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ABSTRACT: The genetic structure of Atlantic herring Clupea harengus was investigated in 25 

its north-easterly distribution at the Norwegian Sea and adjacent waters, using 23 neutral and 26 

one non-neutral (Cpa111) microsatellite loci. Fish from the two main suspected populations, 27 

the Norwegian spring-spawning herring (NSSH) and the Icelandic summer-spawning herring 28 

(ISSH), were collected at spawning locations/seasons from 2009 to 2012. Samples were also 29 

collected from Norwegian autumn spawning locations and from different local Norwegian 30 

fjords such as inner part of Trondheimsfjorden, Lindås pollene, Landvikvannet and 31 

Lusterfjorden, as well as from suspected Faroese spawning components. The observed level 32 

of genetic differentiation was significant but low (FST = 0.007) and mostly attributable to the 33 

differentiation of the local Norwegian fjord populations. The locus Cpa111, which was 34 

detected to putatively be under positive selection, exhibited the highest FST value, (FST = 35 

0.044). The observed genetic patterns were robust to exclusion of this locus. Landvikvannet 36 

herring was also genetically distinguishable from the three other fjord populations. In 37 

addition, the present study does not support genetic structuring among the Icelandic summer-38 

spawning herring and the Norwegian spring-spawning herring. 39 

 40 

 41 

KEY WORDS: Atlantic herring, Norwegian Sea, Norwegian fjords, microsatellite loci, 42 

adaptation, gene flow. 43 

44 
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INTRODUCTION 45 

Several approaches have been used to understand the population structuring of marine 46 

taxa from life-history (Einarsson 1951, Ricklefs & Wikelski 2002, Arai et al. 2006, Curtis & 47 

Vincent 2006, Clarke et al. 2007, ,Silva et al. 2013) and tracking studies (Fridriksson & Aasen 48 

1950, Fritsch et al. 2007, Wood et al. 2007, Donaldson et al. 2008, Tamdrari et al. 2012a, 49 

Tamdrari et al. 2012b, Thorsteinsson et al. 2012, Whitlock et al. 2012), to population 50 

dynamics (Amilhat & Lorenzen 2005, Syrjänen et al. 2008, Jung et al. 2012, Pampoulie et al. 51 

2012). However, in the last 20 years one of the most common approaches employed to 52 

understand population structuring has been the indirect estimation of gene flow and migration 53 

rates as inferred from genetic markers (Carvalho & Hauser 1994, Hauser & Carvalho 2008, 54 

Reiss et al. 2009). In the marine environment, neutral genetic markers such as microsatellite 55 

loci have been extremely useful to complement other means of inferring population 56 

differentiation such as life-history studies (Smith et al. 2002, Conover et al. 2006; Higgins et 57 

al. 2010), as well as to understand the complex population dynamics of several marine species 58 

(Ruzzante et al. 2006, Bradbury et al. 2010, Pampoulie et al. 2012). Yet, such information are 59 

prerequisites for devising sustainable management and conservation measures for exploited 60 

species (Hutchinson 2008). Moreover, the discovery of microsatellite loci showing signatures 61 

of selection (e.g. Nielsen et al. 2006) has changed our perception about genetic structuring of 62 

marine populations. The combined use of neutral and non-neutral loci has potential to yield 63 

deeper insights into patterns and degree of genetic structuring of populations (e.g. Beaumont 64 

2005, Conover et al. 2006, Cano et al. 2008, Gaggiotti et al. 2009), and introduces an 65 

ecological-time scale approach more suitable to conservation and management practices 66 

(Hauser & Carvalho 2008). 67 

The Atlantic herring Clupea harengus is a typical marine pelagic species which exhibits 68 

spatio-temporally separate spawning aggregations across the North Atlantic and the Baltic 69 
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Sea. These discrete stocks also exhibit large distance migration from their spawning-areas to 70 

common feeding grounds (Dragesund et al. 1997, McQuinn 1997, Óskarsson et al. 2009) 71 

where mixed fisheries occur. Atlantic herring has, indeed, a long history of fishing and has 72 

been a commercially important species over nearly two centuries (Smylie 2004). It occurs on 73 

both side of the North Atlantic and has exhibited considerable fluctuations in stock size and 74 

spatial distribution in the last hundred years, marked by drastic concurrent collapses in several 75 

stocks in the 1960’s (Jakobsson 1980, Toresen & Østvedt 2000, Overholtz 2002, Dickey-76 

