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Abstract. Learning Bayesian networks with bounded tree-width has at-
tracted much attention recently, because low tree-width allows exact in-
ference to be performed efficiently. Some existing methods [12, 14] tackle
the problem by using k-trees to learn the optimal Bayesian network with
tree-width up to k. In this paper, we propose a sampling method to ef-
ficiently find representative k-trees by introducing an Informative score
function to characterize the quality of a k-tree. The proposed algorithm
can efficiently learn a Bayesian network with tree-width at most k. Ex-
periment results indicate that our approach is comparable with exact
methods, but is much more computationally efficient.

Keywords: Bayesian network, structure learning, bounded tree-width

1 Introduction

Bayesian networks (BNs) are widely used probabilistic graphical models. Learn-
ing Bayesian networks from data has been widely studied in decades. In this
paper we present our approach of score-based Bayesian network structure learn-
ing with some special constraint.

It is well known that the complexity of exact inference in a Bayesian network
is related to the tree-width of the network [13]. To simplify the inference com-
putation, one attempt that has received growing attention recently is to learn
a Bayesian network with bounded tree-width. Moreover, some empirical results
[10] demonstrate that bounding the tree-width of a Bayesian network achieves
better generalization performance.

Several algorithms have been proposed to learn Bayesian networks with
bounded tree-width. Korhonen and Parviainen [12] proposed a dynamic pro-
gramming based algorithm for learning n-node Bayesian networks of tree-width
at most k. Their algorithm guarantees to find the optimal structure maximizing
a given score function subject to the tree-width constraint. Parviainen et al. [15]
developed an integer programming approach to solve the problem. It iteratively
creates a cutting plane on the current solution to avoid exponentially many con-
straints. However, both algorithms work only with small tree-widths. Berg et al.
[3] transferred the problem into a weighted maximum satisfiability problem and
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solved it by weighted MAX-SAT solvers. Nie et al. [14] introduced an integer
programming and a sampling methods to address this problem.

In this work, we present a novel method of score-based Bayesian network
structure learning with bounded tree-width via sampling. We design an approx-
imate approach based on sampling k-trees, which are the maximal graphs of
tree-width k. The sampling method is based on a fast bijection between k-trees
and Dandelion codes [5]. We design a sampling scheme, called Distance Preferable
Sampling (DPS), in order to effectively cover the space of k-trees using limited
samples, in which we give a larger probability for a sample in the unexplored
area of the space, based on the existing samples. Smart rules to explore the
sample space are essential, because we can only compute a few best structures
respecting sampled k-trees in a reasonable amount of time. To evaluate the sam-
pled k-trees, we design an Informative Score (I-score) function as the criterion
for accepting or rejecting k-trees based on independence tests and BDeu scores,
which is used as a prior information for the k-trees. Different from the method
proposed in [14], this work focuses on identifying high quality k-trees, instead
of uniformly sampling. Given each sampled k-tree, we employ the algorithm of
[12] to find the optimal Bayesian network as a subgraph of it, which we denote
as K&P method from now on.

This paper is structured as follows. We first introduce some definitions and
notations for Bayesian networks and tree-width in Section 2. Then we discuss
the proposed sampling method for learning Bayesian networks with bounded
tree-width in Section 3. Experimental results are given in Section 4. Finally we
conclude the paper in Section 5.

2 Preliminaries

2.1 Learning Bayesian Networks

A Bayesian network uses a directed acyclic graph (DAG) to represent a set
of random variables X = {Xi : i ∈ N}, N = {1, 2, ..., n} and their conditional
(in)dependencies. Arcs of the DAG encode parent-child relations. Denote Xpai as
the parent set of variable Xi. Conditional probability tables p(xi|xpai

) are given
accordingly, where xi and xpai

are instantiations of Xi and Xpai
. We consider

categorical variables in this work.

