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Abstract—This paper investigates the potential improvement 
in signal reliability for outdoor short-range off-body 
communications channels at 868 MHz using the macro-diversity 
offered by multiple co-located base stations. In this study, ten 
identical hypothetical base stations were positioned equidistantly 
around the perimeter of a rectangle of length 6.67 m and width 
3.3 m. A body worn node was placed on the central chest region 
of an adult male. Five scenarios, each considering different user 
trajectories, were then analyzed to test the efficacy of using 
macro-diversity when the desired link is subject to shadowing 
caused by the human body. A number of selection combining 
based macro-diversity configurations consisting of four and then 
ten base stations were considered. It was found that using a 
macro-diversity system consisting of four base stations (or 
equivalently signal branches), a maximum diversity gain of 
22.5 dB could be obtained while implementing a 10-base station 
setup this figure could be improved to 25.2 dB.  

Index Terms—shadowed fading, off-body communications, 

macro-diversity, diversity gain. 

I.  INTRODUCTION 

In body-centric communications, wireless devices 

positioned in or on the human body typically communicate 

with nodes located on the same body or situated in the local 

surroundings. Over short distances of a few to tens of 

wavelengths, the signal propagation in body centric 

communications channels is generally characterized by three 

factors, which are path loss, small-scale fading (multipath) and 

body-shadowing. The path loss generally depends on the 

distance between transmitter and receiver. The multipath, 

caused by the reflections and scattering from nearby objects 

and from the human body [1], can cause rapid variability of 

amplitude of the received signal when the human moves over a 

distance in the order of a wavelength or more. Body-

shadowing is caused when the direct signal path is obscured by 

the body itself and surrounding people. All of these factors can 

act to degrade the overall performance of body centric 

communications systems [2]. 

 A number of diversity techniques are generally employed 

in wireless communications to help overcome these deleterious 

effects [3]. These include schemes based on space, time, 

frequency and polarization diversity. All of these diversity 

techniques can provide improved signal reliability if the 

diversity branches are uncorrelated and subject to received 

signals with comparable mean levels [4]. Space diversity, 

which is based on multiple, spatially separated, antennas at the 

receiver, is the most commonly used compared to other 

diversity techniques due to its power- and bandwidth-

efficiency [5]. It can be categorized into micro- and 

marco-diversity according to the allocation of the antennas. In 

micro-diversity, the distance between receive antennas at a 

single base station is typically in the order of or shorter than 

the wavelength (λ). Micro-diversity is a well-known method to 

combat the impact of multipath. On the other hand, in macro-

diversity based systems, the separation distance between 

receive antenna elements is much longer than a wavelength 

and they will often reside in different spatially separated base 

stations. Macro-diversity is generally employed to mitigate the 

effects of shadowing. 

There has been much research on diversity techniques for 

off-body [6-8] communications to improve signal reliability at 

the receiver. In [6], for enhanced ultra wideband (UWB) 

indoor off-body communications in the frequency range 2.2-

11 GHz, it was found out that higher diversity gains were 

obtained for non-line-of-sight (NLOS) scenarios compared to 

line-of-sight (LOS) scenarios due to highly uncorrelated 

branch signals and low power imbalance. In [7], the influence 

of pedestrian effects on off-body communications channels in 

an indoor populated environment at 5.8 GHz, which may 

induce temporal fading and cause body shadowing, was 

mitigated using two identical receive antennas separated by 

5λ/4. In [8], a hypothetical base station featuring four identical 

antennas, which were aligned along a straight line with an 

equal spacing of half-wavelength, was utilized in an indoor 

environment at 5.8 GHz. It was found that all three combining 

schemes (selection combining, equal gain combining and 

maximal ratio combining) achieved a worthwhile signal 

improvement in the majority of the scenarios for indoor off-

body communications. 

What is common amongst all of the previously mentioned 

studies is that they have considered micro-diversity systems 

positioned either on the human body or at base station. 

However, the use of micro-diversity may not be sufficient to 

overcome channel impairments particularly when shadowing 

due to the human body is the prevalent factor. To mitigate 

against the deleterious effects of human body shadowing in 

off-body communications at 868 MHz, six hypothetical 

receiver branches were distributed across the front and back 

torso of the human body [9]. By comparing the diversity gain 

between two-branch and six-branch systems, the benefit of 
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having more than two branches in off-body systems was 

demonstrated. Nonetheless, there are many drawbacks to 

building diversity systems designed to be worn on the human 

body. Especially when compared to integrating the technology 

into a local base station or using combining opportunities 

offered by multiple base stations. These include potential 

obtrusion to the user, the additional weight of body worn 

receiver branches, associated circuity and enclosures and also 

the extra drain on battery life. 