Collas et al. 2010). Contrary to the Atlantic cod and other marine resources, most of the 77 

herring stocks recovered from collapses over periods of varying length, and are today subject 78 

to intense fishing pressure. Today, the largest Atlantic herring stock is the Norwegian spring-79 

spawning herring (NSSH), which is distributed from the southern part of Norway to the 80 

Barents Sea and from the Norwegian Sea to the Northeast coast of Iceland. Prior to the 81 

collapse of NSSH in the late 1960s, a part of this stock spawned on the banks east of the 82 

Faroe Islands, fed over a wide area in the NE-Atlantic and had wintering grounds off the east 83 

coast of Iceland (Jakobsson 1980, Dragesund et al. 1997), therefore mixing with the Icelandic 84 

summer-spawning herring (ISSH) and Icelandic spring-spawning herring (ISPH), the latter 85 

which has not recovered from it’s collapse in the late 1960s (Jakobsson 1980). After the 86 

collapse of NSSH, the stock was primarily confined to the coastal areas along the western 87 

coast of Norway (Dragesund et al. 1997). Since the 1970s, the stock has slowly recovered 88 

with a maximum level in 2010 of around 10 million tons (ICES 2012) and again feeding in 89 

the open ocean between Norway, Faroe Islands and Iceland (Fig. 1). Three different 90 

management units are currently considered for stock assessment in the Norwegian Sea and 91 

adjacent waters: the Norwegian spring-spawning herring (NSSH), the Icelandic summer-92 

spawning herring (ISSH) and the North Sea autumn spawning herring (NSAH). In addition, 93 

the occurrence of Norwegian local spring-spawning herring (NLSSH) (Johannessen et al. 94 
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2009, Silva et al. 2013) mainly spawning in local fjords and of a Norwegian autumn-95 

spawning (NASH) herring has been mentioned (Husebo et al. 2005). Moreover, the presence 96 

of a spring-spawning herring (FSSH) and an autumn-spawning (FASH) herring have been 97 

suggested in Faroese waters. So far, the discrimination of these stocks is primarily based on 98 

spawning time and location. 99 

The genetic structure of the Atlantic herring has received considerable attention in recent 100 

years, as the species has been shown to exhibit a complex population dynamics and life-101 

history variations within the management units (Husebo et al. 2005), as well as a relatively 102 

low level of differentiation among isolated local populations overlapping geographically 103 

during feeding migrations (Bekkevold et al. 2005, Jørgensen et al. 2005, Mariani et al. 2005, 104 

Ruzzante et al. 2006, Gaggiotti et al. 2009, André et al. 2011, Lamichhaney et al. 2012, 105 

Corander et al. 2013, Teacher et al. 2013). However, most of these studies performed to 106 

genetically discriminate stocks and assess their contribution to mixed fisheries have been 107 

focusing on the southern distribution of the Atlantic herring. 108 

The conservation and sustainable exploitation of the herring stocks in the Norwegian Sea and 109 

adjacent waters crucially depends on our understanding of genetic structuring and interactions 110 

of the potentially distinct populations in this area. Until now, the genetic differentiation 111 

among NSSH and ISSH management units and/or subpopulations has never been 112 

investigated, even with already available microsatellite loci (O'Connel et al. 1998, McPherson 113 

et al. 2001, Miller et al. 2001, Olsen et al. 2002, Libungan et al. 2012). Hence, it is not 114 

currently known if and which genetic markers can be used to discriminate stocks occurring in 115 

this area, and thereby to assess their respective contributions to mixed-stock fisheries of this 116 

commercially highly important species. Here we present one of the first genetic studies of the 117 

Norwegian Sea and adjacent waters herring populations using 24 microsatellite loci of which 118 

several are known to be under selection in other herring populations (Gaggiotti et al. 2009, 119 
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André et al. 2011, Teacher et al. 2013). Our aims were three-fold- First, to attempt to confirm 120 

the aforementioned reproductive isolation (spawning time and location) between different 121 

herring populations around the Norwegian Sea. Second, to assess the aforementioned 122 

uniqueness of the Norwegian fjord spawning herring, and third, to compare neutral to non-123 

neutral genetic variation in order to detect potential signatures of selective differentiation. 124 