The structure learning task of Bayesian network is to identify the “best”
DAG from data. In this paper we consider the score-based Bayesian network
structure learning problem, in which a score s(G) is assigned to each DAG G.
The commonly used score functions (such as BIC [17], and BDeu [4, 6, 11])
are decomposable, i.e., the overall score can be written as the summation of
local score functions, s(G) =

∑
i∈N si(Xpai). For each variable, its score is only

related to its parent set. We assume that local scores have been computed in
advance and can be retrieved in constant time.
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2.2 Learning BN with tree-width bound

The width of a tree decomposition of an undirected graph is the size of its largest
clique minus one. The tree-width of an undirected graph is the minimum width
among all possible tree decompositions of the graph. We define tree-width tw(G)
of a DAG G as the tree-width of its moral graph, which is obtained by connecting
nodes with a common child, and making all edges undirected.

The objective of this work is to find a graph G∗,

G∗ = arg max
G

∑
i∈N

si(Xpai), s.t. tw(G) ≤ k . (1)

Directly computing the tree-width of a graph is intractable [1]. One way of
imposing the tree-width constraint is to use the k-tree, the maximal graphs with
tree-width k, and no more edges can be added to them without increasing the
tree-width (see [16] for details). Therefore, every graph with tree-width at most k
is a subgraph of a k-tree. Learning Bayesian network from a k-tree automatically
satisfies the tree-width constraint if we ensure that the moral graph of the learned
Bayesian network is a subgraph of the k-tree. A k-tree is denoted by Tk ∈ Tn,k,
where Tn,k is the set of all k-trees over n nodes.

3 Sampling k-trees using Dandelion codes

The basic idea is to efficiently search for k-trees with “high quality” and then use
K&P algorithm to learn the optimal Bayesian network from the selected k-trees.
This is accomplished in two steps. First, we propose a sampling method that can
effectively cover the space of k-trees to obtain representative k-trees. Second, we
establish an informative score (I-score) function to evaluate the quality of each
k-tree.

3.1 Effective k-tree Sampling

Directly sampling a k-tree is not trivial. Caminiti et al. [5] proposed to establish a
one-to-one correspondence between a k-tree and what is called Dandelion codes.
The space of Dandelion codes is denoted by An,k. A code (Q,S) ∈ An,k is a pair
where Q ⊆ N is a set of integers of size k and S is a 2 × (n−k−2) matrix of
integers drawn from N ∪ {ε}, where ε is an arbitrary number not in N (see [5]
for details).

Dandelion codes can be sampled uniformly at random by a trivial linear-
time algorithm that uniformly chooses k elements out of N to build Q, and then
uniformly samples n−k−2 pairs of integers in N∪{ε}. Such property of Dandelion
codes naturally makes a uniform prior for k-trees, which is a quite good prior in
the absence of other prior knowledge [9]. However, uniform sampling generates
each sample independently, and totally ignores previous samples, which makes it
possible to generate the very same sample twice, or at least samples that are too
close to each other. Considering the large size of the space of all Dandelion codes
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(
(
n
k

)
(k(n−k)+1)n−k−2) and the relatively small amount of samples that we can

process, we would prefer the samples to be as evenly distributed as possible. This
is accomplished by generating the next sample from some currently unexplored
area of the sampling space. Driven by this idea, we define the Distance Preferable
Sampling (DPS). Given the samples of Dandelion codes A(1), A(2), · · · , A(j−1)

obtained so far, we want to decide how to sample the next A(j). A kernel density
function for a new sample can be defined as

q(A(j)) =
1

j − 1

j−1∑
i=1

K(‖A(j) −A(i)‖) , (2)

where A(j) ∈ An,k is the jth Dandelion code sample. q(A(j)) depends on all
the previous samples, with its value decreasing as A(j) moves away from existing
samples. K(·) is a kernel function, (e.g., a Gaussian). The distance between two
Dandelion codes is defined as

‖A(j) −A(i)‖ = ‖Q(j) −Q(i)‖2 + ‖S(j) − S(i)‖2,1 , (3)

where ‖ · ‖2 is the L2 norm. S(j) is processed as a 2 × (n−k−2) matrix, and
‖ · ‖2,1 is the L2,1 norm.

Since we intend to explore the regions which have not yet been sampled, we
design a proposal distribution as follows:

p(A(j)) = 1− q(A(j))

K(0)
. (4)

p(A(j)) increases as sample A(j) moves away from all the existing samples. Fol-
lowing the proposal distribution, we use the rejection sampling algorithm (Al-
gorithm 1) to generate a sample of Dandelion codes, and then employ the im-
plementation of [5] to decode it into a k-tree.

