the possibility to add the hidden fields to the
FedTime in the RTI implementation. To extend
FedTime with the new attributes of ‘priority’ and
‘age’, some supported functions are provided for
operation and comparison between logical time values.
For instance, for comparison using the ‘>’ operator,
suppose there are two timestamps: T1 (t1, priority1,
age1) and T2 (t2, priority2, age2). If t1 is larger than t2,
the result is ‘true’; else if t1 is equal to the t2, the result
is ‘true’ when priority1 is also larger than priority2; else
if t1 is equal to t2 and priority1 is equal to priority2, the
result is ‘true’ only when age1 is also larger than age2.
Modifications also need to be made to the encode and
decode functions in the FedTime class to include and
exchange the hidden fields via the network.

N

Y

N

return 0

Y

isRestricted ?

N

Y

Y

N Y

N

return 1

grantTime>statusTime ?

status == -1 ?

status == -2 ?

 age += 10
needSlightIncrease = true

priority = priority
needSlightIncrease = true

status == 0 ?

N

Y

needSlightIncrease ?

N

Y

grantTime == requestTime ?

requestTime.setHiddenFields()

NextEventRequest

clear hidden fields

NextEventRequest

N

Ystatus == -1 ?

status == -2 ?
Y

N status = 0

return grantTime.getTime()

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

In our implementation, the FedTime class provided
by DMSO RTI1.3NG-V6 [10] was extended and the
new generated library libFedTime was linked to the
DSManager.

6. Experiments

Some experiments are designed to test the proposed
solutions for Type II IRM synchronous entity passing.
The experiments are conducted using the CSPE which
is linked with the DSManager for Type II IRM. To
ensure the simulation results are correct, we choose
Simul8 [11], one of the popular discrete event CSPs, to
run a standalone simulation for the same simulation
model.

6.1. Normal synchronous entity passing model

Figure 6.1 shows a distributed and deterministic
simulation for the bicycle manufacturing system [5]. It
consists of three main parts: a wheel production line
(WPL), a frame production line (FPL), and a bicycle
assembly line (BAL) that assembles two wheels to one
frame to produce a bicycle. The BAL checks wheels
for faults and can return them to the WPL for re-
machining (an example of valid feedback). To achieve
a deterministic model for evaluation, the Circulate
routing-out rule is used here at workstation W3a. This
means that the first entity will go to the first destination
(exit point Ex3b), the second work item to the second

(queue Q3b) and so on. A corresponding standalone and
deterministic model is also created, where the
simulation process is the same as the distributed one
except that all the process is completed in one
combined model named Bicycle Manufacturing
System (BMS). To demonstrate the Type II IRM, the
maximum length of all the queues in the model is set
as 1, 10 and 100 separately for three sets of
experiments.

Moreover, another set of experiments is carried out
for stochastic models by introducing some probability
distributions into the system. Instead of a fixed
distribution, a normal distribution is used for the
processing time in all workstations. For instance, the
processing time of W1a is changed from Fixed (20) to
Normal (20, 5) and the routing-out rule for W3a is
changed from Circulate to Percent (25%, 75%), which
also introduces some stochastic property into the
model. It is due to the fact that the destination is
decided randomly based on the specified percentage
going to each.

The experiments for the distributed simulation were
run on four DELL 2.8GHz P4 1GB memory computers
connected via a 1Gbps network. One computer was
used to run the rtiexec (DMSO RTI1.3NG-V6), and the
other three for three separate component models
(WPL, FPL and BAL models respectively). The
experiments for the standalone model were run on one
of these computers.

Figure 6.1: The Type II Bicycle Manufacturing System (distributed & deterministic)

Frame Production Line (FPL)

En2 W2Q2

fixed(10) fixed(20)

Raw Materials

L=1

Ex2

Wheel Production Line

 En1a W1aQ1a

fixed(20) fixed(20)

 En1b W1bQ1b

fixed(10)
Raw Materials

Recycled Wheels

 En3a

Wheels

Ex3aQ3a

Inspection
fixed(100)

W3bQ3b

Assembly
fixed(20)

 En3b

Frames

2

1

 Ex3b

Rejected
Wheels

Bicycles

Bicycle Assembly Line (BAL)

W3a

Q3c

 Ex1a

 Ex1b

L=1

L=1 L= 1 L=1

L=1

25%
75%

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

Table 6.1: Experimental results for
distributed and standalone simulation on

CSPE and Simul8 (L=1)
Deterministic Stochastic

Simul8 CSPE(SA) CSPE(DS) Simul8 CSPE(SA) CSPE(DS)

