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Abstract

Hidden Markov models (HMMs) are widely used probabilistic models of se-
quential data. As with other probabilistic models, they require the speci-
fication of local conditional probability distributions, whose assessment can
be too difficult and error-prone, especially when data are scarce or costly
to acquire. The imprecise HMM (iHMM) generalizes HMMs by allowing
the quantification to be done by sets of, instead of single, probability dis-
tributions. iHMMs have the ability to suspend judgment when there is not
enough statistical evidence, and can serve as a sensitivity analysis tool for
standard non-stationary HMMs. In this paper, we consider iHMMs under
the strong independence interpretation, for which we develop efficient infer-
ence algorithms to address standard HMM usage such as the computation
of likelihoods and most probable explanations, as well as performing filter-
ing and predictive inference. Experiments with real data show that iHMMs
produce more reliable inferences without compromising the computational
efficiency.
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1. Introduction

Hidden Markov Models (HMMs) are popular probabilistic descriptions of
paired sequences of states and observations [1], with applications in speech
[1] and text processing [2], activity recognition [3] and computational biology
[4], to name but a few. An HMM assumes that the states have been generated
by a first-order Markov Chain process, while each observation is generated
based only on the paired state. The specification of an HMM comprises an
initial state probability distribution, which specifies the probability that the
process originates in a given state, a state transition probability distribution,
which specifies the probability that the process will transit from a given state
to another, and a symbol emission probability distribution, which specifies the
probability of observing a symbol conditional on a state.

In many domains, the transitions between consecutive hidden states and
the relation between a hidden variable and the corresponding observation
are affected by severe uncertainty. This is the case, for instance, when data
are scarce [5], observations are missing not-at-random [6], and information
is conflicting. In such cases, the use of probability distributions to represent
uncertainty might be inadequate and lead to overly confident inferences [5,
7, 8].

Credal sets [9] are closed and convex sets of probability distributions that
allow for a more general representation of uncertainty, including the situa-
tions just described. For instance, complete ignorance about a variable is
represented as the credal set of all probability distributions on that variable,
instead of the more common representation as a uniform probability distribu-
tion. The imprecise (Multinomial) Dirichlet model (IDM) learns credal sets
from categorical data in a situation of near prior ignorance, providing a more
reliable (although less informative) model of the underlying distribution than
the more common Multinomial-Dirichlet model [10].

This paper presents efficient algorithms for inference with imprecise hid-
den Markov models (iHMMs), which allow the specification of a time- and
state-discrete HMM with initial state, state transition and symbol emission
credal sets in lieu of probability distributions. iHMMs provide a sound way
to handle severe uncertainty, with two direct benefits. First, they allow us to
suspend judgment when there is not sufficient statistical evidence to support
a decision [11]. Second, they provide an efficient tool for performing sensi-
tivity analysis [12] in standard non-stationary HMMs, allowing parameters
to vary jointly, and in time.
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In the rest of the paper, we review the related work (Section 2) and the
basics about HMMs (Section 3) and iHMMs (Section 4); we then describe
algorithms to deal with common uses such as comparing models according to
the data likelihood (Section 5), predicting the current/next state given past
observations (Section 6) and finding the most likely hidden state sequence for
a given sequence of observations (Section 7). Experiments with speech and
action recognition, text completion, and part-of-speech tagging (Section 8)
provide evidence that iHMMs are indeed capable of making reliable deci-
sions and evaluating the sensitivity of HMMs to the learning sample size.
Conclusions and future work are described in Section 9.

2. Related Work

Bayesian networks are probabilistic models where conditional indepen-
dences are represented by a graph whose nodes are identified with ran-
dom variables [13]. HMMs are part of a special class of Bayesian networks
(viz. tree-shaped Bayesian networks), one for which efficient inference al-
gorithms are available. As with HMMs, Bayesian networks require uncer-
tainty to be represented by conditional probability distributions. Credal
networks [14] extend Bayesian networks to allow uncertainty to be modeled
as credal sets. The iHMMs we discuss here are special cases of tree-shaped
credal networks.

Drawing inferences from credal networks is a notoriously hard problem.
Posterior inference is NP-hard already in tree-shaped credal networks, even
when variables take on at most three values [15]; it is NP-hard also in
polytree-shaped networks when there is no evidence, even if we allow (prov-
ably good) approximate results [16]. A few tractable cases appear in the
literature. Fagiuoli and Zaffalon [17] developed a polynomial-time algorithm
for polytree-shaped credal networks with binary variables. Zaffalon and Fag-
iuoli [18] described a method to compute unconditional posterior bounds
in tree-shaped networks. Mauá, de Campos and Zaffalon [19] proved the
existence of a fully polynomial-time approximation scheme for networks of
bounded treewidth and bounded variable cardinality.1

1A fully polynomial-time approximation scheme is a family of algorithms parameterized
by a rational ε > 0, each returning, in time polynomial in the input and in 1/ε, a solution
whose value is within a multiplicative factor of (1 + ε) of the optimum.
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There has also been intense work on fast approximate algorithms (with
no accuracy guarantees). The GL2U algorithm implements a message pass-
ing scheme similar to loopy belief propagation in Bayesian networks, that
computes upper and lower probabilities in polynomial-time [20]. Other re-
searchers have proposed the use of greedy heuristics [21, 22]. Recently, An-
tonucci et al. [23] developed an approximate method based on linear program-
ming relaxations that was shown to outperform other approximate methods
for marginal inference.

The algorithmic techniques discussed in the previous paragraphs deal
with the interpretation of imprecision in the parameters known as strong in-
dependence. Strong independence, which we adopt in this work, assumes the
existence of an ideal probability distribution which we cannot characterize for
lack of resources. Epistemic irrelevance (or its symmetrical counterpart epis-
temic independence) makes no such claim, and allows for the possibility that
there might not be any single probability distribution capable of representing
our (uncertain) knowledge. De Cooman et al. [24] presented an efficient al-
gorithm for single-query marginal inferences in tree-shaped credal networks
under epistemic irrelevance. Their algorithm can be used to efficiently per-
form filtering (i.e., estimating the marginal probability of the future state
given a sequence of observations). Recently, it was shown that filtering on
iHMMs provides the same results whether one adopts strong independence
or epistemic irrelevance [15, 25]. Hence, filtering is also polynomial-time
computable under strong independence. We develop later an alternative al-
gorithm for filtering in iHMMs under strong independence. Our algorithm
follows more closely the syntax of HMMs and strong independence, and it is
arguably easier to understand and implement for a non-expert in imprecise
probability models.

De Bock and de Cooman [26] designed an algorithm that computes the
maximal joint state sequences of an iHMM under epistemic irrelevance in
time polynomial in the input and linear in the number of maximal sequences.
A state sequence is maximal if there is no other state sequence with greater
probability under any distribution induced by the model. De Boom et al. [27]
devised an analogous algorithm for iHMMs under strong independence with
similar time complexity. Finding maximal state sequences is a conservative
generalization of the most likely state sequence inference in HMMs. As the
number of maximal sequences can be exponential in the number of state
variables, their algorithm does not qualify as efficient (i.e., polynomial-time)
inference in a strict sense (unless we are satisfied with selecting an arbitrary
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bounded subset of maximal sequences). In Section 7, we present polynomial-
time algorithms for computing unconditional maximin and maximax state
sequences; these can be seen as another possible generalization of the most
likely state sequence inference in HMMs.

Yet another generalization of the most likely state sequence inference is
the computation of E-admissible state sequences. A state sequence is E-
admissible if it is a most likely state sequence for at least one distribution
induced by an iHMM. Very recently, De Bock et al. [28] developed an algo-
rithm that efficiently decides whether the set of E-admissible state sequences
has cardinality strictly greater than one in bounded treewidth models. They
showed how this algorithm can be used to measure the sensitivity of MAP
inferences to perturbations in the parameters.