3.2 Informative Score for k-trees

Given a k-tree, the computational complexity of the method of [12] for con-
structing a Bayesian network subject to the k-tree is super-exponential in k
(O(k · 3k · (k+ 1)! ·n)). Hence, one cannot hope to use it with too many k-trees,
given current computational resources. Instead of learning from every k-tree
without distinction, we define the I-score function to evaluate how well a k-tree

Algorithm 1 Sampling a Dandelion code using Distance Preferable Sampling

Input Previous samples of Dandelion codes A(1), . . . , A(j−1).
Output a new sample of Dandelion code A(j).
1 Uniformly sample a Dandelion code A(j) in the feasible region;
2 If j = 1, the sample is accepted. If not, the sample is accepted with probability
p(A(j));

3 If A(j) is rejected, return to step 1 for another sample, until a sample is accepted.



Learning BN with Bounded Tree-width 5

“fits the data”, hence can produce a Bayesian network with high quality. The
I-score of a k-tree Tk is defined as

IS(Tk) =
Smi(Tk)

|Sl(Tk)|
. (5)

The numerator, Smi(Tk), measures how much information is lost by representing
data using the k-tree. Let eij denote the edge connecting node i and j, and let
Iij denote the mutual information of node i and j. Then,

Smi(Tk) =
∑
i,j

Iij −
∑

eij /∈Tk

Iij . (6)

If an edge eij is not included in the k-tree, we subtract the mutual information
corresponding to that edge from the optimal score. Smi is a measurement of the
consistency of the k-tree and the data, and can be interpreted either as the sum
of the mutual information covered by the k-tree or as constant minus the sum
of the mutual information lost by the k-tree. Larger Smi indicates the k-tree fits
the data well, from the independent test perspective.

On the other hand, the denominator Sl(Tk) is defined as the score (e.g., BIC,
BDeu scores) of the best pseudo subgraph of the k-tree by dropping the acyclic
constraint.

Sl(Tk) = max
m(G)⊆Tk

∑
i∈N

si(xpai
) , (7)

where m(G) is the moral graph of DAG G, and si(xpai) is the local score function
for xi given parent set xpai .

The best pseudo subgraph of a k-tree is constructed by choosing the best
parent set for each node in terms of local scores, compatible with the k-tree, in
a greedy way. Combining all the parent sets will result in a directed, possibly
cyclic, graph. Therefore, given the pre-computed scores for each variable, score
Sl can be computed in linear time. Since the value of Sl is negative, for practical
reasons we use the term 1/|Sl(Tk)| in the I-score formulation.

The I-score for a k-tree combines the independence test approach and score-
based approach for learning Bayesian networks. It can be very efficiently eval-
uated for any given k-tree, as computing Smi requires only mutual information
of pairs of nodes (which can all be pre-computed, so time complexity is at most
O(n2) over all multiple runs of the algorithm).

With the I-score for a proposed k-tree, we then accept a k-tree with proba-
bility

α = min

(
1,
IS(Tk)

IS(T ∗k )

)
, (8)

where T ∗k is the current k-tree with the largest I-score. Notice that we do not set
a hard constraint for accepting or rejecting a k-tree, due to the fact that even
for a k-tree with relatively small I-score, it is still possible for it to contain a
good subgraph.
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Algorithm 2 Learning a Bayesian network structure of bounded tree-width by
sampling Dandelion codes.

Input score function si, ∀i ∈ N , mutual information Iij , ∀i, j ∈ N
Output a DAG Gbest.
1 Initialize Pabesti as an empty set for all i ∈ N ;
2 (Rejection Procedure 1) Sample a Dandelion code (Q,S) ∈ An,k according to Algo-

rithm 1;
3 (Rejection Procedure 2) Decode (Q,S) into Tk ∈ Tn,k, accept it with probability α

(Equation 8);
4 Repeat Step 2 and 3 until m k-trees are accepted. Sort them in descending order

based on their I-scores. From the top use the implementation of [12] to learn a
Bayesian network. Keep the structure with the highest BDeu score.