En1a 5000 5000 5000 5000 5000 5000
En2

Arrival
Entities 5000 5000 5000 5000 5000 5000

En1a 4496 4496 4496 4843 4822 4822
En2

Refused
Entities 4747 4747 4747 4921 4910 4910

Q1a 504 504 504 157 178 178
Q1b 500 500 500 47 64 64
Q2 253 253 253 79 90 90
Q3a 1001 1001 1001 200 238 238
Q3b 499 499 499 151 172 172
Q3c

Total
Entered
Entities

251 251 251 77 88 88
Q1a 1 1 1 1 1 1
Q1b 0 0 0 1 1 1
Q2 1 1 1 1 1 1
Q3a 1 1 1 1 1 1
Q3b 0 0 0 0 0 0
Q3c

Queue
Length at
 End Time

1 1 1 1 1 1
W1a 503 503 503 156 177 177
W1b 500 500 500 46 63 63
W2 252 252 252 78 89 89
W3a 999 999 999 199 237 237
W3b

Completed
Entities

249 249 249 75 86 86
W1a busy busy busy busy busy busy
W1b busy busy busy busy busy busy
W2 busy busy busy busy busy busy
W3a busy busy busy busy busy busy
W3b

Status at
End Time

busy busy busy busy busy busy

Ex1
Completed

Entities 249 249 249 75 86 86

Table 6.1 shows the experimental results for
simulating the system for 100,000 time units in
Simul8, CSPE(SA) (standalone model) and CSPE(DS)
(distributed simulation) with a maximum queue length
of 1. The final throughput of the system as well as the
statistics for each simulation object are identical for all
three cases when the deterministic model is used,
showing the correctness of the CSPE and successful
interoperability of Type II IRMs. As for the stochastic
model, CSPE(SA) and CSPE(DS) generate identical
results. The results between Simul8 and CSPE are also
almost identical, showing the correctness of the CSPE.
The minor differences between the CSPE and Simul8
are mainly due to different ways of generating random
numbers. With a queue length of 10 and 100, similar
experimental results were generated (not shown here).

These results show that the CSPE integrated with
the DSManager for Type II IRM can generate correct
simulation statistics, indicating the status information
is successfully transferred between the models. It is
also interesting to investigate the overhead introduced
by the new features in the DSManager in situations
where the EEP is not restricted. We carried out another
set of experiments using a Type I IRM, the same BMS
except all the queues are unbounded. The experimental
results were compared between the CSPE with

DSManager for Type I IRM and the CSPE with
DSManager for Type II IRM. We found the simulation
results were identical and only around 2 more seconds
were spent in execution time using the Type II
DSManager, 36.56 seconds as compared to 34.38
seconds using the Type I DSManager. It is not a large
overhead and optimization will be applied to the
DSManager in the future.

6.2. External entry point with multiple
priorities

Figure 6.3: Type II IRM with external entry
points having multiple priorities

Table 6.2: Experimental Results for Type II
IRM with external entry points having multiple

priorities
Simul8 CSPE(SA) CSPE(DS)

En1 100 100 100
En2 100 100 100
En3

Arrival
Entities

50 50 50
En1 0 0 0
En2 0 0 0
En3

Refused
Entities

0 0 0
Q1 100 100 100
Q2 100 100 100
Q3

Total
Entered
Entities 50 50 50

Q1 79 79 79
Q2 83 83 83
Q3

Queue
Length at
 End Time 33 33 33

W1 21 21 21
W2 17 17 17
W3 16 16 16
W4a 19 19 19
W4b

Completed
Entities

31 31 31
W1 busy busy busy
W2 busy busy busy
W3 busy busy busy
W4a busy busy busy
W4b

Status at
End Time

busy busy busy
Ex4a 19 19 19
Ex4b

Completed
Entities 31 31 31

To test the Type II IRM with EEPs having multiple
priorities, we create another distributed simulation
consisting of 4 models M1, M2, M3 and M4. M1, M2 and
M3 transfer entities to two workstations with fixed
capacity in M4 via three EEPs. As is shown in Figure

M1

M4

fixed(50)

Ex1

0

1

0

1

En1 Q1 W1

M2

En2 Q2 W2

M3

En3 Q3 W3

En4a

W4a

W4b Ex4b

Ex4a

Ex2 En4b

Ex3

En4c

fixed(30)

fixed(20)fixed(10)

fixed(40)fixed(10)

fixed(30)fixed(20)

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

6.3, En4b has lower priority than En4a for W4a, but has
higher priority than En4c for W4b. So it is possible the
priority of En4b may be changed dynamically when an
entity is passed to a different workstation.