The use of credal sets in modeling sequential data is not new. Kozine
and Utkin [29] investigated Markov chains with interval-valued transition
probabilities. De Cooman et al. [30] used credal sets for sensitivity analysis in
Markov chains. Škulj [31, 32] defined imprecise Markov chains, and analyzed
some basic asymptotic behaviors such as regularity and ergodicity. Crossman
et al. [33] studied imprecise Markov chains with absorbing states. Antonucci
et al. [34] investigated the use of iHMMs under epistemic irrelevance for
tracking tasks. Benavoli et al. [8] defined an iHMM over continuous variables
aimed at robust filtering. An imprecise version of the Baum-Welch procedure
[1], used to estimate the parameters of an HMM when the state sequence
is not observable, was developed by Antonucci et al. [35], and tested on
an activity recognition task. Van Camp and de Cooman [36] extended the
learning of iHMMs from data to the case of epistemic irrelevance. In [37],
the authors designed a method for comparing two iHMMs according to their
asymptotic data likelihood, and also applied it on an activity recognition
task.

3. Hidden Markov Models

A Hidden Markov model (HMM) describes a stochastic process over a se-
quence of state variables Q1, . . . , QT and manifest variables O1, . . . , OT . Each
state variable Qt, t = 1, . . . , T , takes values in a finite set Q = {1, . . . , N};
each manifest variable Ot takes value in a finite set O = {1, . . . ,M}.2 We

2The constraint that all state variables or all manifest variables share the same sample
space is introduced for simplicity of notation and because they are commonly observed in
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denote an arbitrary value of state variable Qt by qt, i or j, and similarly for
Ot. The parameter t that indexes either family of variables is called time
(step); we use a temporal metaphor and refer to the relative indexes of vari-
ables by using terms such as past, future and present in the usual way. The
stochastic process satisfies the following properties:

P1 A state variable Qt is stochastically independent of all the variables in
the past given its immediate predecessor state variable Qt−1, that is,
P(Qt = qt|Q1:t−1 = q1:t−1, O1:t−1 = o1:t−1) = P(Qt = qt|Qt−1 = qt−1),
where the notation X1:r = x1:r denotes the event X1 = x1, . . . , Xr = xr.
By symmetry of independence, this implies that Qt is also stochastically
independent of all future variables given Qt+1.

P2 A manifest variable Ot is stochastically independent of any other vari-
able given the state variable Qt: P(Ot = ot|O1:t−1 = o1:t−1, Ot+1:T =
ot+1:T , Q1:T = q1:T ) = P(Ot = ot|Qt = qt).

Property P1 is known as the first-order Markov property, and it roughly
states that the past is irrelevant to the future once the current state of the pro-
cess is disclosed. It is also equivalent to stating that the variables Q1, . . . , QT

form a (first-order) Markov chain. Property P2 states that manifest variables
are conditionally independent given the state variables. Formally,

Definition 1. A hidden Markov model is a tuple

λ = (a1
2, . . . , a

N
T , b

1
1, . . . , b

N
T , π) ,

where

ait(j) := P(Qt = j|Qt−1 = i) , i = 1, . . . , N , t = 2, . . . , T ,

bit(j) := P(Ot = j|Qt = i) , i = 1, . . . , N , t = 1, . . . , T ,

π(i) := P(Q1 = i) , i = 1, . . . , N .

The functions ait, b
i
t and π are called the transition, emission and initial

probability distributions, respectively. The model is said to be stationary if
for any i, t and t′ we have that ait = ait′ and bit = bit′.

applications; they can be easily relaxed to generic discrete variables without invalidating
any of the results developed in this paper. A further generalization, with some limitations,
to the case of continuous manifest variables is also discussed in Section 8.
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An HMM λ is a succinct representation of a stochastic process satisfying
Properties P1 and P2; it defines a joint probability distribution over the
variables in the process by

pλ(q1:T , o1:T ) := Pλ(Q1:T = q1:t, O1:T = o1:T )

= π(q1)bq11 (o1)
T∏
t=2

a
qt−1

t (qt)b
qt
t (ot) .

Rabiner [1] wrote a gentle and comprehensive presentation of HMMs and
their usage. We assume the reader is familiar with Rabiner’s presentation
and we adopt similar terminology and notation.

4. Imprecise Hidden Markov Models

Conventionally, uncertainty is modeled by a single probability measure.
Many authors have warned about the potential pitfalls of such a representa-
tion for describing situations involving scarcity of data or diverging opinions.
A recent and gentle introduction to the topic can be found in [38]. Levi [9]
advocated the use of convex and closed sets of probability measures as a more
adequate representation of knowledge; he called such a set a credal set. We
denote by KX1:r a credal set of probability measures over variables X1:r. The
set extKX1:r denotes the extreme functions of the set, that is, the functions
that cannot be written as convex combinations of other functions in the set.
Credal sets can be manipulated in much the same way as probability mea-
sures. For instance, given a credal set KX,Y we obtain a conditional credal
set of X given Y = y by point-wise conditioning:3

KY=y
X := {P(X|Y = y) : P ∈ KX,Y ,P(Y = y) > 0} .

The lower and upper probability of an event X = x are defined, respectively,
by

p(x) := min
P∈KY=y

X

P(X = x|Y = y) ,

and
p(x) := max

P∈KY=y
X

P(X = x|Y = y) .

3In principle, the conditional credal set could be empty; we assume in the remainder
that this is never the case.
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p(1)

p(2) p(0)

(a) KY=0
X

p(1)

p(2) p(0)

(b) KY=1
X

Figure 1: Barycentric coordinate-system visualization of the conditional credal sets spec-
ified by linear inequalities described in the text (hatched regions).

A (conditional) credal set KY=y
X is said to be specified by linear inequalities

if it is characterized as the set of probability distributions p(X) that satisfy∑
x

fk(x)p(x) ≤ ck , k = 1, . . . , C ,

where f1, . . . , fC are arbitrary real functions on X , and c1, . . . , cC are real
values. As an example, consider variables X and Y taking values in {0, 1, 2}
and {0, 1}, respectively. The following conditional credal sets are specified
by linear inequalities:

KY=0
X = {p(X) : p(1) ≤ 1/3, p(2) ≤ 1/3} ,

KY=1
X = {p(X) : p(0)− p(1) ≤ 0, p(1)− p(2) ≤ 0} .

These credal sets are depicted as hatched regions in Figure 1 using a barycen-
tric projection of the probability simplex on {0, 1, 2}. Note that credal sets
specified by finitely many linear inequalities are polytopes in the probability
simplex.

A simple and commonly used type of inequalities specifying credal sets is
of the form

0 ≤ `(x) ≤ p(x) ≤ u(x) ≤ 1, ∀x ∈ X ,

where ` and u are functions from X to [0, 1]. Credal sets characterized in such
a way are said to be specified by interval-valued probabilities. The credal set
KY=0
X in the example is specified by interval-valued probabilities whereas the

credal set KY=1
X is not. Finally, a credal set is said to be specified by a finite

8



set of distributions if it is defined as the convex hull of a set of (conditional)
probability distributions p(X). Represent a distribution p(X) on {0, 1, 2} by
the triple (p(0), p(1), p(2)). Then a specification by finite set of distributions
of the credal set KY=0

X in the example is the convex hull of

{(1, 0, 0), (2/3, 1/3, 0), (1/3, 1/3, 1/3), (2/3, 0, 1/3)} .

These distributions are the vertices (represented as black dots) of the hatched
region on the left plot of Figure 1.

Given a credal set KX1:r we say that Xi and Xj are conditionally strongly
independent given Xk = xk if they are stochastically independent under every
probability measure in extKX1:r [14]. This definition equates independence
under an imprecise model with a set of independences under precise models
that it contains, and it is thus adequate when we assume that our knowledge
can in principle be captured by a (precise) probabilistic model but we lack
the resources (expertise, time, money, etc) to do so.

An imprecise hidden Markov model (iHMM) is a concise description of
the same stochastic process described by an HMM, except that we replace
the representation of uncertainty using single probability measures by credal
sets and the notion of stochastic independence by strong independence. In
other words, we consider a credal set KQ1:T ,O1:T

and assume that:

I1 A state variable Qt is strongly independent of all the variables in the past
given its immediately predecessor state variable Qt−1.

I2 A manifest variable Ot is strongly independent of any other variable given
the state variable Qt.

An alternative way of expressing the above assertions is to say that every
extreme probability measure in KQ1:T ,O1:T

satisfies P1 and P2. A formal
definition is provided next.

