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A LARGEST MATCHING AREA APPROACH TO IMAGE DENOISING
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ABSTRACT
Given the success of patch-based approaches to image denois-

ing, this paper addresses the ill-posed problem of patch size selec-
tion. Large patch sizes improve noise robustness in the presence of
good matches, but can also lead to artefacts in textured regions due
to the rare patch effect; smaller patch sizes reconstruct details more
accurately but risk over-fitting to the noise in uniform regions. We
propose to jointly optimize each matching patch’s identity and size
for grayscale image denoising, and present several implementations.
The new approach effectively selects the largest matching areas, sub-
ject to the constraints of the available data and noise level, to improve
noise robustness. Experiments on standard test images demonstrate
our approach’s ability to improve on fixed-size reconstruction, par-
ticularly at high noise levels, on smoother image regions.

Index Terms— Image denoising, variable patch size, largest
matching area, example-based denoising, internal denoising

1. INTRODUCTION

Approaches to image restoration fall into two main categories: those
that construct a model (e.g., a Sparse Representation (SR) dictio-
nary or a deep neural network (DNN)) from a priori knowledge such
as training data (external denoising), and those that learn the char-
acteristics of the underlying signal from the given data itself (e.g.,
non-local means (NLM) or BM3D) (internal denoising). In [1] it is
shown that small image patches where signal dominates (eg. strong
edges) are more accurately denoised by exploiting clean external
patches. However, uniform regions which are dominated by noise
have a preference for internal patches.

SR assumes that an image can be sparsely represented by a linear
combination of atoms from a dictionary. The problems are then to
learn appropriate dictionaries from training data [2] and to sparsely
reconstruct with respect to a fidelity constraint based on the known
noise level [3–5]. DNNs learn a model of the relation between a
noisy patch and its clean counterpart [6,7]. Internal denoising meth-
ods exploit natural redundancy in images to maintain the clean signal
and attenuate noise. NLM [8–11] reconstructs by a weighted average
of similar patches in a search window. This was further extended in
BM3D [12], which identifies and groups similar patches in 3D arrays
to reduce noise in a collaborative filtering approach.

The choice of patch-size in both categories is ill-posed, as the di-
versity of image content may not be represented well at large sizes,
while small patches risk reconstructing the noise [1]. Therefore, we
propose optimizing the matching patches’ identity and size jointly.
We hope to increase the affect of the clean signal on patch-matching
in uniform regions by including more discriminative data, and im-
prove the reconstructed accuracy of textured regions by finding their
largest similar patches, subject to the constraints of the training data.

To confirm our intuition, we conducted fixed-size example-
based denoising experiments at four noise levels (algorithm and data

will be detailed later). Fig. 1 shows the average PSNR and SSIM of
the reconstructed images as a function of the fixed patch size k. For
each noise level, as k increases, the PSNR and SSIM also increase to
a peak size. Higher noise levels introduce greater ambiguity, rapidly
degrading performance with small patches. Larger patches are more
invariant to noise, but close matches may not exist for very large
patches, decreasing the reconstructed accuracy. Ideally, we would
like to use the largest matching patches at each location, subject to
the constraints of the training dataset and the noise level. We call
the new approach largest matching area (LMA) based denoising.

1.1. Related Work

Internal denoising algorithms use larger patches and search-windows
at higher noise levels [13–16], improving reconstructed quality. Ex-
tensions to the NLM algorithm proposed adaptive spatial support
for superior results, by classifying patches as textured or smooth
by edge-detection and morphological operations [17], or by cluster-
ing the SVD (singular-value decomposition) of the blocks’ gradient
fields [18], allowing spatial adaptation for each block. An adaptive
neighbourhood is selected for each pixel in [19, 20], by iteratively
increasing the search-window and carrying out NLM denoising, un-
til the L2-risk with respect to the search-window size is minimized -
minimizing the variance subject to a fidelity constraint.

In [21] locally varying the NLM filter decay rate to make the
choice of patch-size less critical is suggested, to alleviate the rare
patch effect. The later work in [17] handles these artefacts with lo-
cally adapted patch and search-window sizes. Dabov et al. proposed
shape adaptive patches for use in the BM3D algorithm [22], where a
locally adaptive region of the matching patches is used for filtering,
to maintain structures (eg. edges) and reduce distortion (eg. halo
artefacts). A shape adaptive approach to the NLM algorithm [23]
also produced improved results with reduced artefacts.