 125 

MATERIALS AND METHODS 126 

Sampling areas and protocol 127 

In all, 1258 Atlantic herring were collected at several spawning locations in the Northeast 128 

Atlantic from 2009 to 2012 during local spawning seasons (Fig. 2, Table 1) including samples 129 

from different local Norwegian fjords such as Trondheimsfjorden (inner part of Trondheim 130 

fjord), Lindås pollene, Landvikvannet and Lusterfjorden as well as suspected FASH and 131 

FSSH. Individuals fish were selected for genotyping owing to their reproductive status using 132 

the following maturity scale (see Table 1 for the percentage of breeding fish per sample): 1–2 133 

immature, 3–5 maturing, 6 spawning, 7 recently spawned and 8 resting (Bowers & Holliday 134 

1961, Anonymous 1962).  135 

Genetic samples were collected from muscle or fin clips preserved in 99% ethanol. Samples 136 

were genotyped at 24 microsatellite loci: msild12, msild13, msild17, msild24, msild27 and 137 

msild32 (Libungan et al. 2012), Cha1017, Cha1020, Cha1027, Cha1059 and Cha1202 138 

(McPherson et al. 2001), Cha4 (Cpa4 in Miller et al., 2001), Cha17, Cha63 and Cha113 139 

(O'Connel et al. 1998), Cpa101, Cpa102, Cpa103, Cpa104, Cpa108, Cpa111, Cpa112, Cpa113 140 

and Cpa114 (Olsen et al. 2002). 141 

DNA was extracted either from muscle, or fin clips by AGOWA mag Midi DNA Isolation 142 

Kit (AGOWA Gmbh) or hot shot DNA extraction method (Montero-Pau et al. 2008). The 143 

forward primers of each microsatellite loci were labelled with one fluorescent dye (6-FAM, 144 
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VIC, NED or PET). Polymerase chain reactions (PCR) were performed in Multiplexes 145 

(Supplementary Table S1) as follows: 10 µl volume containing 2-3 µl DNA (10-100 ng/µl), 146 

0.80 µl of dNTP (10mM), 0.6-1.2 U Teg polymerase (Matís Ltd., Taq comparable, see 147 

Ólafsson et al. 2010), 1 µl of 10x buffer (Matís Ltd.), 0.03-0.25 µl of a 50:50 ratio of labelled 148 

forward (100 µM) and reverse (100 µM) primer tagged on the 5´-end with a GTTTCTT PIG-149 

tail (Brownstein et al. 1996) adding 1 µl betaine (5 M) when improvement of DNA 150 

amplification was needed. Samples were analysed on an ABI PRISM 3730 sequencer using 151 

the GeneScan-500 LIZ size standard and genotyped with GeneMapper v4.0 (Applied 152 

Biosystems). 153 

 154 

Genetic analyses 155 

As the neutrality assumption of genetic markers is crucial for the conclusion drawn from 156 

genetic data, we applied the coalescent-based simulation methods of Beaumont and Nichols 157 

(Beaumont & Nichols 1996) to detect potential outlier loci (loci under selection). Coalescent 158 

simulations were performed with the software LOSITAN (Antao et al. 2008) with samples of 159 

the same size as the observed samples assuming an island model with 100 islands. A total of 160 

100,000 independent loci were generated with the infinite allele mutation model and the 161 

“neutral” mean FST function (outlier loci were excluded to calculate the initial mean FST). 162 

Simulated distribution of FST values conditional to heterozygosity under a neutral model were 163 

obtained and thus compared to observed FST values to identify potential outlier loci. In 164 

addition, we performed outliers’ tests in BayeScan (Foll & Gaggiotti 2008), which allows for 165 

different demographic histories and drift between populations. BayeScan was run with 50,000 166 

Burn-in, 50 thinning, a sample size of 1,000, 300,000 iterations, 20 pilot runs with a length of 167 

5,000 and a FDR of 0.05. Outliers which were identified with both methods (LOSITAN and 168 