Definition 2. An imprecise hidden Markov model (iHMM) is a tuple

Λ = (A1
2, . . . , A

N
T , B

1
1 , . . . , B

N
T ,Π) ,

where

Ait := KQt−1=i
Qt

i = 2, . . . , N , t = 1, . . . , T ,

Bi
t := KQt=i

Ot
i = 1, . . . , N , t = 1, . . . , T ,

Π := KQ1 .
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Q1 Q20.3 ≤ π(1) ≤ 0.4 0.1 ≤ b11(1) ≤ 0.7

0.2 ≤ b21(1) ≤ 0.7

0.3 ≤ a1
1(1) ≤ 0.6

0.5 ≤ a2
2(1) ≤ 0.6

0.1 ≤ b12(1) ≤ 0.7

0.2 ≤ b22(1) ≤ 0.7O1 O2

Figure 2: An example of an homogeneous iHMM with N = M = T = 2. State and
manifest nodes are represented, respectively, as dark shaded and light shaded nodes.

The sets Ait, B
i
t and Π are called transition, emission and initial sets, since

they induce (closed convex sets of) corresponding distributions. An iHMM is
said to be homogeneous if for all i: (i) transition credal sets Ai2, . . . , A

i
T are

equal, and (ii) emission credal sets Bi
1, . . . , B

i
T are equal.

The above notation emphasizes the analogies with standard HMMs. In
fact, an iHMM can be seen as a set of precise HMMs, one for each combination
of probability distributions a1

2 ∈ A1
2, . . . , a

N
T ∈ ANT , b1

1 ∈ B1
1 , . . . , b

N
T ∈ BN

T , π ∈
Π. By construction, an iHMM Λ induces a credal set KQ1:T ,O1:T

of probability
measures over (Q1:T , O1:T ) whose extreme distributions satisfy

P(Q1:T = q1:T , O1:T = o1:T ) = π(q1)bq11 (o1)
T∏
t=2

a
qt−1

t (qt)b
qt
t (ot) ,

where a1
2 ∈ extA1

2, . . . , a
N
T ∈ extANT , b

1
1 ∈ extB1

1 , . . . , b
N
T ∈ extBN

T , π ∈ extΠ.
This reinforces the view of iHMMs as sets of HMMs.

Figure 2 shows an homogeneous iHMM (Π, A1
2, A

2
2, B

1
1 , B

2
1 , B

1
2 , B

2
2). All

credal sets are specified by interval-valued probabilities. For instance, the
initial credal set in the example is Π = {p(Q1) : 0.3 ≤ p(1) ≤ 0.4}.

Given an iHMM Λ = (A1
2, . . . , A

N
T , B

1
1 , . . . , B

N
T ,Π), we write At := ×Ni=1A

i
t

to denote the Cartesian product of transition credal sets at time t (analo-

gously for Bt), At0:tf
:= ×tft=t0At to denote the Cartesian product of credal

sets from time t0 to time tf (analogously for Bt0:tf
), where by convention

Ai1 := Π for any i.
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5. Data Likelihood

HMMs are commonly used to classify sequential data by choosing the
model that best fits a sequence of observations according to the likelihood.
For example, a common use of HMMs in speech recognition is to fit (or learn)
a different HMM for each individual; the speaker is determined by selecting
the corresponding HMM which maximizes the probability of observing a
recorded passphrase (a sequence of observed manifest variables). Formally,
we define the task as follows. Given a finite set Λ of (precise) HMMs, and a
sequence of observations o1:T ∈ ×Tt=1O, determine

λ∗ = argmax
λ∈Λ

pλ(o1:T ) .

In order to generalize to the credal setting, we use the following notion of
dominance.

Definition 3. Given two iHMMs Λ1 and Λ2 and an observation sequence
o1:T , we say that Λ1 dominates Λ2 for o1:T , denoted Λ1 � Λ2, if and only if

p
Λ1

(o1:T ) > pΛ2
(o1:T ) . (1)

Dominance suggests that iHMMs can be used as credal classifiers [18] for
reliable/robust sequence classification in the same way as HMMs are used for
classifying sequential data. A class label associated to model Λ1 is preferred
as a classification of o1:T over a class label associated to model Λ2 if and only
if Λ1 � Λ2. Given a finite set Λ1, . . . ,ΛK of iHMMs, credal classification
outputs the set of undominated models

Λ∗ = {Λk : @j such that Λj � Λk} . (2)

The elements of Λ∗ are determined by computing the upper and lower like-
lihood for each model Λk, k = 1, . . . , K. In the rest of this section, we
present an algorithm to compute such probabilities given an iHMM Λ, which
is inspired on the algorithm of Zaffalon and Fagiuoli [18] for computing joint
probability bounds in credal trees. For the sake of brevity, we present only
the derivation for the lower bound. The algorithm for upper likelihoods is
analogous.

Consider a sequence o1:T of observed symbols and an iHMM Λ. Our lower
likelihood algorithm performs the following steps:

11



termination propagation initialization

p(o1, o2)

β2(1)

β2(2)

β3(1)

β3(2)

Figure 3: Illustration of lower likelihood computation for the iHMM in Figure 2.

1. Initialization:

βT+1(i) := 1, i = 1, . . . , N. (3)

2. Propagation: For t = T to t = 2 compute

βt(i) := min
ait∈Ait
bt∈Bt

N∑
j=1

ait(j)b
j
t(ot)βt+1(j), i = 1, . . . , N. (4)

3. Termination: Compute and output

min
π∈Π,b1∈B1

N∑
j=1

π(j)bj1(o1)β2(j) . (5)

The variables βt(i) are called lower backward variables, and their defi-
nition is very similar to the backward variables used to compute the data
likelihood of (precise) HMMs [1]. The computation is performed in layers
and backwards in the time steps, that is, we start by computing the values
of βT (i) for all i, then we compute the values of βT−1(i), and so on, until
all variables have their value computed. The order in which variables are
computed within a layer is arbitrary. As we show next the output is a tight
lower bound on the likelihood. For example, the computation of lower back-
ward variables for the iHMM in Figure 2 is shown in the trellis diagram in
Figure 3. The nodes in the figure represent lower backward variables and the
arcs represent temporal dependences (the value of the variable associated
with a node needs to be calculated before those of its children).

The next result establishes the soundness and time complexity of the
algorithm.

12



Theorem 1. Given an iHMM Λ, the lower likelihood algorithm outputs
p

Λ
(o1:T ) in time polynomial in the size of input.

Proof. To show that the algorithm is correct, consider a mathematical in-
duction in t = T, . . . , 2 with the hypothesis

βt(i) = p(ot:T |Qt−1 = i) . (6)

The basis of induction for t = T is straightforward:

βT (i) = min
aiT∈A

i
T

bT∈BT

N∑
j=1

aiT (j)bjT (ot) (7)

= p(oT |QT−1 = i). (8)

To prove the inductive step, assume (6) holds at t + 1 for 1 < t < T . We
thus have that

βt(i) = min
ait∈Ait
bt∈Bt

N∑
j=1

ait(j)b
j
t(ot)p(ot+1:T |Qt+1 = j) (9)

= min
ait∈Ait
bt∈Bt

N∑
j=1

ait(j)b
j
t(ot) min

at:T∈At+1:T
bt:T∈Bt:T

∑
it+1:T

T∏
τ=t+1

aiτ−1
τ (iτ )b

iτ
τ (oτ ) (10)

= p(ot:T |Qt−1 = i). (11)

In (9), we used the known fact that the value of p(ot+1:T |Qt+1 = j) is attained
at an extreme of the joint credal set [17] and hence factorizes to obtain (10).
Each minimization inside the sum in (10) is either independent or constant
with respect to the of value of j, and can thus be moved to front, obtaining
(11). The correctness of the algorithm follows immediately by assuming (6)
holds at t = 2 and then applying the same steps as in (9) and (10).

The complexity of computing (4) for given i and t depends on the specifi-
cation of the corresponding transition and emission credal sets in the input.
Define auxiliary variables vjt = βt+1(j) minbjt∈B

j
t
bjt(ot). Since every distribu-

tion bjt is selected from a different credal set Bj
t we can move the minimiza-

tions over bjt in (4) inside the sum and obtain

βt(i) = min
ait∈Ait

N∑
j=1

ait(j)v
j
t . (12)
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Consider the case where credal sets are specified by interval-valued probabil-
ities. Then the values of vjt can be computed in constant time. Because each
Ait is defined through intervals, the optimization in (12) reduces to a fractional
knapsack problem, which can be solved in O(N) time [18, 39]. Now consider
the specification by finite sets of distributions. Each vjt can be computed by
evaluating its value at a different distribution in the corresponding emission
credal set (each evaluation takes constant time), taking linear time in the
number of distributions. The right-hand side of (12) can then be solved by
evaluating each possible transition distribution (each evaluation takes time
linear in N), hence the whole procedure takes time linear in the size of the
credal sets and in N . Finally, consider the case where credal sets are speci-
fied as a set of inequality constraints. Then computing vjt requires solving a
simple linear program min bjt(ot) s.t.

