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γ-ray spectra and enhancement factors for positron annihilation with core electrons
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Many-body theory is developed to calculate the γ-spectra for positron annihilation in noble-
gas atoms. Inclusion of electron-positron correlation effects and core annihilation gives spectra in
excellent agreement with experiment [Iwata et al., Phys. Rev. Lett. 79, 39 (1997)]. The calculated
correlation enhancement factors γnl for individual electron orbitals nl are found to scale with the
ionization energy Inl (in eV), as γnl = 1 +

√
A/Inl + (B/Inl)

β , where A ≈ 40 eV, B ≈ 24 eV and
β ≈ 2.3.

PACS numbers: 78.70.Bj, 34.80.Pa, 34.80.-i, 34.8.Uv

Introduction.—This Letter shows that many-body the-
ory (MBT) provides accurate γ-ray spectra for positron
annihilation with valence and core electrons of noble-gas
atoms, and establishes firmly the fractions of core an-
nihilation. It uncovers a simple scaling of the enhance-
ment factors, which increase the annihilation probability
beyond the independent-particle approximation (IPA),
with the electron ionization energy.

Low-energy positrons annihilate predominantly on the
valence electrons in atoms. Small fractions of positrons
can, however, tunnel through the repulsive nuclear po-
tential and annihilate with core electrons [1]. The
two-photon annihilation γ-ray spectrum is Doppler-
broadened by the electron velocity distribution in the
states involved. In particular, annihilation on tightly-
bound core electrons results in distinct features at larger
Doppler shifts [2, 3]. Its signal shows high elemental
specificity [4], allowing to study vacancies and other
defects in metals and semiconductors [5–7]. Annihila-
tion on core electrons enables positron-induced Auger-
electron spectroscopy (PAES) [8–11] and time-resolved
PAES [12], to study the dynamics of catalysis, corrosion,
and surface alloying [13]. Coincident measurements of
the γ-rays and Auger electrons yields γ-ray spectra for
individual core orbitals [14, 15].

Interpretation of experiments relies heavily on theoret-
ical input, e.g., the relative annihilation probabilities for
core electrons of various atoms in PAES [16]. However,
positron annihilation in many-electron systems is charac-
terised by strong electron-positron correlations, which af-
fect the positron wave function and electron-positron an-
nihilation vertex. Correlations lead to dramatic enhance-
ments of positron annihilation rates in heavier noble-
gas atoms, compared with the single-particle approxi-
mation (see [17] and references therein), and influence
the shapes of the γ-ray spectra [18–20]. For atomic
systems correlations can be included systematically by
MBT methods [17, 21]. MBT provided early insights into
positron annihilation in metals by considering positrons
in an electron gas [22, 23]. These works introduced
the concept of enhancement factors (EF), which mea-

sure the increase of the electron density at the positron.
Subsequently, density functional theories were developed
for condensed-matter systems [24, 25]. They describe
positron states and annihilation in real materials, often
using parametrizations of the correlation energy and EF
for the positron in electron gas from MBT [26]. The EF
are particularly large (∼10) for the valence electrons, but
also significant for the core electrons [27]. They correct
the IPA annihilation probabilities and γ-spectra [2, 16].
However, they also lead to spurious effects in the spec-
tra [6], and show deficiencies when benchmarked against
accurate calculations [28].

Positron interaction with noble-gas atoms has been
studied thoroughly in experiment by measuring the scat-
tering cross sections and annihilation rates. This system
is ideal for testing the ability of theory to account for
correlations. An extensive comparison with the data at-
tests the accuracy of our MBT approach [17]. One out-
standing issue is the annihilation γ-ray spectra of Ar, Kr
and Xe [3], that have till now eluded theoretical descrip-
tion. In this work we extend the MBT approach to the
γ-ray spectra. The calculation of the valence and core
annihilation yields excellent agreement with experiment,
including the large Doppler shifts where the core contri-
bution dominates. The MBT also provides “exact” EF
γnl for individual electron orbitals nl [29].
Theory.—In the dominant process, a positron annihi-

lates with an electron in state n to form two γ-ray pho-
tons of total momentum P [30]. In the centre-of-mass
frame the two γ-rays have equal energies mc2 = 511 keV
(neglecting the initial positron and electron energies ε
and εn). In the laboratory frame the photon energies are
Doppler shifted by ε ≤ Pc/2, and their spectrum is

wn(ε) =
1

c

∫ ∞
2|ε|/c

∫
ΩP

|Anε(P)|2 dΩP

(2π)3
PdP, (1)

where Anε(P) is the annihilation amplitude [18]. Figure
1 shows the main contributions to this amplitude: the
zeroth-order vertex (IPA), and the first- and higher-order
(‘Γ-block’) corrections, which account for the attractive
electron-positron interaction at short range (see [17–19,
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31, 32] for details). The total spectrum, which is probed
in experiment, is the sum of the spectra of individual
atomic orbitals nl, w(ε) =