BayeScan) were considered to be under selection. 169 
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A statistical power analysis of the microsatellite loci was performed to assess whether 170 

genetic structure could be detected among the North Atlantic samples with the developed 171 

sampling strategy and the genetic markers used. The Norwegian local spring-spawners 172 

samples which showed the highest level of differentiation in our samples’ collection were 173 

therefore excluded for this analysis. The statistical power of the microsatellite loci was 174 

estimated using the program POWSIM (Ryman & Palm 2006), which assesses the α (type I) 175 

error (the probability of rejecting Ho when it is true) and the power of the genetic design 176 

performed using information on sample sizes, number of samples, number of loci, and allele 177 

frequencies for any hypothetical degree of true differentiation quantified as FST (Ryman & 178 

Palm 2006). The significance of the tests was assessed by Fisher’s exact tests as well as by χ2 179 

tests. These tests were performed without the NLSSH samples. 180 

Genetic diversity of samples (evaluated using allele frequencies), observed and expected 181 

heterozygosities. and deviations from Hardy-Weinberg equilibrium (HWE) were calculated in 182 

GENEPOP’007 (Rousset 2008). Population differentiation was estimated both between 183 

pairwise samples and overall using the unbiased FST estimator θ of Weir & Cockerham 184 

(1984). Statistical significance was assessed using the exact G-test implemented in 185 

GENEPOP’007. 186 

To visualize the level of genetic differentiation among samples, the pairwise estimates of 187 

FST were lotted using the multidimensional scale (MDS) function in R (cmdscale, Team RC 188 

2012). 189 

The number of subpopulations (K) potentially contained in our samples set was assessed 190 

using STRUCTURE (Pritchard et al. 2000) with no prior information on sample location. 191 

STRUCTURE was run using 350,000 burn-in and 500,000 iterations for 10 independent runs 192 

for K = 1 to 10 using an admixture model with correlated allele frequencies. The results were 193 

scrutinized in STRUCTURE HARVESTER (Earl & vonHoldt 2012) in order to estimate the 194 
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optimal number of K using the Evanno’s method (Evanno et al. 2005). DISTRUCT was then 195 

used to visualise the data (Rosenberg 2004). As STRUCTURE is likely to detect the highest 196 

level of differentiation among the samples, we conducted a hierarchical analysis by 197 

performing similar STRUCTURE runs on detected populations (K) containing several 198 

samples. 199 

 200 

RESULTS 201 

Genetic diversity 202 

Biological information retrieved from the samples is listed in Table 1. Except sample 1 203 

and 14, most of the fish collected were ready to spawn (maturity stage 5) or spawning 204 

(maturity stage 6) (Table 1). The number of alleles per locus was high, ranging from 9 205 

(Cap111) to 63 (msild24; data not shown). The unbiased expected heterozygosity per sample 206 

ranged from 0.836 (NSSH4) to 0.850 (FSSH) (Supplementary Table S2). Genotypic 207 

proportion were out of HWE in 26 of 336 exact tests, of which two remained significant after 208 

the Bonferroni correction for multiple tests, and were not attributable to any loci or samples 209 

(Supplementary Table S2). 210 

 211 

Outlier tests 212 

Simulations for detection of outlier loci performed in LOSITAN suggested that two loci 213 

fell outside the 95% confidence interval; locus Cpa111 and msild13 were suggested to be 214 

under positive selection (Supplementary Table S3). Using a 99% confidence interval, only 215 

Cpa111 was suggested to be under positive selection (Supplementary Table S3). BayeScan 216 

simulations only identified Cpa111 as putatively under selection (Supplementary Table S4). 217 

Hence, all following structure analyses were performed with and without the outlier locus 218 

(Cpa111), except the statistical power test. 219 
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 220 

Statistical power of the microsatellite loci 221 

Excluding the Norwegian local spring-spawners samples, the estimate of the statistical α 222 

(type I) error rate (i.e. the probability of rejecting the null hypothesis of genetic homogeneity 223 

when it is true), varied from 0.075 with Fisher’s exact tests to 0.077 with χ2 tests 224 