∑
ot
fk(ot)b

j
t(ot), k = 1, . . . , K, where fk

are part of the specification of the credal set Bj
t . Similarly, the optimization

in (12) can be formulated as a linear program with objective
∑N

j=1 a
i
t(j)v

j
t

and the specification of Ait as constraints. Combined, both linear programs
take time polynomial in the input size.

Let U denote the worst-case running time of computing (4) for any given
i and t. The computation of the lower likelihood solves O(TN) recursions of
βt(i), taking a total time of O(TNU), and is hence polynomial in the input
size.

The proof above shows that when credal sets are specified by interval-
valued probabilities the total running time is O(TN2). This is the same time
taken to compute likelihoods in HMM [1].

6. Filtering

Sequential data are often used to produce good estimates of the present
given observation on the past. For example, in tracking, the hidden variables
encode the true position of a target, while the manifest variables encode its
sensed position. Due to noisy sensors, there is usually a mismatch between
sensed and true positions, and one is interest in computing the probability
of the current position given the past observations. This type of task is
commonly know in the literature as filtering. Formally, given observations
on the manifest variables for T time steps, we are interested in computing

P(QT = qT |o1:T ) for all qT = 1, . . . , N . (13)
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When parameters are imprecisely-specified, hidden variable probabilities
cannot be point-wise estimated; instead, we can compute their lower and
upper bounds:

p(qT |o1:T ) , p(qT |o1:T ) . (14)

We can use the interval above as a measure of reliability of the (precise)
probability in (13). For instance, we might consider a prediction QT = i
obtained through (13) reliable if p(i|o1:T ) ≥ p(j|o1:T ) for j = 1, . . . , N . This
criterion is known as interval dominance. A more restrictive criterion is
obtained by E-admissibility, which consider a prediction Qt = i reliable if
minP (P(QT = i|O1:T = o1:T )− P(QT = j|O1:T = o1:T )) ≥ 0 for all j. Even
though E-admissibility is not defined in terms of upper and lower probabil-
ities, it might also be obtained using similar techniques [23]; here we adopt
interval dominance for the sake of simplicity [40].

The polynomial time algorithm developed in this section is based on the
decision version of the problem. Formally, given an observation sequence
o1:T of T samples, a hidden state qT ∈ {1, . . . , N}, and a rational number
k ∈ [0, 1], we wish to decide whether

p(qT |o1:T ) < k . (15)

Conversely, we wish to decide whether

p(qT |o1:T ) > k . (16)

We assume the model Λ is fixed from now on, and drop it from the notation.
The lower (resp., upper) predictive probability in (14) can be obtained by
finding through a binary search procedure the minimum (resp., maximum)
k for which Ineq. (15) (resp., Ineq. (16)) is satisfied. Consider the prob-
lem of deciding whether the lower probability is beneath a constant. It is
straightforward to see that Ineq. (15) is satisfied if and only if

min
p∈KQT ,O1:T

[
p(qT , o1:T )− k

∑
iT

p(iT , o1:T )

]
< 0 . (17)

Conversely, Ineq. (16) is true if and only if

max
p∈KQT ,O1:T

[
p(qT , o1:T )− k

∑
iT

p(iT , o1:T )

]
> 0 . (18)
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Assume a sequence of observations o1:T , a value qT for QT and a value
ε > 0 specifying the precision of the binary search are given. The algorithm
for performing filtering (w.r.t. the lower bound) in iHMMs is given next.

1. Initialization: Set kl ← 0, ku ← 1.
2. Binary search: While ku − kl ≥ ε do:

(a) Initialization: Set k ← (kl + ku)/2 and define

γT+1(qT ) := 1− k, (19)

γT+1(i) := −k, i = 1, . . . , N, i 6= qT . (20)

(b) Propagation: For t = T to t = 2 compute

γt(i) := min
ait∈AiT
bt∈Bt

N∑
j=1

ait(j)b
j
t(ot)γt+1(j), i = 1, . . . , N. (21)

(c) Termination: If

min
π∈Π
b1∈B1

N∑
j=1

π(j)bj1(o1)γ2(j) > 0

then set kl ← k else set ku ← k.
3. Termination: Output (kl + ku)/2.

The steps 2(a) to 2(c) are very similar to the corresponding steps of the
likelihood algorithm, with two noticeable differences: (i) the variables γT+1(i)
might differ with respect to the value of i (unlike the variables βT+1(i)), and
(ii) the variables γt(i) can take on negative values. These differences intro-
duce only minor changes to the implementation and to the time complexity
of the algorithm.

The soundness and time complexity of the algorithm are given in the
following result.

Theorem 2. Given an iHMM Λ, the filtering algorithm outputs p(qT |o1:T )
in time polynomial in the size of the input.

Proof. The fact that the binary search finds the desired value has already
been shown in the discussion in the beginning of this section. Hence, it re-
mains only to show that the algorithm computes (17). To this end we perform
a mathematical induction in t = T, . . . , 2 with the following hypothesis:

γt(i) = min
p

∑
iT

γT+1(iT )p(iT , ot:T ) , (22)

16



where the optimization is carried out over the credal set KQt−1=i
QT ,Ot:T

. The basis
for t = T is immediate:

γT (i) := min
aiT∈A

i
T

bT∈BT

N∑
j=1

aiT (j)bjT (ot)γT+1(j) (23)

= min
p∈KQt−1=i

QT ,OT

∑
iT

p(iT , oT )γT+1(iT ) .

To prove the inductive step, assume that (22) holds at t+1, for 1 < t < T ,
that is, that

γt(i) = min
ait∈Ait
bt∈Bt

N∑
j=1

ait(j)b
j
t(ot) min

{pj}

∑
iT

pj(iT , ot+1:T )γT+1(iT ) , (24)

where pj is selected in KQt=j
QT ,Ot+1:T

. By construction, each pj factorizes as

pj(iT , ot+1:T ) =
∑
it+1

ajt+1(it+1)b
it+1

t+1 (ot+1)
∑
iT

pit+1(iT , ot+2:T )γT+1(iT ) ,

where ajt+1 ∈ Ajt+1, b
Qt+1

t+1 ∈ B
Qt+1

t+1 and pit+1(iT , ot+2:T ) ∈ KQt+1=it+1

QT ,Ot+2:T
. The

functions ajt+1 can be selected independently for each value of Qt = j. The

choice of functions b
Qt+1

t+1 and pit+1(QT , Ot+2:T ) is constant with respect to the
value of j. Hence, all the corresponding minimizations can be moved out of
the sum, obtaining

γt(i) = min
ait∈Ait
bt∈Bt

min
{pj}

N∑
j=1

ait(j)b
j
t(ot)

∑
iT

pj(iT , ot+1:T )γT+1(iT ) (25)

= min
{pi}

∑
iT

pi(iT , ot:T )γT+1(iT ) ,

where pi ∈ KQt−1=i
QT ,Ot:T

. The correctness of the algorithm follows immediately
from the induction hypothesis for t = 2.

The time complexity analysis is similar to the analysis of the lower likeli-
hood computation. The only difference is that the choice of the functions bjt
depends on the sign of γt+1(j) (which unlike the variables βt(i) they can take
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on negative values). The analysis of running time is identical. If U is the
time it takes to solve (21), then the total running time is O(TNU), where
U is always polynomial in the input size. In particular, when credal sets are
specified as interval-valued probabilities the total running time is O(TN2).
Again, this is the same time complexity of filtering in HMMs. The value
of the lower posterior probability is obtained by performing a binary search
in the value of k in the interval [0, 1]. One can show that the solution of
the search is a ratio of polynomials in the numbers of the input. Hence, the
binary search is guaranteed to finish in at most a polynomial number of steps
in the size of the input.