∑
nl wnl(ε).
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FIG. 1. Amplitude of positron annihilation with an electron
in state n: (a) zeroth-order, (b) first-order, and (c) ‘Γ-block’
corrections. Double lines labelled ε represent the incident
positron; single lines labelled ν (µ) represent positron (ex-
cited electron) states, which are summed over; lines labelled
n represent holes in the atomic ground state; wavy lines rep-
resent the electron-positron Coulomb interaction, and double-
dashed lines represent the two γ-ray photons. The Γ-block is
the sum of the electron-positron ladder diagram series [17, 21].

The fully-correlated incident positron quasiparticle
wave function ψε is obtained from the Dyson equation(
H0 + Σ̂ε

)
ψε = εψε, where H0 is the positron Hamilto-

nian in the field of the Hartree-Fock (HF) ground state
atom, and Σ̂ε is the positron self-energy operator which
represents the positron-atom correlation potential. This
potential accounts for polarization of the atom by the
positron and for virtual positronium formation (repre-
sented by the Γ-block), both of which contribute to the
positron-atom attraction (see [17, 21] for details).

The positron annihilation rate in a gas is parameter-
ized by the dimensionless effective number of electrons,
Zeff [33]. For an orbital nl, it is Zeff,nl =

∫∞
−∞ wnl(ε) dε.

Zeff,nl for valence orbitals is usually greater than the ac-
tual number of electrons, owing to the positron-atom at-
traction and vertex corrections.

The positron self-energy diagrams and the annihila-
tion amplitude contain sums over the intermediate ex-
cited electron and positron states. We calculate them
numerically using a basis set 40 B-splines of order 6, in
a spherical box of radius 30 a.u. The maximum angular
momentum of the intermediate states is lmax=15, and we
extrapolate to lmax → ∞ as in [18] (see [17, 31, 32] for
details).

Results.—The annihilation γ-ray spectra for Ar, Kr
and Xe were measured with room-temperature positrons
in a Penning-Malmberg trap [3]. That work also showed
that the IPA [Fig. 1 (a)] overestimates both the full width
at half maximum (FWHM) of the spectra and the frac-
tion of core annihilation. Ref. [18] showed that the first-
order correction [Fig. 1 (b)] narrowed the spectrum, but
was insufficient to describe the experiment.

The full calculation presented in this work highlights
the importance of higher-order corrections [Fig. 1 (c)], es-
pecially for the valence electrons. The MBT also shows
that the self-energy that affects the positron wave func-
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here to be much larger than the radius at which annihilation occurs (typically the size of

the atom) [57–60]. The relative strength of the wavefunction enhancement of Ar, Kr and

Xe corresponds to the increase in their respective scattering lengths: for Ar a ⇡ �4.4 a.u.,

for Kr a ⇡ �10.1 a.u., and for Xe a ⇡ �81 a.u. [61]. Incidentally, this resonant behaviour

means that Ze↵ drops o↵ dramatically as k increases and thus a proper comparison with the

experimental Ze↵ measured using thermalized positrons, can only be made after performing

a Maxwellian average of the calculated Ze↵(k) over k. Such values, calculated from the

15

FIG. 2. Annihilation γ-ray spectra for the 4p valence and
3p core electron orbitals in Kr, calculated using the positron
wave function in the static field of the HF atom, and with
the account of the correlation potential Σ̂ε (Dyson), and with
various approximations for the annihilation vertex [Fig. 1]:
zeroth-order, dashed curves (“0”); zeroth- and first-order,
chain curves (“0 + 1”); full vertex, solid curves (“0 + 1 + Γ”).

tion (double line in Fig. 1) and the correlation corrections
to the vertex [diagrams (b) and (c)] have strikingly differ-
ent effects on the spectra. As an example, Fig. 2 presents
the spectra for the valence 4p orbital and a core 3p orbital
in Kr [34]. It shows that the vertex corrections enhance
the annihilation by almost an order of magnitude for the
valence electrons and by about 50% for the core orbital.
The higher-order corrections [Fig. 1 (c)] are much more
prominent for the valence electrons. Vertex corrections
also lead to a significant narrowing of the spectrum for
the valence electrons.