Table 6.2 shows the distributed simulation produces
identical results to the standalone simulation. This
proves that priority as well as status information is
correctly transferred between different models. Also
the inter-model simultaneous events are processed in
the correct order when updating the priority
dynamically.

From the above two sets of experiments, we found
the CSPE integrated with the new DSManager can run
both a normal Type II IRM with bounded queue and
those special models with EEPs having multiple
priorities. Furthermore, the new DSManager designed
for Type II IRM can also be applied for Type I IRM
without too much overhead. In this way, the model
only needs to inform the DSManager whether each
local EEP is restricted (linked with a bounded queue or
a workstation with limited capacity) or not, without
identifying the type of the model itself.

7. Conclusions and future work

This paper investigates the integration of CSPs for
CSPI-PDG Type II IRM synchronous entity passing.
We describe solutions to the new problems introduced
by status information transfer and inter-model
simultaneous events. The implementation was
achieved by adding new features into the DSManager
and extending the HLA RTI logical time with two
hidden fields. Importantly, all the complicated details
are transparent to the CSPs and the modelers. This
allows the modelers to design their model components
in a “plug & play” manner without worrying about
interoperability. Several sets of experiments were
conducted for Type II IRM. The simulation results
were compared between standalone and distributed
simulation using the CSPE, as well as standalone
simulation using Simul8, showing the correctness of
proposed solutions. It was also observed that the
DSManager designed for Type II IRM using the
modified DMSO RTI1.3NG-V6 logical time can also
be applied for Type I IRM, without introducing too
much additional overhead.

 Future work is necessary in this area. Synchronous
entity passing leads to the situation of near zero
lookahead, which is the main constraint to performance
in applying conservative synchronization in distributed
simulation. It is worthwhile to see how optimistic
synchronization could improve the performance. By
integrating a rollback controller [12] into the
DSManger, the modelers and CSPs can be released
from the burden of the complex rollback procedure.

More work can also be done to investigate CSP
interoperability for other types of IRMs. Each IRM
type categorizes a particular problem and we hope the
DSManager could provide a generic interface to the
CSP for other types of IRMs.

References

[1] IEEE P 1516, “Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)”, April 2002.

[2] CSPI-PDG, www.cspi-pdg.org, viewed 28th Oct., 2005.

[3] S. Stra burger, “Distributed Simulation Based on the
High Level Architecture in Civilian Application Domains”,
PhD Dissertation, University of Magdeburg, Germany, April,
2001.

[4] X.G. Wang, S.J. Turner, M.Y.H. Low and B.P. Gan, “A
Generic Architecture for the Integration of COTS Packages
with the HLA”, UK Operational Research Society
Simulation Workshop, Birmingham, UK, Mar. 23-24, 2004,
pp. 224-233.

[5] X.G. Wang, S.J. Turner, S.J.E. Taylor, M.Y.H. Low and
B.P. Gan, “A COTS Simulation Package Emulator (CSPE)
for Investigating COTS Simulation Package
Interoperability”, Proc. 2005 Winter Simulation Conference,
Florida, Dec. 4-7, 2005, pp. 402-411.

 [6] S.J.E. Taylor, X.G. Wang, S.J. Turner and M.Y.H. Low,
“Integrating Heterogeneous Distributed COTS Discrete-
Event-Simulation Package: An Emerging Standards-Based
Approach”, IEEE Transactions on Systems, Man and
Cybernetics, Jan. 2006, Vol. 36, No. 1, pp. 109-122.

[7] F. Wieland, “The Threshold of Event Simultaneity”,
Transactions of the Society for Computer Simulation
International, 1999, Vol. 16, No. 1, pp. 23-31.

[8] R.M. Fujimoto, “Parallel and Distributed Simulation
Systems”, Wiley Interscience, January 2000.

[9] F. Wieland, “Parallel Simulation for Aviation
Applications”, Proc. 1998 Winter Simulation Conference,
Washington DC, Dec. 13-16, 1998, pp. 1191-1198.

[10] Defense Modeling and Simulation Office (DMSO),
“High Level Architecture RTI 1.3NG Programmer’s Guide,
Version 5”, February 2002.

[11]. Simul8, www.simul8.com, viewed on 28th Oct., 2005.

[12] X.G. Wang, S.J. Turner, M.Y.H. Low and B.P. Gan,
“Optimistic Synchronization in HLA Based Distributed
Simulation”, Proc. 18th Workshop on Parallel and
Distributed Simulation, IEEE Computer Society, Kufstein,
Austria, May 16-19, 2004, pp. 225-233.

Proceedings of the 20th Workshop on Principles of Advanced and Distributed Simulation (PADS'06)
0-7695-2587-3/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 27, 2009 at 10:06 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