Even though we can decide a value for the constant ε which is polynomial
in the size of the input and such that the binary search is guaranteed to find
the correct value (apart from numerical inaccuracies introduced by floating-
point arithmetic in the calculations performed), in practice we simply set ε
to a reasonably small value, say 10−6. This still leaves the time complexity
polynomial and introduces only a negligible error.

6.1. Prediction

A task similar to filtering is that of prediction where one is interested in
estimating the value not of the current state qT but of a future state, say
qT+K , with K > 0. In the imprecise setting, this translates to e.g. computing
upper and lower probabilities p(qT+K |o1:T ) and p(qT+K |o1:T ). It can easily
been shown that the filtering algorithm we presented can be readily used to
perform such computations by defining the emission credal sets Bi

Ot
, for t =

T+1, . . . , T+K, as singletons containing the uniform distribution p(Ot|Qt =
i) = 1/M . In Section 8.4, we show experiments on a text completion task
where we use such an approach to predict the upper and lower probabilities
of the next state variable given a sequence of observations up to the current
step.

7. Most Likely State Sequence

Yet another important use of (precise) HMMs is to infer the jointly most
probable configuration of the hidden states for a given sequence of observa-
tions, that is, given an HMM λ and observations o1:T obtain

argmax
q1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
. (26)
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For instance, the above task appears in the tagging of natural language sen-
tences with part-of-speech labels (verb, noun, etc.) [2]. The Viterbi algo-
rithm [41] can be used to efficiently solve (26) for the optimal sequence based
on the fact that the denominator is constant with respect to the choice of
q1:T and can thus be excluded from the computation. In other words, the
Viterbi algorithm finds

argmax
q1:T

p(q1:T , o1:T ) , (27)

which coincides with the solution of (26). This approach can be generalized
to iHMMs by adopting the following criteria.

Definition 4. Given an iHMM Λ, the joint maximin and joint maximax
likely sequences for an observation sequence o1:T are given by, respectively,

argmax
q1:T

p(q1:T , o1:T ) , (28)

argmax
q1:T

p(q1:T , o1:T ) . (29)

The maximin and maximax likely sequences describe extreme scenarios
where the distributions are chosen, respectively, in a pessimistic and opti-
mistic way. We can use this fact to analyze the sensitivity of the Viterbi
algorithm in precise HMMs with respect to fluctuations in the parameters of
the model. In this sense, most likely state sequences found with the Viterbi
algorithm can conservatively be regarded as reliable if the maximin and max-
imax sequences found by a corresponding iHMM coincide. A less conserva-
tive approach is to use the similarity of the maximin and maximax sequences
element-wise: we consider that a state qt is reliable if it appears in both max-
imin and maximax sequences. This is the approach we use in the experiments
in Section 8.

Note that, unlike the case for precise HMMs, the state sequences obtained
using (28) and (29) may differ from the sequences provided by

argmax
q1:T

min
p∈KQ1:T ,O1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
, (30)

argmax
q1:T

max
p∈KQ1:T ,O1:T

p(q1:T , o1:T )∑
i1:T

p(i1:T , o1:T )
, (31)

since in the above equations the denominators vary with the choice of state
sequence (as p varies with them) and hence cannot be excluded. If instead

19



of analyzing the sensitivity of the Viterbi algorithm one wishes to study the
sensitivity of the model itself to fluctuations in its parameters, then compar-
ing the sequences returned in (30) and (31) is arguably a more principled
approach. However, empirical results with artificial data described in the
Appendix show that, at least for small chains, the sequences obtained us-
ing joint probabilities do not differ significantly from those obtained by the
posterior probabilities. This suggests that the use of joint maximin and max-
imax sequences is a viable approximation even when one wants to assess the
sensitivity of the model (and hence use (30) and (31)).

In what follows, we present an algorithm for computing joint maximin
sequences as defined in (28) given a sequence o1:T . A similar algorithm for
computing (29) can be obtained by analogy.

1. Initialization: Define

δT+1(i) := 1, i = 1, . . . , N. (32)

2. Propagation: For t = T to t = 2 compute

δt(i) := max
j

min
ait∈Ait
bt∈Bt

ait(j)b
j
t(ot)δt+1(j), i = 1, . . . , N, (33)

φt(i) := argmax
j

min
ait∈Ait
bt∈Bt

ait(j)b
j
t(ot)δt+1(j), i = 1, . . . , N. (34)

3. Termination: Compute

q1 = argmax
j

min
π∈Π
b1∈B1

π(j)bj1(o1)δ2(j),

and output q1:T , where

qt = φt(qt−1), t = 2, . . . , T.

The algorithm is similar to the algorithms for likelihood and filtering in
that it computes variables in layers and backwards in time. Note that the
values of the variables φt(i) can be obtained when computing the variables
δt(i), dispensing with the extra overhead of solving the right-hand side of
(34). The soundness and time complexity of the algorithm are given next.

Theorem 3. Given an iHMM Λ, the maximin state sequence algorithm out-
puts argmaxq1:T p(q1:T , o1:T ) in time polynomial in the input size.
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Proof. The correctness of the algorithm is proved by mathematical induction
in t = T, . . . , 2 with the following hypothesis:

δt(i) = max
qt:T

p(qt:T , ot:T |Qt−1 = i) , (35)

φt(i) = argmax
qt:T

p(qt:T , ot:T |Qt−1 = i) . (36)

The basis follows directly from the definition:

δT (i) = max
j

min
aiT∈A

i
T

bT∈BT

aiT (j)bjT (oT ) (37)

= max
qT

p(qT , oT |QT−1 = i),

and therefore φT (i) = argmaxqT p(qT , oT |QT−1 = i). Now assume (35) and
(36) are true at t+ 1 for some 1 < t < T . Then,

δt(i) = max
j

min
ait∈Ait
bt∈Bt

ait(j)b
j
t(ot) max

qt+1:T

p(qt+1:T , ot+1:T |j) (38)

= max
j

max
qt+1:T

p(qt+1:T , ot+1:T |j) min
ait∈Ait
bt∈Bt

ait(j)b
j
t(ot)

= max
qt:T

p(qt:T , ot:T |Qt−1 = i).

In (38) we could move the minimization inside the expression because the
term maxqt+1:T

p(qt+1:T , ot+1:T |j) is nonnegative and does not depend on the
choice of ait or bt. For this same reason the minimization over ait and bt could
be moved in front of p(qt+1:T , ot+1:T |j). The last equality is obtained applying
the definition of lower probability. The proof for the inductive step of φt(i)
is analogous.

The algorithm runs in O(N2T ) time, since the minimizations can be
solved by choosing lower probability bounds, which are already available for
interval credal sets or can be computed in advance for credal sets specified
by probability distributions or sets of inequalities (in the latter case we have
the time complexity is O(N2T +U) where U is the time to solve pre-compute
the lower probability bounds, which requires solving linear programs of size
polynomial in the input).
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8. Experiments

In this section, we describe the results of experiments with real data that
provide evidence of the efficiency and applicability of the algorithms devel-
oped here.4 Before detailing the experiments and reporting and commenting
the results, we discuss two common issues: how to learn the parameters of
iHMMs, and how to evaluate their output. We start with the learning of
iHMMs.

8.1. Learning Imprecise Hidden Markov Models

The parameters of an iHMM (i.e., the transition, emission and initial
credal sets) can be elicited from experts or estimated from a data set. There
is a vast literature on eliciting expert knowledge (we refer the reader to the
work of [42]). The same is true for learning credal sets from complete data.
For instance, the Imprecise Dirichlet Model (IDM) developed by Walley [10]
learns an interval-valued credal set KX given i.i.d. data samples x1, . . . , xN

of a Multinomial distribution by

n(X = x)

N + s
≤ p(x) ≤ n(X = x) + s

N + s
, (39)

where n(X = x) is the number of data points such that xj = x, and s is
a parameter that arises from the use of Dirichlet priors and indicates the
strength of prior beliefs. For a fixed data sample size N , small values of
s lead to a smaller credal set, and large values of s lead to a larger set.
The difference between the two bounds is given by s/(N + s); as one would
expect, the size of the credal set learned with IDM decreases with the increase
in the amount of data. Conditional credal sets KY=y

X can be learned using
the Equation (39) for each value of Y = y.