In external denoising patch-size optimization remains largely an
open problem. Multi-scale SR [24] used dictionaries at two to three
sizes and showed that large structures can be more accurately coded
by larger atoms, obtaining state-of-the-art results in denoising and
inpainting, especially at high noise levels, learning global from large
databases. DNN based approaches perform well if the sample patch-
size is large enough to contain sufficient information to recover a
noise-free version, requiring a large quantity of training data.

1.2. Contributions

In this paper, we investigate image denoising by optimizing both the
identity and size of matching patches. We introduce a simple, novel
framework for fixed-size example-based denoising, where a noisy
image is reconstructed by selecting the best fixed-size match for each
pixel, in an external gallery of clean images, and averaging these
over-lapping patches. Then, we extend this approach to example-
based LMA denoising, to select the best variable-sized gallery patch.
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Fig. 1: Average reconstructed PSNR and SSIM for 4 test images over
2 datasets at 4 noise levels (solid curves), across fixed-size patches
of (2k + 1)× (2k + 1), and the LMA based results (dotted lines)

In the following, we introduce the LMA algorithm for an
example-based system, giving the detailed maximum a posteriori
(MAP) implementation algorithm. Then, we propose SR and BM3D
extensions incorporating the LMA approach. Experimentally, we
show that the new LMA approach outperforms the fixed patch-size
based approach, and our SR and BM3D extensions produce superior
or competitive results across a range of noise levels.

2. LARGEST MATCHING AREA (LMA) BASED
DENOISING

2.1. Example-based denoising

Before discussing the LMA algorithm for estimating the optimal
matching patches, we briefly describe our approach to example-
based denoising. Assume we have a set of clean training images
(i.e. examples). Given a noisy image, we search for the most likely
fixed-size patches in training (by (1)) and use them for reconstruc-
tion. This is easily extended to the search for variable-sized matches.
We describe the LMA algorithm for this example-based denoising
system before extending the algorithm to other denoising systems,
including SR, which requires dictionary learning for each patch size.

For simplicity, we consider square matching patches. Let y rep-
resent a noisy image with yk,i,j being a square patch centered at
(i, j) with size (2k+1)× (2k+1), where k ≥ 1. Similarly, let xm

represent the mth clean training image and xmk,u,v denote a square
patch in xm centered at (u, v) of the same size. In our example-
based system, the problem of image denoising can be stated as iden-
tifying for each noisy image patch yk,i,j a matching training image
patch xmk,u,v , such that their combination can reconstruct the under-
lying target image. Next, we identify the matching patches yk,i,j
and xmk,u,v by optimizing both the size k and the location of xmk,u,v .

2.2. Example-based LMA - a MAP algorithm

Consider a statistical approach to measure how well a noisy image
patch yk,i,j is matched by a clean training image patch xmk,u,v . As-
sume stationary noise in yk,i,j and assume that the likelihood func-
tion of yk,i,j associated with a matching xmk,u,v can be written as

p(yk,i,j |xmk,u,v) = a exp(−
‖yk,i,j − xmk,u,v‖2

h2
)

= a
∏
n

exp
(
−

(yk,i,j(n)− xmk,u,v(n))2

h2

)
(1)

where yk,i,j(n) denotes the nth pixel in yk,i,j (likewise for
xmk,u,v(n)), and the product is taken over all pixels within the
patches. Like the vectorial NLM likelihood [25], this likelihood

adapts euclidean distance using the parameter h to characterise the
uncertainty caused by noise. a is a normalization constant. To
reduce the uncertainty, at each location (i, j), we aim to find, by
extending k, the largest (and hence most recognizable) noisy patch
yk,i,j with a matching training patch. This can be formulated as a
MAP problem by maximizing the likelihood (1).