To the best of our knowledge, the issue of macro-diversity 

used to overcome shadowing for off-body communications 

channels has not yet been published in the open literature. 

Therefore, in this paper, we investigate the potential 

improvement that may be obtained using the combined signal 

forwarded from several multiple spatially distributed base 

stations operating at 868 MHz. 

II. MEASUREMENT SET-UP, EXPERIMENTS AND DATA 

ANALYSIS 

A. Measurement Set-Up and Experiments  

The body worn node used in this study consisted of a 

CC1110F32 RF transceiver, manufactured by Texas 

Instruments (TI) which was configured to transmit a 9 byte 

data packet at 0 dBm every 20 ms using minimum-shift keying 

and a data rate of 500 kbaud. The unit operated at 868 MHz 

using a printed meander-line monopole antenna. The node was 

mounted parallel to the central chest region of an adult male of 

height 1.70 m and mass 75 kg. The test subject wore a sports 

T-shirt (86% polyester / 14% elastane) with a special holding 

pocket purposely sown on to the garment at the central chest 

region. 

 The hypothetical base station array consisted of 10 

identical equally spaced base stations which were positioned in 

a rectangular configuration with a length of 6.67 m and a width 

of 3.3 m as shown in Figs. 1 and 2. The purposely developed 

base station units also consisted of a CC1110F32 RF 

transceiver configured to record the received signal strength of 

each received packet. The antenna used by base station nodes 

was +6.0 dBi omnidirectional monopole antenna which was 

positioned at a height of 1 m from ground level using a non-

conductive support.  

All of the experiments conducted in this study were carried 

out in an outdoor playing field at the Ormeau Park within the 

city of Belfast in the United Kingdom as shown in Fig 1. Five 

individual measurement scenarios all based around a walking 

test subject were considered as shown in Fig 2. These 

scenarios can be broadly categorized into the movement which 

the walk path followed. These included a rectangular shape 

(scenarios 1 and 2), a diagonal-line walk path (scenario 3) and 

a meandering walk path (scenarios 4 and 5). 

B. Data Analysis 

In this paper, a selection combining (SC) scheme was used 

with the hypothetical macro-diversity system to combine the 

signal waveform forwarded from each of the chosen base 

stations in post processing. This straightforward combining 

technique allowed the macro-diversity system to switch to the 

base station with the highest signal level. Thus for the macro-

diversity systems considered here, which consisted of M base 

stations, the SC output level R was 

 

                    
1 2

max( , , , )
SC M

R r r r= …                        (1) 

where 
M

r  is the signal level observed in the 
th

M  base station. 

For a diversity scheme to be effective, each base station should 

receive statistically independent versions of the transmitted 

signal reducing the likelihood that all base stations are 

experiencing correlated fading. Two signals are said to be 

suitably de-correlated if their cross-correlation coefficient is 

less than 0.7 [10]. The performance of the macro-diversity 

system was evaluated in terms of its macro-diversity gain, 

which is defined as the difference in the received signal level 

of the target base station (which for this study was base station 

5, Fig. 2) and that of the selection combined signal for a given 

probability of signal reliability. All diversity gain calculations 

in this paper were made at a signal reliability of 90%. Please 

note that we consider three different potential groupings of 

base stations. These were: group 1 – all ten base stations; 

group 2 – a four base station configuration consisting of base 

stations 1, 4, 6 and 9; group 3 – another four base station 

configuration consisting of base stations 3, 5, 8 and 10. 

 

 

Fig. 1 Experimental environment: Outdoor playing field at the Ormeau Park. 

 

 

Fig. 2 Five individual measurement scenarios considered in this study. It 

should be noted that the red dotted line represents the user’s walk path and the 

target base station was yellow-highlighted. 



III. RESULTS 

Fig. 3 shows the cumulative distribution function (CDF) 

for all the cross-correlation coefficients calculated for all 

scenarios. As shown in Fig. 3, the majority of the estimated 

cross-correlation coefficients were between -0.7 and 0.7. This 

suggests that a macro-diversity receiver equipped with 

multiple base stations should provide sufficient dissemination 

of the transmitted signal to supply worthwhile diversity. 