(Supplementary Table S5), which is slightly higher than the 5% limit for significance, but still 225 

at a reasonable level (Ryman & Palm 2006). The simulations on the power analysis of the 226 

microsatellite loci revealed that the combination of the microsatellite loci and sample sizes 227 

used, conferred a statistical power sufficient to detect any level of differentiation among the 228 

North Atlantic samples collected, equal to or above FST = 0.001 with a maximum power 229 

(Supplementary Table S5). 230 

 231 

Population structure 232 

The overall genetic estimates revealed a highly significant FST (FST = 0.007, p < 0.001, 233 

95% CI: 0.005-0.0010) and FIS (FIS = 0.021, p < 0.001, 95% CI: 0.012-0.031). Locus Cpa111 234 

exhibited the highest FST value (FST = 0.044), while all other loci exhibited lower similar 235 

values. Out of 91 pairwise FST comparisons, 53 were significantly different from zero 236 

(Supplementary Table S6), and 50 remained significant after Bonferroni correction. All 237 

significant 50 comparisons involved samples from Norwegian local spawning herring 238 

(NLSSH). The pattern of significance of pairwise FST comparisons remained similar when the 239 

Cpa111 locus was removed (Supplementary Table S7). 240 

The multidimensional scale analysis (MDS) for all loci confirmed these results and 241 

revealed that all NLSSH samples were highly distinct from the Northeast Atlantic ones. 242 

NLSSH samples were also clearly distinct from each other apart from sample 13 and 14 (Fig. 243 
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3a). The same pattern was observed when the outlier locus was excluded from the analysis 244 

(Fig. 3b).  245 

Using all loci, the Bayesian cluster analysis (STRUCTURE) revealed that the most likely 246 

number of populations contained in our samples was for K = 2 (Fig. 4a, Supplement Fig. S1), 247 

both with LnP(k) values and ∆K (Evanno et al. 2005). One cluster was composed of all 248 

Northeast Atlantic samples while the second one was composed of the Norwegian fjord 249 

samples (NLSSH). The hierarchical analysis of the North Atlantic cluster did not reveal any 250 

further structuring (Supplementary TableS8) while it detected two additional clusters in the 251 

fjord samples (NLSSH), one composed of sample 12 (Landvikvannet) and one composed of 252 

the three other fjord samples (samples 11, 13 and 14: Supplementary Table S8, Fig. S2). 253 

Further analyses of the second cluster (samples 11, 13 and 14) did not reveal any additional 254 

structuring (Supplementary Table S8, Fig. S3). 255 

Using the neutral loci only, the most likely number of cluster detected with STRUCTURE 256 

was for K = 3 (Fig. 4b, Supplement Fig. S3) both with LnP(k) values and ∆K (Evanno et al. 257 

2005). The first cluster was composed of all samples from the Northeast Atlantic, the second 258 

of the sample collected in Landvikvannet (sample 12), and the third one of samples collected 259 

in other fjords (samples 11, 13 and 14). Additional hierarchical analysis of the third cluster 260 

(samples 11, 13 and 14) did not reveal any substructure in these fjords, i.e. the most likely 261 

number of cluster was K = 1 (Supplementary Table S9). The same result was observed for the 262 

first cluster, i.e. the samples collected in Northeast Atlantic (Supplementary Table S9). 263 

 264 

DISCUSSION 265 

Global genetic structure 266 

Genetic markers have been intensively used to assess genetic structure of the Atlantic 267 

herring in its south-eastern distribution, but we are among the first ones (but see: Shaw et al. 268 
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1999) to investigate it in the Norwegian Sea and surrounding waters, including the Norwegian 269 

local spawning herring. The results of this study showed that, even with 23 neutral and one 270 

non-neutral microsatellite loci, the Atlantic herring did not exhibit any significant genetic 271 

differentiation among stocks across the investigated area, although the Norwegian local-272 

spawning herring samples were indeed genetically differentiated from all other samples. 273 

Although one can suggest that STRUCTURE analyses might not correctly uncover genetic 274 

pattern due to the observed low level of differentiation, this study presents a robust 275 

interpretation of the developed statistical approaches based on a combination of FST values, 276 