Given a noisy image patch yk,i,j , assume an equal prior prob-
ability P for all possible clean image patches xk. We define the
posterior probability of the match of a clean training patch xmk,u,v as

P (xmk,u,v|yk,i,j) =
p(yk,i,j |xmk,u,v)P∑
All xk

p(yk,i,j |xk)P

'
p(yk,i,j |xmk,u,v)∑

m′
∑
u′,v′ p(yk,i,j |xm

′
k,u′,v′) + p(yk,i,j |φk)

(2)

where p(yk,i,j |xmk,u,v) is the likelihood defined in (1). The de-
nominator, the average likelihood of yk,i,j , is approximated by a
sum of two terms. The first is the average likelihood of yk,i,j over
all training patches, assuming that yk,i,j will be matched by at least
one of these training patches. The second term, p(yk,i,j |φk), repre-
sents the average likelihood of yk,i,j when a close match cannot be
found in the training dataset. This can happen, for example, when
yk,i,j is too large. This unseen data likelihood can be suitably rep-
resented using a mixture model. We use the expression

p(yk,i,j |φk) = a
∏
n

[ L−1∑
l=0

P (l) exp
(
− (yk,i,j(n)− l)2

h2

)]
(3)

where L possible values are assumed for each image pixel (L = 256
for grayscale images) and P (l) is a prior probability for the underly-
ing pixel in yk,i,j(n) taking value l. Assuming a uniform P (l), (3)
can effectively model any image patch in yk,i,j by giving a non-zero
likelihood, representing image patches unseen in the training data.

Noisy patches containing unseen images are likely to produce
low Equation (1) likelihoods but not necessarily low Equation (3)
likelihoods. The presence of the unseen-data likelihood (3) helps
to reduce the posterior probability (2) for a mismatch. Conversely,
for the noisy patch yk,i,j with a good match xmk,u,v , the likelihood
p(yk,i,j |xmk,u,v) is greater than p(yk,i,j |φk). This is because

p(yk,i,j |φk)

' a
∏
n

P (xmk,u,v(n)) exp
(
−

(yk,i,j(n)− xmk,u,v(n))2

h2

)
(4)

and this is smaller than (1) as P (xmk,u,v(n)) < 1. In (4), we assume
that the closely matched, and highly likely, training patch dominates
the mixture in (3). Therefore, a good match will dominate (2) and
produce a large posterior probability.

Importantly, we can further show that the posterior probability
increases as the size of the matching patches increases, therefore it
can be used to identify the largest matching patches. To show this,
assume yk,i,j and xmk,u,v are a pair of matching patches in terms
of the greatest likelihood, i.e., p(yk,i,j |xmk,u,v) ≥ p(yk,i,j |xm

′

k,u′,v′)

for any xm
′

k,u′,v′ 6= xmk,u,v , and p(yk,i,j |xmk,u,v) ≥ p(yk,i,j |φk).
Further, assume yη,i,j is a sub-patch in yk,i,j with the same origin
but η ≤ k, and xmη,u,v is a corresponding sub-patch in xmk,u,v . We
can have the following likelihood ratio inequality

p(yk,i,j |xmk,u,v)
p(yk,i,j |xm′

k,u′,v′)
=

p(yη,i,j |xmη,u,v)p(ỹη,i,j |x̃mη,u,v)
p(yη,i,j |xm′

η,u′,v′)p(ỹη,i,j |x̃m
′

η,u′,v′)

≥
p(yη,i,j |xmη,u,v)
p(yη,i,j |xm′

η,u′,v′)
(5)



(a) Noisy (b) SR (c) LMA (d) SR-LMA
Fig. 2: Reconstructed results, from the external approaches, of Barbara and Cameraman, at noise levels σ = 25 and σ = 100 respectively,
over the TD2 dataset. The noisy image is presented in the first column, followed by results from SR, and our LMA and SR-LMA approaches.

where each sub-patch z̃η denotes the complement of the patch zη
against the full patch zk, and the inequality is due to the assump-
tion that ỹη,i,j and x̃mη,u,v match and hence p(ỹη,i,j |x̃mη,u,v) ≥
p(ỹη,i,j |x̃m

′

η,u′,v′). Based on (4), we show a similar inequality con-
cerning the likelihood ratios of the unseen patches. Rewriting (2)
as a function of the appropriate likelihood ratios, and applying the
above inequalities, we can obtain the posterior inequality

P (xmη,u,v|yη,i,j) ≤ P (xmk,u,v|yk,i,j) (6)

i.e., (2) increases along with the matching patch size.
Based on (6), by maximizing the posterior probability at each

location (i, j) we can obtain an estimate of the largest noisy patch
with a matching training patch, i.e.,

xmk,u,v = argmax
η

max
m′,u′,v′

P (xm
′

η,u′,v′ |yη,i,j)

s.t. ∇ηP (xmη,u,v|yη,i,j) ≥ 0 for all η ≤ k (7)

We impose a monotonicity constraint on the posterior to prevent the
selection of partially matching patches. The derivative of the pos-
terior P (xk|yk) with respect to size k can be calculated by using a
regression formula

∇kP (xk|yk) =
∑θ
η=1 η[P (xk+η|yk+η)− P (xk−η|yk−η)]

2
∑θ
η=1 η

2
(8)

In our experiments θ = 2. As indicated, the optimal xmk,u,v is ob-
tained by iteratively finding the most probable fixed-size patch and
increasing the patch size (i.e., k), until the maximum posterior prob-
ability is found, subject to the monotonicity constraint. Obtaining
the matching training patch at each location, we finally estimate the
target image by averaging the overlapping matching patches.