When data are incomplete (i.e., when some or all the values of some
variables have not been observed), the IDM cannot be directly applied. In-
complete data are treated within the framework of HMMs using the standard
Baum-Welch algorithm [1], which implements an Expectation-Maximization
procedure to infer the parameters e.g. in the absence of observations of the
state variables. We can use a similar approach to estimate the parameters
of iHMMs when state variables are not observed. As already discussed in

4A software implementation of the inference algorithms together with learning and
classification scripts is freely available at https://github.com/denismaua/ihmm.
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[43], the fractional counts estimated by the Baum-Welch algorithm can be
regarded as the result of (pseudo-)observations of the state variables. We can
run Baum-Welch and fractional (expected) counts obtained as input to an
IDM, so that credal sets are learned in much the same way as in Equation
(39). The use of credal sets in this approach is justified by the fact that
the fractional count estimates from the Baum-Welch algorithm are prone to
inaccuracies introduced by the scarceness of data and other factors [35].5 For
example, the Baum-Welch-IDM-based interval-valued specification of transi-
tion credal sets is:

E[n(Qt−1 = i, Qt=j)]∑
j E[n(Qt−1 = i, Qt=j)] + s

≤ait(j)≤
E[n(Qt−1 = i, Qt=j)] + s∑
j E[n(Qt−1 = i, Qt=j)] + s

, (40)

where E[n(Qt−1 = i, Qt = j)] are the expected counts for a transition from
state i to state j obtained through Baum-Welch algorithm. A similar rela-
tion can be considered for the initial and emission credal sets. We can deal
with continuous manifest data by assuming that the emission credal sets are
precise. Under this assumption, the inference algorithms developed can eas-
ily be modified to handle continuous manifest variables, by simply replacing
the emission lower probabilities with the corresponding densities. This is
identical to the use of virtual (or soft) evidence in Bayesian networks [44,
Ch. 3.7].

8.2. Evaluating Credal Classifiers

The performance of HMMs is usually evaluated through the accuracy
of the predictions or some other loss function that computes the cost of
predicting a certain value knowing the true value. For example, likelihood
inference is typically used to select one of a set of HMMs, each HMM being
associated to a label. The performance of such an approach is commonly
measured by the percentage of times that the correct model was selected by
the inference procedure.

When considering credal sets in lieu of single probability measures, infer-
ence often results in sets of decisions. For example, the domination criterion
established in Definition 3 might lead to more than a single model being

5Note that we assume MAR as a valid hypothesis since all states are missing in a
presumably non selective way. In fact, iHMMs can also deal with other learning approaches
that do not make assumptions about the missingness process [6].
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selected as appropriate for describing some observation sequence. In such
cases, simple accuracy or loss measures cannot be used. Evaluating the
performance of a credal classifier thus requires specific descriptors. In fact,
inferences drawn with imprecise models can be analyzed in aspects other
than simple quality of predictions. For instance, one might be interested
in characterizing the level of determinacy achieved by a prediction: this is
given by the percentage of instances classified with a single label. We can
also measure the imprecision of inference by average output size, that is, the
average number of classes on instances for which multiple labels are returned.

Of course, we are generally also interested in the accuracy of predictions.
In the imprecise setting, we distinguish between single accuracy, which is the
(standard measure of) accuracy over instances classified with a single label,
and set accuracy, which is the accuracy over the instances classified with
more than one label. In the latter case, classification is considered correct if
the set of labels includes the true class.

Since more than one measure is associated with the predictions of an im-
precise model, we cannot directly compare precise and imprecise models. To
this end, we adopt the utility-based approach proposed in [45], which com-
bines accuracy and reliability of predictions into a single measure, based on
game-theoretic principles. The starting point is discounted accuracy, which
rewards a prediction containing K classes with 1/K if it contains the true
class, and with 0 otherwise. This indicator can already be compared to the
accuracy achieved by a determinate classifier, but discourages imprecision in
results: as shown in [45], an imprecise classier outperforms its precise version
only if the latter behaves worse than a random classifier.

Risk-averse decision makers might assign higher utility for indeterminate-
but-correct outputs compared with wrong-but-determinate ones [45]. For
instance, one might prefer an expert who suspends judgement whenever shes
is not confident enough than an expert who chooses an alternative completely
at random. This can be obtained by modifying discounted accuracy with a
(concave) transformation uw with w ∈ [.65, .80].6 A conservative approach
consists in evaluating the whole interval [u.65, u.80] for each credal classifier
and compare it with the (single-valued) accuracy of traditional classifiers.
This can be shown to approximate the rewarding of accuracy while penalizing
variance, a common procedure in finance models.

6We refer the reader to [45, Sect. 9] for the functional forms of these transformations.
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When we compare the performance of a credal classifier with that of a
precise counterpart (i.e., a classifier based on the HMMs returned by a precise
learning procedure without combination with the IDM), we indeed consider
the precise single accuracy, that is, the accuracy of the precise classifier when
the credal returns a single label, and the precise set accuracy, the accuracy
of the precise classifier when the credal returns multiple labels.

To better understand these concepts consider Table 1. Out of five in-
stances, the credal classifier (second column) is determinate twice, i.e, its
determinacy is 2/5. When indeterminate (three instances), the classifier re-
turns three classes once and two classes twice. The average output size is
therefore 7/3. By comparing the output with the ground truth (first col-
umn), we see that the credal classifier returns the true class only once when
determinate (two instances); when indeterminate (three instances) the re-
turned set of classes includes the true twice. This corresponds to a precise
accuracy equal to 1/2 and a set accuracy equal to 2/3. The computation
of the discounted accuracy leads to (1/2 + 0 + 0 + 1/3 + 1)/5. The precise
classifier (third column) has accuracy 2/5. The accuracy becomes 1/2 if we
consider only the instances on which the credal classifier is determinate, and
1/3 if we consider only the indeterminate ones. These are, respectively, the
precise single accuracy and the precise set accuracy. Finally note that the
output of the credal classifier always includes the class returned by the pre-
cise classifier (this is a general fact which is easily provable), thus the precise
single accuracy coincides with the single accuracy.

True class Credal classifier Precise classifier

red red, yellow red
red yellow, green yellow
yellow green green
green red, green, yellow yellow
green green green

Table 1: The output of a credal classifier with a ternary class on five instances. True
values of the class variable and the output of a precise classifier are also reported.

8.3. Data Likelihood

To evaluate the ability of iHMMs in reliably selecting good fits of se-
quences of observations using the algorithms for data likelihood inference,
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we first learn the parameters of an iHMM using IDM or Baum-Welch-based
IDM. We then compute with the data likelihood algorithm the lower and
upper bounds of the likelihood probability of the test instances on the iH-
MMs associated to the training instances, Finally, we assign to each test
instance the class labels of the iHMMs whose likelihood intervals are not
dominated. The corresponding classifier is credal, i.e., multiple class labels
might be assigned to a test sequence.

8.3.1. Speech Recognition

The first task we consider is the classification of phonemes using the
Japanese Vowels dataset [46]. This dataset contains 640 sequences repre-
senting sound records from nine male speakers. Each speaker uttered two
Japanese vowels successively. For each utterance a 12-degree linear predic-
tion analysis was carried to obtain a discrete time series with 12 linear pre-
dictive coding (LPC) cepstrum coefficients. Hence, an observation at time
step t (ot) consists of a real vector of dimension 12.

We use a set of 270 time series for training and another of 216 series for
testing. Such a down-sampling allows a uniform stratification of the data
(i.e., each dataset has an approximately equal number of samples for each
speaker). The length of the sequences ranges from 7 to 29 time steps.

The above-described learning procedure is adopted to obtain iHMMs from
each training sequence. Stationary models are considered. The data are not
discretized and the emission term is assumed to be precise. A multivariate
Gaussian distribution with diagonal covariance matrix is used to model the
emission distribution. The number of possible values for the state variables
is decided by multivariate Gaussian clustering (hence the states are latent
and represent abstract concepts). As suggested in [10], the value s = 2 is
adopted for the IDM imprecision parameter. The same value is used in the
learning of the precise model for the strength of the (symmetric) Dirichlet
prior.