 

Fig. 3 CDFs of cross-correlation coefficients calculated for all scenarios 

 

A. Scenarios 1 and 2 – Movement along Rectangular Paths 

In scenarios 1 and 2, the test subject walked along 

rectangular paths of differing size (Fig. 2). The state of the 

direct signal path between the body worn node and each base 

station alternated between LOS and NLOS while the test 

subject was walking. For example, Fig. 4 shows the raw 

received signal power time series for base stations 1, 4, 6 and 9 

(group 2) and the selection combined received signal power 

time series for scenario 1. As we can see, there were several 

changes between LOS and NLOS at each base station 

highlighting the variable shadowing conditions experienced in 

this scenario. Accordingly, the macro-diversity system 

switched to the base station with the highest signal level. For 

example, when test subject began to walk along path AB, base 

stations 1 and 9 were closest and in LOS. However at around 4 

seconds, the test subject’s body begins to obscure the direct 

signal path to base station 9. This effect can be observed in 

Fig. 3 where the selection combined signal can be seen to track 

the output of base station 9 for the first 4 seconds at which 

point the combiner switches to the output of base station 1. 

When the test subject turned to walk along path BC, both of 

these base stations became shadowed and the macro-diversity 

system switched between base stations 4 and 6. Similarly, the 

macro-diversity system alternated between base stations 6 and 

9 along path CD and then switched to base station 9 along path 

DA. That is, the different base stations with the highest (non-

shadowed) received signal power were selected (base stations 

9 → 1 → 6 → 4 → 6 → 9 → 6 → 9).  

Fig. 5 shows the raw received signal power time series for 

base stations 1, 4, 6 and 9 and the diversity combined received 

signal power time series for scenario 2. Here the test subject 

followed the small rectangular walk path, the number of 

changes between LOS and NLOS at each base station was less 

than that for scenario 1. This led the macro-diversity system 

for scenario 2 to switch between the base stations less 

frequently compared to that for scenario 1 (base stations 1 → 4 

→ 6 → 9). It can be seen quite clearly that for this scenario, 

using a macro-diversity system consisting of base stations 1, 4, 

6 and 9, a significant improvement in signal reliability could 

be achieved  in which all signal drops below the –71 dBm level 

are eradicated.  

 

 

Fig. 4 Received signal power at base stations 1, 4, 6 and 9 alongside the 

diversity combined received signal power for scenario 1. 

 

 

Fig. 5 Received signal power at base stations 1, 4, 6 and 9 alongside the 

diversity combined received signal power for scenario 2. 

 

Table I shows the estimated diversity gain values for each 

of the three combining macro-diversity system groupings at 

90% signal reliability for scenarios 1 and 2. As mentioned 

above, the link between the body worn node and base station 5 

was considered as the target (i.e. the reference link). As 

expected, group 1 which featured 10 base stations provided the 

highest overall diversity gains. The diversity gain in scenario 1 



where test subject followed the large rectangular walk path 

was higher compared to that for scenario 2. This was most 

likely due to fact that in scenario 1 the test subject moved 

across the border between base stations more frequently 

compared to scenario 2, meaning that the system benefited 

more from the macro-diversity because of the increased 

number of shadowing events. 

TABLE I.  DIVERSITY GAIN FOR ALL MEASUREMENT SCENARIOS 

Scenario 
Diversity Gain (dB) 

Group 1 Group 2 Group 3 

1 17.0 14.6 14.0 

2 9.6 7.3 8.2 

3 18.0 15.5 16.5 

4 25.2 21.5 22.5 

5 23.6 19.9 20.9 

 

B. Scenario 3 – Movement along Diagonal Path 

In scenario 3, the test subject started at point A, moved 

towards and then away from point B, following a diagonal-line 

between base stations 4 and 9. For group 3, at the beginning of 

this scenario, the direct signal path to base stations 3 and 5 

were largely in LOS and thus the macro-diversity system 

selected either base station 3 or 5 (Fig. 6). However, when the 

test subject walked away from point B, these base stations 

became shadowed and the system switched between base 

stations 8 and 10.  

The benefits of using a macro-diversity system for this type 

of scenario are again demonstrated in Fig. 6 where the all 

signal drops below –72 dBm are removed. Fig. 7 shows the 

CDF for scenario 3 with the output of the three macro-diversity 

system groupings alongside the CDF of the link with target 

base station. Here, two other groupings of base stations were 

also considered for the further comparison. These were: group 

4 – a two base station configuration consisting of base stations 

4 and 9; group 5 – another two base stations configuration 

consisting of base stations 5 and 10. It can be seen that using 

the macro-diversity configurations provided diversity gains of 

18.0, 15.5, 16.5, 11.5 and 12.11 dB for the group 1, group 2, 

group 3, group 4 and group 5 respectively.  