2.3. Extension to other denoising approaches

In order to combine SR’s relative invariance to the training data and
the potential for improved noise robustness of LMA, we investigate
a combined SR-LMA approach. We learn dictionaries at various
patch-sizes from training images. Given a noisy image, we sparsely
reconstruct the target image at each patch size, and select the patch
size with the highest posterior probability, at each location. That is,

in the likelihood function (1) we replace the example patches xmk,u,v
with the sparsely reconstructed patches for yk,i,j .

Next, we consider the use of the LMA approach for internal im-
age denoising. BM3D groups similar patches in a noisy image to
perform 3D collaborative filtering. We suggest the use of the LMA
approach to help identify the similar patches by finding the largest
matching patches at each location. Then we filter using the standard
BM3D algorithm on fixed-size patches at the co-ordinates of the se-
lected patches. We call this combined approach BM3D-LMA.

3. EXPERIMENTAL SETTINGS AND RESULTS

To validate our LMA algorithm we performed tests on four stan-
dard test images - Barbara, Cameraman, Parrots and Boats [26], de-
graded by Gaussian white noise. For external approaches we used
two generic training sets TD1 and TD2 from [26]. Each set contains
five natural images with varying contents. For comparison, we used
the K-SVD Matlab Toolbox provided in [27] to generate SR results
using dictionaries of 256 8 × 8 atoms from each training set. To
implement the SR-LMA approach we learned dictionaries at each
size from 7 × 7 to 21 × 21, and adapted the SR denoising code to
reconstruct with the largest matching sparse reconstructions.

Considering four noise levels, σ = 10, 25, 50, 100, we gener-
ated results for each image over three realisations of the noise. For
the example-based approach described in Section 2.1, as in SR, we
include the weighted noisy image in reconstruction. We tuned the
optimal upper and lower limits of k to be searched. In general,
low search limits give better reconstruction for lower-level noise as
this avoids over-smoothing, while higher-level noise requires higher
search limits to avoid local maxima. In all experiments, h took a
value approximately equalling the noise σ.

Example reconstructions are presented in Fig. 2, with a summary
of the results by averaging over all images and training datasets in
Table. 1. SR-LMA is shown to outperform SR in terms of PSNR and
SSIM in Table. 1. In Fig. 2(d) SR-LMA produces reduced artefacts
and clearer structure (e.g., the tripod). Table. 1 shows that example-
based LMA outperforms SR at high noise levels (e.g., σ = 50, 100),
in which the correlation between neighbouring pixels is heavily al-
tered, requiring larger patches to identify the underlying structure.
The reduced blotchy-artefacts in Fig. 2(c) illustrate that LMA also
outperforms SR-LMA at very high noise (e.g., σ = 100). This sug-



gests that the diversity of image contents, at the large patch-sizes
required to identify the underlying signal, is less well-represented in
the learned dictionaries of 256 atoms than in the example images.
The SR-based Cameraman examples in Fig. 2 introduce blur, while
example-based LMA displays sharp edges. This artefact suggests
LMA’s potential in the application of image deblurring.

LMA performance is dependent on image contents. Fig. 2(c)
shows loss of detail in the Barbara image - the pattern of the scarf
is degraded by noisy artefacts. The absence of similar structures
in training forces small matches, resulting in a noisy reconstruc-
tion. This problem is effectively solved in the SR-LMA approach,
showing improved accuracy over both LMA and the original SR
approaches. Smooth images (e.g., Cameraman) avoid the rare
patch problem and can be more accurately reconstructed on generic
datasets. The added benefit of our example-based approach is that,
as no dictionary learning is needed, targeted training data can be
easily employed to improve performance [28].
Table 1: PSNR and SSIM of reconstructions by LMA, SR-LMA and
SR at four noise levels, averaged over our four test images and two
datasets.
σ LMA SR-LMA SR