In the first experiment, the training sequences associated to each speaker
are merged together. Because of the large amount of training data, the
corresponding classifier is very precise. Out of 216 test instances, the credal
classifier returns more than a single class only in three cases, when two classes
are returned. Remarkably, in each of these cases one of the two classes
returned is the correct one, while the other is the one returned by the (precise)
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HMM.7

For a more detailed evaluation we reduce the size of the training set
to nine instances only, one for each speaker. To do that, the 270 training
instances are split in 30 subsets, each one containing a single sequence for
each speaker. For each subset of the training set, we learn a classifier and
test it over the 216 test instances. The aggregated results are reported in
Table 2.

Descriptor

Determinacy 87.5% (3.0%) (5672/6480)
Average output size 2.1 (0.3) (out of 9)

Single accuracy (= precise single accuracy) 69.9% (7.5%) (3962/5672)
Set accuracy 67.0% (0.1%) (541/808)
Discounted accuracy 65.1% (6.5%)
Utility-based accuracy u.65 66.4% (6.6%)
Utility-based accuracy u.80 67.6% (6.7%)

Accuracy precise counterpart 65.6% (6.8%) (4254/6480)
Precise single accuracy 69.9% (7.5%) (3962/5672)
Precise set accuracy 36.1% (0.1%) (292/808)

Table 2: Performance of the data likelihood credal classifier on the Japanese vowels speech
recognition dataset. Standard deviations (third column) and counts (fourth column) are
also reported.

The value of u.65 (i.e., the descriptor which is less in favor of credal classi-
fiers) is higher than the accuracy of the precise counterpart. This advocates
the choice of a credal approach to the problem. Moreover, it is worth notic-
ing that the classifier returns a single class in most of the cases, and if this
is not the case only two classes are typically provided. Furthermore, on the
instances for which more than a class is returned by the credal classifier, the
precise classifier has performances considerably worse than on average (see
last row in the table). In other words, the iHMM-based classifier allows to
distinguish between “easy” instances for which the classifier returns a single
class label which is very likely to be the correct one, and “difficult” instances

7By construction, the class label returned by an HMM-based classifier is always included
in the set of non interval-dominated classes returned by the iHMM-based credal classifier.
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for which, to preserve the same level of accuracy, the credal classifier should
return multiple outputs.

Figure 4 depicts a sensitivity analysis with respect to the parameter s.
The u.65 accuracy of the iHMM and the accuracy of the HMM are depicted
together with the (iHMM) determinacy. As expected, increasing the value
of s reduces the determinacy. Yet, this has no particular effect on both the
accuracies.

0 10 20 30 50
50%

75%

100%

s

precise accuracy
u.65 accuracy
determinacy

Figure 4: Sensitivity analysis of the Japanese Vowels dataset for different values of s.

8.3.2. Human Action Recognition

For a further validation of the likelihood algorithm we consider a classi-
cal computer vision benchmark: the Weizmann dataset for action recognition
[47]. In this task, the class is the action depicted in the sequence (see Fig-
ure 5). These data are footage material which requires a feature extraction
procedure at the frame level. Each frame is identified with a time step and
the extracted features are the observable multivariate data. Our approach is
based on histograms of oriented optical flows [48], a simple technique which
describes the flows distribution in the whole frame as a histogram with 32
bins representing directions. The setup is the same as in the first benchmark
apart from the number of features which, after PCA, is reduced to six. The
dataset contains 80 sequences depicting eight individuals performing ten dif-
ferent actions. The results of a leave-one-out cross validation are depicted
in Table 5. Basically the credal classifier behaves as in the first benchmark,
with a utility-based accuracy higher than that of the precise classifier and a
clear separation between single and set accuracy. Finally, let us note that
the levels of accuracy of both the precise and the credal classifiers on this
dataset are considerably worse than those reported in the literature (e.g.,
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97.83% accuracy in [47]). This is a consequence of the very simple features
considered here, our purpose being only to validate the iHMM algorithm and
a comparison with its precise counterpart.

(a) Walk (b) Jumping Jack (c) Run

Figure 5: Three frames from sequences depicting human actions in the Weizmann dataset.9

Descriptor

Determinacy 77.5% (4.6%) (62/80)
Average output size 2.4 (out of 10)

Single accuracy (= precise single accuracy) 35.5% (6.0%) (22/62)
Set accuracy 44.4% (11.4%) (8/18)
Discounted accuracy 32.1%
Utility-based accuracy u.65 33.5%
Utility-based accuracy u.80 35.0%

Accuracy precise counterpart 31.3% (5.2%) (25/80)
Precise single accuracy 35.5% (6.0%) (22/62)
Precise set accuracy 16.7% (8.5%) (3/18)

Table 3: Performance of the data likelihood credal classifier on the Weizmann action
recognition dataset. Standard deviations (third column) and counts (fourth column) are
also reported.

8.4. Prediction: Text Completion

We take on the task of predicting the next letter in a sentence formed by
the name of a movie. Our application regards smart TVs, where the user

9http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z <>

A B E D E F G H I

J A L M N O P Q R

S T Y V W X Y Z <>

Figure 6: Example of a keyboard on the left with the cursor positioned at the letter L,
where the user has, for example, typed “THE<>BIG<>”. After clicking OK (on the right
side), up to four suggestions appear around L. In this case, three suggestions are given. If
suggestions are all wrong and the user wants to move in the direction of a suggestion in
order to reach the desired letter, they spend an extra remote control click to move to the
suggestion and then back to the keyboard.

has limited controlling options and wants to search for a movie to watch
using only the remote control. We assume the following scenario, inspired by
current implementations available in smart TVs: The user is presented with
a search box and a virtual keyboard, which for simplification we assume
to be composed of 26 letters plus the character Space denoted by <> (see
Figure 6). In order to type a movie name, the user has four arrows to move
a cursor over the keyboard letters orthogonally and an OK button to select
a letter. Usually this is a tedious process, but most smart TVs have the
option of enabling next-letter suggestions to the user. These suggestions
(up to four of them) are shown around the last chosen letter in the four
orthogonal neighbors. The drawback of such suggestions is that, in case they
do not contain the desired letter and the desired letter is in the direction of a
suggestion, the user loses one click in order to reach the actual desired letter
(they need to move to the suggestion, and then move to the keyboard again in
that direction, losing one click). We consider the problem of providing such
suggestions to the user in order to minimize the loss of (undesired) clicks
(note that the user only loses time if the desired letter is in the direction
of a suggestion). We assume that at least one and at most four suggestions
can be returned, following the layout of the graphical interface (to simplify
matters, we assume the loss to be uniform over the four possible directions).

We take as data the whole list of movie names from the Internet Movie
Database (http://www.imdb.com) and consider movie names containing let-
ters and spaces only. This amounts to slightly more than 200 thousand
names. For each name, we apply a perturbation algorithm to mimic the user
input. This algorithm takes each word of a movie name and with probability
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one third it either applies the corruption of one letter using one of its neighbor
letters in the keyboard (to simulate a mistype, see Figure 6 for the layout)
or the public map of misspelled words from Wikipedia’s list of common mis-
spellings10 (to account for spelling errors from the user). Hence, state and
manifest variables are very related, but are not exactly equal. Given the
manifest variables from the past, we want to predict the state variable (that
is, the next letter).

Using half of the complete data instances (each letter of a movie name is
associated with a state variable, while each letter in the corresponding cor-
rupted name is associated to a manifest one), we learn an iHMM without the
assumption of stationarity, so letters appearing in position i and their prede-
cessors in position i−1 are used only to learn the corresponding distribution
of the state variable in time i given the state variable of time i−1. The same
non-stationarity is used for manifest variables, so the corresponding pairs of
state and manifest variable distributions are learned from data using only the
data of that position in the movie names. The reason for non-stationarity is
that the relations between letters in different positions of the movie names
are different, as movie names have some patterns themselves (for instance,
the article THE appears often in the beginning of movies). The other half
of the data instances is used for testing the accuracy of our model. The
accuracy is computed based on the advantage of the suggestions in terms
of number of necessarily remote control clicks. To simplify calculations, we
assume that we lose K/4 points if the correct letter is not among the K
suggested letters (so suggesting more letters incur more loss but increases
the chance of correctly identifying the next letter). The reasoning is that on
average we lose K/4 clicks by presenting K suggestions, because to move in
directions without a suggestion we do not lose clicks.