5 If time limit is not reached after m k-trees, restart from step 2.

3.3 BN Learning from Sampled k-trees

Combining the ideas in Sections 3.1 and 3.2, we present Algorithm 2 as an ap-
proximate algorithm for learning Bayesian networks of bounded tree-width. Due
to the fact that k-trees with large I-scores are more likely to have better sub-
graphs, we give them high priority to learn the corresponding Bayesian network.
This is reflected in Step 4 of Algorithm 2. A certain amount of k-trees are sam-
pled, and then sorted based on their I-scores. The process starts with the k-trees
of the largest I-score in the sorted list. If time allows, all k-trees are examined,
and the procedure restarts. Given a k-tree as the super structure, the implemen-
tation of K&P is employed to learn the optimal Bayesian network. The goal of
Algorithm 2 is to restrict the calls to K&P (which is a time consuming method
in k, even if linear in n) only to k-trees that are promising.

4 Experiments

To empirically evaluate our method, we use a collection of data sets from the
UCI repository [2] of varying dimensionality. Table 1 contains the details about
the data sets used in the experiments. Firstly, we show the effectiveness of the
I-score for accepting or rejecting a sampled k-tree. Secondly, we compare the
BDeu scores of the learned Bayesian networks.

Table 1: Dimensions of data sets.
DATASET nursery breast housing adult zoo letter mushroom wdbc

VAR. 9 10 14 15 17 17 22 31

SAMPLES 12960 699 506 32561 101 20000 8124 569
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Fig. 1: Effect of the rejection process. The maximum BDeu scores of the Bayesian
networks learned from the accepted k-trees, compared with those from the re-
jected k-trees. Best scores are normalized to 1. The rejection rates are presented
at bottom.

4.1 Informative Score

In this section, we evaluate the I-score as a measurement of how good a k-tree
would be to “produce” a Bayesian network (moralized) structure as its subgraph.
Eight data sets are used (nursery, breast, housing, adult, zoo, letter, mushroom,
and wdbc), whose dimensions are summarized in Table 2 and 3. The numbers
of samples vary from 100 to 20,000. Non-binary variables are binarized over the
median value. In all experiments, we maximize the Bayesian Dirichlet equivalent
uniform (BDeu) score with equivalent sample size equal to one [11]. To evaluate
the effect of our rejection of k-trees, we sampled 500 k-trees, and counted the
number of rejections during the k-tree selection (Step 3 in Algorithm 2). If a k-
tree is rejected, we still compute the BDeu score of its optimal Bayesian network
for comparison. Figure 1 shows the ratio of rejection (at bottom) and relation
between best scores of Bayesian networks learned from both the accepted and
the rejected k-trees. The scores are normalized so that best score is 1. In all
data sets, BDeu scores of Bayesian network learned from rejected k-trees never
exceeded the scores from accepted ones. Using the rejection process, we see that
20% to 40% of the k-trees were rejected. Such variation in the rejection rates is
due to the randomness of the samples, because if a k-tree with high I-score is
sampled in an early stage, later samples have a high probability to be rejected.

4.2 Bayesian Network Learning

In this section we compare the BDeu scores of structures learned by our method
against scores from two exact methods as baseline methods, namely, the K&P
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Table 2: Computational time of the K&P method to find the optimal Bayesian
network structure, and the proposed method to sample 100 k-trees, as well as
the resulting BDeu scores of the networks found by both methods. Empty cells
indicate that the method failed to solve the problem because of excessive memory
consumption. s,m mean seconds and minutes, respectively.

Time Score

Method k nursery breast housing adult nursery breast housing adult
n=9 n=10 n=14 n=15 n=9 n=10 n=14 n=15

2 7s 26s 128m 137m -72160 -2688.4 -3295.4 -201532
K&P 3 72s 5m – – -72159 -2685.8 – –

4 12m 103m – – -72159 -2685.3 – –
5 131m – – – -72159 – – –

2 5s 8s 16s 18s -72218 -2690.5 -3409.6 -202852
Proposed 3 70s 76s 3m 4m -72204 -2692.5 -3413.4 -204186

4 9m 10m 36m 50m -72159 -2691.9 -3285.0 -202432
5 80m 232m 631m 896m -72159 -2694.0 -3296.9 -202699

algorithm3 and the B&B method4 [7, 8]. The comparison with exact methods
allows us to evaluate the proposed algorithm in terms of the difference in scores.