C. Scenarios 4 and 5 – Movement along Meandering Path 

In scenarios 4 and 5, the test subject walked along different 

meandering trajectories. As shown in Fig. 2, the difference 

between scenarios 4 and 5 is the point where the test subject 

changed walking direction. Figures 8 and 9 show the raw 

received signal power time series for base stations 3, 5, 8 and 

10 (group 3) and the diversity combined received signal power 

time series for scenarios 4 and 5, respectively. For scenario 4, 

when the test subject began to walk towards point B, the 

macro-diversity system selected base station 5 due to the short 

distance between this base station and the body worn node. 

However, at around 1.6 seconds, base station 5 became 

shadowed by the test subject’s body and the macro-diversity 

system switched to base stations 3 and 8. Similarly, the chosen  

 

Fig. 6 Received signal power at base stations 3, 5, 8 and 10 alongside the 

diversity combined received signal power for scenario 3 
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Fig. 7 Empirical CDFs for base station 5 (target base station) and the output 

of the selection combiner using the five different macro-diversity system 

groupings for scenario 3. 

 

base station changed as the test subject walked on other paths, 

namely base stations 5 → 3 → 8 → 3 → 8 → 10 → 8 → 10 

(Fig. 8). In scenario 5, the test subject changed walking 

direction more often than during scenario 4. Therefore, as 

shown in Fig. 9, there were more variations in the received 

signal at each base station causing the system to switch 

between base stations 5 → 3 → 5 → 3 → 8 → 10 → 8 → 10 

as the test subject walked along meandering walking path AH. 

Table I also shows the diversity gain statistics for each of 

the three macro-diversity system groupings at 90% signal 

reliability for scenarios 4 and 5. Again, group 1 which featured 

10 base stations achieved the highest overall diversity gains. 

Interestingly, the diversity gain obtained in scenario 5 was 

smaller compared to that for scenario 4 although the test 

subject in scenario 5 changed walking direction more often 

compared to scenario 4. This was most likely due to fact that 

the test subject did not move across the border between base 

stations on path FG and GH. Moreover, for scenario 5, the 

received signal level at base station 5 (target base station) was 

slightly greater than that for scenario 4 (0.8 dB at 90% signal 

reliability, Fig. 10). This is because the state of signal path 



between the body worn node and base station 5 for scenario 5 

was in LOS for a greater length of time than for scenario 4. 

IV. CONCLUSION  

The potential improvement in signal reliability for outdoor 

short-range off-body communications at 868 MHz using 

macro-diversity provided by multiple base stations has been 

investigated. A simple SC scheme was utilized with three 

macro-diversity system groupings. It was found that a 

substantial improvement in signal reliability could be achieved 

for all of the scenarios considered in this study. Furthermore, it 

is also worth noting that opting for macro-diversity 

configurations consisting of more than four base stations may 

not yield significantly superior results. The largest difference 

in diversity gain between the four and ten base station 

groupings analyzed here was found to be just 3.8 dB. This 

figure may not be enough to justify the complexity and 

overheads associated with the operation of a ten base station 

macro-diversity configuration. Nonetheless, these 

improvements will undoubtedly help to mitigate the 

deleterious effects of human body shadowing in off-body 

communications systems operating in outdoor environments. 

From a systems perspective, a simple SC scheme is 

unlikely to be chosen. This is because it is required to estimate 

the signal to noise ratio (SNR) of all paths simultaneously. In 

practice, SC is often implemented as switching diversity by 

comparing the SNR of the paths with a fixed threshold. This 

can reduce the complexity of the receiver because it switches 

from one branch to another only when needed [11]. Therefore 

for the future work, it is worth investigating the performance 

of switching diversity with switch-and-stay or switch-and-

examine schemes. 
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Fig. 8 Received signal power at base stations 3, 5, 8 and 10 alongside the 

diversity combined received signal power for scenario 4. 

 
Fig. 9 Received signal power at base stations 3, 5, 8 and 10 alongside the 

diversity combined received signal power for scenario 5. 

 

 
Fig. 10 CDFs for base stations 5 (target base station) during scenarios 4 and 5. 