In order to obtain the desired predictions with the iHMM, we apply the
algorithm for filtering as explained in Section 6 (to use the algorithm to pre-
dict QT+1 instead of QT we set P(OT+1|QT+1) as a single uniform distribution
for every value of QT+1, as described in the last paragraph of that section).
The iHMM uses the set of non-dominated predictions (as explained before)
as the suggestions to the user, and we report results with s = 2 and s = 27
(the number of letters in our alphabet). As comparison, we use the precise
HMM, where the options are sorted by their posterior probability and the

10http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings
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best four options are returned (four suggestions is the standard approach
currently used in the smart TVs with which we have experimented). As we
see in Table 4, the iHMM obtains a better loss than the HMM by selecting
the appropriate number of suggestions to output to the user. We focused
on initial letters (as they are arguably the most important for the prediction
and some specific values of s).

Descriptor s = 2 s = 27

Letter position T 2 3 4 2 3 4
Determinacy 99.8% 96.0% 98.6% 85.3% 56.4% 55.0%
Average K 4.0 2.6 2.3 2.7 3.2 3.5

HMM Loss 16,502.5 31,992.5 29,190.0 17,210.0 31,232.5 29,629.5
iHMM Loss 12,035.0 14,487.5 13,382.5 13,155.0 23,737.5 24,327.5

Table 4: Losses of HMM and iHMM to suggest the next letter in the smart TV example
over 100 thousand test instances. Different letter positions in the movie name and values
of s are used. Determinacy indicates the percentage of cases where a single suggestion was
given. Average K is the average number of suggestions that were given by iHMM. The
losses account by how many clicks were lost with each method, so smaller the better.

A sensitivity analysis of the difference between the two losses with respect
to s is in Figure 7. Notably the HMM losses are always greater than the
iHMM ones (i.e., their difference is positive). As soon as s increases, the
difference decreases for the letter position T equal to 3 or 4, being almost
stable for T = 2. An explanation is the stronger effect of s on the determinacy
for T > 2 compared to the case T = 2 (see Table 4).

We also investigate the sensitivity of the difference between the losses
with respect to the size of the training set (see Figure 8). For s = 2 (plot
on the left), the difference increases for larger training sets, i.e., the iHMM
takes more advantage from the higher availability of training data than the
HMM does. This is less noticeable for T = 2. As in the previous case we
relate this to the higher determinacy level for this position. For s = 27 (plot
on the right), the behaviour is not monotone. A deeper analysis reveals that
the iHMM starts to benefit of the higher data availability only with large
(say > 25000) data sets, having an almost constant loss with fewer data.
This is not the case of the HMM, which constantly reduces its losses with
increasing amounts of data. An explanation is that, with few learning data,
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Figure 7: Difference between HMM and iHMM losses for different values of s.

IDM-based credal sets with s = 27 might be very large, thus producing the
same inferences even if new data are available.
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Figure 8: Difference between HMM and iHMM losses for different training set sizes and
two values of s.

We emphasize however that our goal in this section is only to illustrate
a scenario where iHMM might be useful, and not to defend it as a gen-
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eral better predictor than the HMMs for this problem. For reaching the
latter conclusion, we should extend the analysis to multiple data sets and
experiment with a rejection rule for the HMM (that is, a threshold for the
probability values for which only suggestions achieving higher probability are
displayed). Given our goal in this work of introducing iHMM and presenting
its capabilities, we leave a more detailed empirical study for the future.

8.5. Most Likely Sequence: Part-of-Speech Tagging

We evaluated the ability of iHMMs to discriminate between reliable and
non reliable state sequences by comparing joint maximin and maximax state
sequences in a part-of-speech (PoS) tagging task [2].

We performed experiments with reduced versions of two common data
sets used for PoS that are freely available on the nltk package distribution.11

The reduced versions of the Brown and Penn data sets contain, respectively,
38 and 31 distinct syntactic tags and about 5500 and 3500 distinct words,
and allowed us to exploit the performance of HMMs with small training
samples, where the impact of single probability distributions learned from
data is greater. The interval-based credal sets were learned using local IDMs
(with hyperparameter s = 1). Tags not occurring in the training data were
omitted from the model (instead of having vacuous credal sets). Words ap-
pearing less than 4 times in the training data were collapsed into a single
term and used for estimating the probability (or probability interval) of un-
seen words during classification. Coherently, the precise HMMs were learned
with maximum likelihood smoothed by Perks’ priors (with s = 1), and the
same preprocessing steps. In order to assess the difficulty of the task we also
performed tests with a simple unigram tagger. Figure 9 reports the results
of numerical simulations for 5-fold cross validation and increasing size of the
training set for the two data sets.

We evaluated the ability of discriminating reliable and non-reliable tag-
gings by comparing the average accuracy of the predictions (PoS tags) of
the precise HMM in the full test set and in two partitions of test set. The
first, denominated match set consisted only of tokens for which the maximin
and maximax criteria provided the same sequence. The second, denominated
mismatch set, consisted of instances where maximin and maximax disagreed.
According to our rationale, the accuracy of the precise should be much greater

11http://www.nltk.org
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Figure 9: Results of the part-of-speech tagging experiments. Left and right plots show
tagging accuracy for different criteria in the Brown and Penn data sets, respectively.

on the match set than on the mismatch set, as the former consisted of reliable
predictions of the precise HMM. The results show that the predictions in the
match set are considerably superior to the predictions in the mismatch set
in both data sets. The rate of agreement, represented in the graph as the
distance between the full set and the match set accuracy, was low in both
data sets, indicating the unreliability of taggings generated by precise HMMs
learned from very few data.

9. Conclusion

Imprecise hidden Markov models (iHMMs) are an extension of standard
HMMs that arguably allows for proper handling of the imprecision in the
parameters that arise in many domains. In this paper, we presented al-
gorithms for standard usage such as computing likelihood, performing fil-
tering/prediction, and finding optimistic and pessimistic most likely state
sequences. When the parameters are specified as interval-valued probabili-
ties, all algorithms run in quadratic time in the number of states and linear
in the number of time steps. Remarkably, this is the same time complexity
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of the analogous algorithms for standard HMMs. When imprecision takes a
more complex form (e.g. as sets of linear inequalities), the time complexity
grows only by the time of solving a small linear program of size linear in the
input.

Experiments with real data showed that iHMMs can be used as “cautious”
classifiers that suspend decision making when there is not enough statistical
evidence to confidently support a decision. In addition, iHMMs can serve as
valuable tools to perform analysis of the sensitivity of precise (non-stationary)
HMMs to variations of the parameters.

The imprecision in the numerical parameters of the model translates to
indeterminacy when using the models to make decisions as in the applications
we show. We have adopted here interval dominance as the base criterion
to suspend judgment. The literature counts with other criteria that are
worth evaluating such as maximality and E-admissibility. Implementing such
criteria will require developing efficient algorithms. We leave that as future
work.
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Appendix A. An Empirical Comparison of State Sequences Se-
lected Using the Joint and Posterior Distributions

As briefly discussed in Section 7, in the imprecise setting, state sequences
provided by the extreme probability distributions in the posterior credal set
Ko1:T
Q1:T

may differ from the sequences provided by the extreme probability
distributions in the joint credal set KQ1:T ,O1:T

, due to the dependence of the
likelihood on the denominator. However, some preliminary empirical results
show that the effect of the likelihood in selecting the state sequence is small,
making joint and posterior state sequences coincide in a great majority of
cases, even under severe lack of data.

To test the divergence between posterior and joint state sequences we
ran the following experiment consisting of several trials. For each trial, a
precise HMM was randomly sampled and used to sample training and test
sets of state and observation sequences. An iHMM was then learned from
the training data and used to provide maximin and maximax sequence for
the test set. The sequences for the posterior credal set were obtained by
enumerating all possible state sequences and using an algorithm similar to
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Figure A.10: Agreement rate of reliability of state sequences between posterior and joint
probability.

the likelihood algorithms to compute lower and upper posterior probabilities,
which limited generated models to small number of states and small length.
For each configuration of N , M and T tested, 30 different model and data
sets were generated.

Figure A.10 shows the agreement between joint and posterior state se-
quences as a function of the learning set size. The numbers in the y-axis
indicate the proportion of cases where joint and posterior agreed about the
reliability of the predictions, that is, where either the joint maximin and
maximax differed and the posterior maximin and maximax also differed or
the joint maximin and the maximax agreed and the posterior maximin and
maximax also agreed. The curves show that joint and posterior sequences
agree, on average, in approximately 99% of the cases.
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