MDS and STRUTURE runs, which strongly support the observed genetic pattern. 277 

The populations of Atlantic herring which have been genetically studied in the south-278 

eastern distribution (Jørgensen et al. 2005, Mariani et al. 2005, Ruzzante et al. 2006, Gaggiotti 279 

et al. 2009, André et al. 2011), exhibited low level of differentiations except at some 280 

hitchhiking microsatellite loci such as Cpa112 and Her14 (Gaggiotti et al. 2009, Teacher et al. 281 

2013). Genetic differentiation is indeed expected to be more pronounced at coding (or linked) 282 

loci, especially in large populations in which even weak selection might override effects of 283 

genetic drift (Gaggiotti et al. 2009). Microsatellite loci and other genetic markers under 284 

selection (like SNPs) were found to show some striking differentiation among herring 285 

populations (Lamichhaney et al. 2012, Nielsen et al. 2012, Corander et al. 2013). In the 286 

current study, we failed to detect any genetic structuring among the large Northeast Atlantic 287 

herring populations. NSSH is by far the largest and ISSH among the largest herring 288 

populations of the Northeast Atlantic, and their effective population size (Ne) is expected to be 289 

very large, and hence, provides a probable explanation for lack of genetic differentiation. The 290 

potential combination of high Ne and considerable level of gene flow among herring 291 

populations have been suggested to hinder the detection of structure among local populations 292 

of this species using neutral markers (Bekkevold et al. 2005, Mariani et al. 2005). However, 293 
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an earlier microsatellite loci study has discovered genetic differences between ISSH and 294 

NSSH at neutral loci (Shaw et al. 1999), but only a small number (n = 4 loci) of microsatellite 295 

loci and a relatively small sample collection were used in that study. The North Atlantic 296 

herring exhibits large effective population size and such a low number of microsatellite might 297 

not be sufficient to uncover the genetic pattern of this species. For such a species, a higher 298 

number of samples and loci are necessary to fully fathom genetic structure (see Ruzzante 299 

1998 for bias and sampling variance when using microsatellite loci). 300 

Another potential explanation for the lack of significant genetic differentiation among 301 

Northeast Atlantic populations of herring might be found from the low power of the 302 

microsatellite loci resolving population structuring, as well as the quality of the sampling 303 

design (Ryman & Palm 2006). However, the power analysis of the 24 microsatellite loci used 304 

revealed that the estimated α (type I error) was reasonably low, and that the sampling design 305 

should have been sufficient to detect level of differentiation of FST = 0.001 if it was present 306 

(see Table 5). Until now, the distinction of ISSH vs. NSSH is mainly based on morphological, 307 

physiological and biological characteristics (Einarsson 1951, Jakobsson et al. 1969). Single 308 

nucleotide Polymorphisms (SNPs) have recently been developed and seem to be promising 309 

for such marine species with large Ne and complex biodynamic, especially when investigating 310 

functionally important genetic loci (Helyar et al. 2012, Limborg et al. 2012, Nielsen et al. 311 

2012, Corander et al. 2013, Teacher et al. 2013). 312 

Most of the local populations of herring included in this study (NLSSH, samples 11, 13, 313 

and 14) have recently been studied in terms of reproductive investment and growth (Silva et 314 

al. 2013). The stationary herring of Trondheimsfjord was described in the early 1900’s and 315 

suggested to be distinct from NSSH (Broch 1908, Runnstrom 1941, see Silva et al. 2013 for a 316 

full description). An allozyme studiy of samples from ISSH, NSSH and two Norwegian fjords 317 

(including Trondheimsfjord) also only found significant genetic differentiation between the 318 
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stationary Trondheimsfjord herring and all other localities (Turan et al. 1998). Recent life-319 

history studies have suggested that Trondheimsfjord herring was “a few of many potentially 320 

genetically unique populations with phenotypic adaptations to a stationary life in well defined 321 

environment…” (Silva et al. 2013). Trondheimfjord (Broch 1908, Runnstrom 1941, Sørensen 322 

2012, Silva et al. 2013), Lusterfjord (Aasen 1952), Lindås pollene (Lie et al. 1978, 323 

Johannessen et al. 2009, Silva et al. 2013) and Landvikvannet herrings (Silva et al. 2013, 324 