PSNR SSIM PSNR SSIM PSNR SSIM
10 32.82 0.9132 33.95 0.9280 33.81 0.9284
25 28.46 0.8295 28.93 0.8382 28.83 0.8345
50 24.83 0.7174 24.76 0.7162 24.30 0.6961
100 20.24 0.5781 20.05 0.5668 19.76 0.5472

Table 2: PSNR and SSIM of reconstructions by BM3D-LMA, NLM
and BM3D at three noise levels, averaged over our three test images
and two datasets.
σ BM3D-LMA NLM BM3D

PSNR SSIM PSNR SSIM PSNR SSIM
10 34.60 0.9370 33.37 0.9074 33.99 0.9370
25 29.90 0.8612 28.85 0.8099 29.72 0.8642
50 25.68 0.7578 24.30 0.7038 26.02 0.7575

To compare internal approaches, we obtained NLM results from
the source code and optimal parameters in [29] and BM3D results
from the C++ implementation in [14], also adapting this code to our
BM3D-LMA approach. We generated results averaged over three
instances of the noise, at three noise levels, σ = 10, 25, 50. Ta-
ble. 2 includes a summary of the results by averaging across all test
data at each noise level and Fig. 3 presents example images. De-
spite the BM3D algorithm approaching the theoretical limits of re-
construction, in terms of PSNR [30, 31], BM3D-LMA achieves mi-
nor improvements at low noise. The reconstructions of Barbara in
Fig. 3 show little visible difference in quality. Small image patches
which are dominated by noise, eg. smooth regions, can be better
reconstructed with internal patches, while patches which are domi-
nated by signal are better reconstructed with clean external data [1].
The LMA approach attempts to find a patch-size which is dominated
by the clean signal for matching. Our extension may be improved
by calculating the similarity criterion in the frequency domain as in
BM3D, or by exploiting variable-sized patches in the filtering step.
However, we deduce that the benefits of the LMA algorithm are more
applicable to the case of external denoising.

Fig. 4 shows the average percentage of patches selected at each
size (k) by LMA reconstruction of our test images over TD2, at four
noise levels. The preference for larger patch-sizes at high noise lev-
els is clear, but at each level the selected patch-sizes vary. Eg., at
σ = 50 we can see two peaks where structured areas with no large
matches in the dataset are reconstructed with small patches, while

(a) BM3D (b) BM3D-LMA
Fig. 3: Reconstructions of Barbara, at noise level σ = 25
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Fig. 4: Average percentage of patches selected at each size by LMA
reconstruction on the TD2 dataset over four images
smooth regions can be accurately reconstructed with large patches.
The patch-sizes are not focused on the optimum fixed patch-size in
Fig. 1, but vary across locations, allowing for textured and smooth
regions to be denoised appropriately. To illustrate this, Fig. 5 shows
the patch sizes selected at each location in an example image. In
Fig. 1, alongside the fixed-size results we include the LMA based
results, indicating the LMA capability of automatically adapting to
different noise conditions. At σ = 100, very large fixed-size patches
are shown to achieve slightly higher PSNR, suggesting that the high
ambiguity is directing the LMA approach to local maxima in smooth
regions. However, the higher SSIM, a more accurate measure of vi-
sual quality, indicates that fine details are still better maintained by
the LMA approach. LMA’s exhaustive search-based reconstruction
at σ = 100 (where large patches are preferred) of a test image of
256×256 pixels over a dataset of 5 images (varying from 512×512
to 1024× 1024 pixels) takes approximately 24 hours.

4. CONCLUSIONS

We have presented a method for jointly optimizing the patch size
and location for improved noise robustness in image denoising. With
generic datasets and single noisy inputs as training, we showed some
performance improvements in our extensions to existing methods.
Using largest matching areas makes the method more dependent on
the training data. Our example-based approach improved on SR at
higher noise levels, particularly in smoother regions, with generic
datasets. Our internal denoising extension produced competitive re-
sults, to which we have suggested improvements, but the algorithm
is more suited to external denoising. Results suggest potential of our
example-based LMA approach for image deblurring.

Fig. 5: Patch-sizes selected for each pixel in the cameraman image
reconstructed at σ = 25. Dark pixels indicate small patches, and
brighter pixels larger patches (Left). The clean image (Right).
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