In contrast, improving the positron wave function (i.e.,
using the Dyson orbital instead of the static HF state)
uniformly increases the annihilation signal. This increase
is due to the build-up of the positron density in the vicin-
ity of the atom caused by the positron-atom attraction.
The magnitude of this effect is similar for the valence and
core electrons. However, unlike the vertex corrections, it
is sensitive to the atomic environment and the positron
energy (e.g., the low-energy annihilation in Ar, Kr and
Xe is strongly enhanced by the positron virtual states
[17]).

Figure 3 shows the spectra for positron annihilation on
individual subshells of Ar, Kr and Xe, calculated with the
full amplitude (Fig. 1) using the Dyson s-wave positron
state of thermal momentum k = 0.04 a.u. The narrowly
peaked valence spectra dominate the total spectra at low
Doppler shifts. The tightly-bound and faster moving
core electrons produce broader γ-ray spectra. Note also
that most individual spectra include multiple ‘shoulders’.
They are caused by the oscillations of the electron or-
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FIG. 3. Calculated γ-spectra for positron annihilation on in-
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black and red lines); core (n − 1)s, (n − 1)p, and (n − 1)d
(dashed lines); inner core (n − 2)s, (n − 2)p, and (n − 2)d
(dash-dash-dotted lines); and total spectra (thick solid green
line). All spectra are obtained using the full annihilation ver-
tex (Fig. 1) and Dyson positron wave function.

bitals due to their orthogonality to the lower-lying states.
In this way the spectra of the valence orbitals contain
high-momentum components characteristic of the core
orbitals. Overall, the total γ-spectra retain the charac-
teristics of both the valence and core contributions.

Figure 4 shows the calculated total spectra convolved
with the detector resolution function and normalized to
the experimental data at zero Doppler shifts [3]. For each
atom the valence component underestimates the experi-
mental spectrum at higher energies. Inclusion of the core
brings the theoretical spectra into close agreement with
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the full annihilation vertex and Dyson positron wave function.
Dotted line is the static calculation of [3] (blue dots).

experiment [35]. The corresponding fraction of core an-
nihilation obtained in our MBT calculation is 0.55% in
Ar, 1.53% in Kr, and 2.23% in Xe [36].

The IPA γ-spectra obtained for the positron in the
static atomic field (dotted lines in Fig. 4) are significantly
broader than the experiment. Such calculation also over-
estimates the fraction of core annihilation by a factor of
two. However, when this fraction is used as a free param-
eter to fit the experimental data [3], the core annihilation
fractions for Kr and Xe (1.3% and 2.4%, respectively) are
close to the above ab initio values.

Enhancement factors.—In the MBT approach, the en-
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hancement factors due to the correlation corrections to
the annihilation vertex (Fig. 1), are found from the ratio
of the annihilation rate obtained with the full vertex to
that of the zeroth-order (IPA), for each electron orbital
nl:

γnl =
Z

(0+1+Γ)
eff,nl

Z
(0)
eff,nl

. (2)

Figure 5 shows the EF γnl for the core and valence or-
bitals in Ar, Kr and Xe, for both static HF and Dyson
incident positron states. Also shown are values of γ1s for
hydrogen and hydrogen-like ions, from the MBT calcula-
tions [19, 21].

The values of γnl obtained with the positron wave func-
tion in the static atomic field are slightly larger that those
found using the fully correlated Dyson wave functions (al-
though this effect is negligible for the positive ions). This
difference aside, Fig. 5 displays a near-universal scaling
of the EF for the neutral atoms with the orbital ioniza-
tion energy Inl. This scaling can be parametrized by the
formula

γnl = 1 +
√
A/Inl + (B/Inl)

β
, (3)

where A, B and β are constants found by fitting the nu-
merical data. The second term on the right-hand side
of (3) describes the effect of the first-order correction,
Fig. 1 (b). Its scaling with Inl is motivated by the 1/Z
scaling of the EF in hydrogen-like ions [19]. The third
term is phenomenological; it accounts for the higher-
order corrections which are important for the valence
electrons (cf. Fig. 2).

Summary.—Many-body theory has been used to cal-
culate the contribution of individual subshells to the γ-
spectra of positron annihilation in noble gases. Inclusion
of core annihilation gives excellent agreement with exper-
iment and yields accurate core annihilation probabilities.
The calculated “exact” vertex enhancement factors are
found to follow a simple scaling with the electron ioniza-
tion energy. This result can be used to improve simple
IPA calculations of core annihilation on atoms across the
periodic table and in condensed matter.
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