Due to the complexity of K&P method, it is only applicable to some relatively
small data sets, hence our comparisons are restricted to those cases. The detailed
computational time that K&P uses is given in Table 2. The algorithm is run using
a desktop computer with 64GB of memory. Maximum number of parents is set
to three. Due to the huge amount of memory cost, for housing and adult data
sets with tree-width more than 2, as well as breast with tree-width bound 5, the
algorithm failed to give a solution. Correspondingly, we sampled 100 k-trees and
recorded the running time for the proposed algorithm to give a solution, given
the same data set and the same choice of maximum tree-width. The BDeu scores
of the best Bayesian networks found with both algorithms are also presented. By
examining only a small portion of k-trees, the proposed algorithm finds solutions
with an BDeu score difference less than 1% for most cases. Only in the housing
data set with tree-width equal to 2, our algorithm have a 3% score difference
to the exact solution, which is reasonable after only 16 seconds of computation.
Generally speaking, the proposed algorithm achieves comparable results to those
of the exact method in terms of BDeu score difference. Yet when considering the
time and memory costs of the exact solution, the proposed algorithm is more
efficient against the competing method by several orders of magnitude.

Besides efficiency, the proposed algorithm can be used on larger data sets
with up to 31 nodes and larger values for the tree-width bound (zoo, letter,
mushroom, and wdbc) (Table 3). Note that the B&B method does not have the
tree-width constraint, so the learned structures are supposed to have larger BDeu

3 http://www.cs.helsinki.fi/u/jazkorho/aistats-2013/
4 http://www.ecse.rpi.edu/∼cvrl/structlearning.html
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Table 3: BDeu scores for relatively larger data sets and lager tree-widths, com-
pared with the B&B method without tree-width constraint. Running time is ten
minutes. Averaged over ten repetitions.

data set nodes k=2 k=3 k=4 k=5 B&B

zoo 17 -644.1 -623.8 -609.1 -649.1 -565.2
letter 17 -195677 -192289 -192373 -194349 -184530

mushroom 22 -73697 -74367 -68523 -73902 -68237
wdbc 31 -8435.1 -8320.8 -8352.1 -8316.9 -6933.8

Table 4: BDeu scores of BNs learned using different sampling methods with data
set letter, normalized using the best score of each column. UNI means uniform
sampling; DPS means Distance Preferable Sampling; α means that we employed
the acceptance probability α. Larger numbers indicate worse performance.

Method k=2 k=3 k=4

UNI 1.019 1.046 1.039
DPS 1.018 1.045 1.038

DPS+α 1 1 1

scores. However, the score difference is not very significant, which indicates the
bounding the tree-width can learn good structures in terms of scores.

To further study the benefit of the DPS and I-score based sampling, we also
implemented the algorithm using the uniformly sampled Dandelion codes with-
out sorting or rejection. The BDeu scores on the letter data set are compared,
with different choices of tree-widths. According to Table 4, DPS outperforms
uniform sampling, even if by a small margin. A great portion of the gain of per-
formance is from rejecting k-trees based on I-scores.To summarize, we are able
to focus on better k-trees by employing non-uniform sampling and sorting them
according to some meaningful measure.

5 Conclusion

In this paper we present a sampling method for learning Bayesian networks with
bounded tree-width. The sampling is based on a bijection between Dandelion
codes and k-trees. We design a Distance Preferable Sampling scheme to effec-
tively cover the space of k-trees, as well as an Informative score function to
evaluate each k-tree. These ideas allow to quickly find representative k-trees of
high quality. Experiments indicate that the proposed method reaches compa-
rable accuracy to the exact algorithms in terms of BDeu scores, but is much
more efficient in terms of learning speed, and can scale up to larger networks
and larger tree-widths.

Acknowledgements This work is supported in part by the grant N00014-12-
1-0868 from the US Office of Navy Research.
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