Eggers 2013) have long been considered to belong to self-sustaining and rather stationary 325 

populations characterized by a lower vertebral count, slower growth, lower length at maturity, 326 

shorter life span and a higher relative fecundity than the migratory oceanic NSSH. The fact 327 

that these populations with apparent adaptations to life mostly spent inside fjord areas have 328 

been known to exist for up to a century suggests that they may be genetically unique as 329 

supported by the present study. In addition, the analysis of the fjord samples revealed that 330 

Landvikvannet sample was genetically distinguishable from all other fjord samples. This is 331 

most likely linked to the potential mixture with oceanic herring at various life stages that 332 

differ between Landvikvannet herring and the other fjord populations. The herring in Lindås 333 

pollene, Lusterfjord and Trondheimfjord may all mix with NSSH herring drifting into the 334 

fjord areas as larvae from spawning grounds outside the fjord areas. Albeit most of NSSH 335 

grow up in the Barents Sea, portions always tend use the fjords as nursery areas until age of 336 

two years (Holst & Slotte 1998). Even though the NSSH is genetically tuned to leave the 337 

fjords by two years age to grow further and join the adult spawning stock in the open ocean, 338 

one cannot exclude the possibility that some choose to stay, especially if there is numerical 339 

domination of the local herring of the same size (Huse et al. 2002). Hence, over time gene 340 

flow might have occurred consistently between the NSSH and local fjord populations. Recent 341 

studies from Lindås pollene even indicate that gene flow among adult NSSH and local herring 342 

might explain the evolution of the fjord population’s life history traits from the 1960s to the 343 
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2000s towards a regime with higher growth and higher length at maturity (Langård 2013). In 344 

Landvikvannet the link to NSSH is not clear as this local fjord is outside the observed 345 

spawning area of NSSH. In the latter, local herring might mix with coastal spring spawners or 346 

even with Western Baltic spring spawners (WBSS) migrating into the Skagerrak area and 347 

feeding close to the Norwegian coast during summer. Landvikvannet was artificially 348 

connected to the open sea through a 3 km long canal in 1887, and has been a brackish 349 

environment ever since with anoxic condition at depths below 4 m. Therefore, the observed 350 

genetic differences among Landvikvannet herring and the other fjords is likely due to the fact 351 

that Landvikvannet was colonized by straying of WBSS herring already being adapted to low 352 

salinity conditions. In fact the very low vertebral count in Landvikvannet herring perfectly 353 

equals that of WBSS (55.7). However, data on vertebral counts and growth from the most 354 

recent study in Landvikvannet (2012) indicate that NSSH herring has also recently visited this 355 

area, mixing with a group of coastal spring spawners and what is believed to be 356 

Landvikvannet herring (Eggers 2013). The three groups occupy this ecological niche at 357 

different times with some overlap in spawning stages. NSSH arrive first in March, while the 358 

coastal spring spawners arrive in March-April and finally Landvikvannet herring peaks in 359 

abundance in May. The genetic sample used in the present study was taken in May, which has 360 

been the main sampling period since 1980s used as a basis for the suggestion of a local fjord 361 

population. Given the results from 2012 further genetic studies are needed of the herring in 362 

the area of Landvikvannet to be able to draw firm conclusions. 363 

 364 

Neutral vs. non neutral genetic markers 365 

While levels of differentiation (FST’s) and their visual representation (MDS) tend to 366 

suggest similar genetic patterns when all loci are included or when excluding Cpa111, the 367 

primary results of the Bayesian cluster analysis would have resulted in fairly different 368 
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conclusions based on these two approaches. In fact, the first Bayesian cluster analysis 369 

including all loci supported a main differentiation between all fjords samples and all samples 370 

collected around the Norwegian Sea, while the neutral loci analysis clearly distinguished one 371 

additional cluster, the fjord sample from Landvikvannet (NLSSH, sample 12). On the 372 

contrary, when all loci were used, the Bayesian cluster analysis could not detect differences 373 

among the fjord samples without an additional hierarchical analysis. A closer look into 374 

Cap111 (the locus under selection) allele frequencies (Fig. 6) revealed a clear shift in allele 375 

frequencies among the fjords and the Northeast Atlantic populations (the former exhibited a 376 

high frequency of allele-275 compared to the latter), but also a slightly different pattern in 377 

Landvikvannet “sample” (NLSSH, sample 12) compared to the other fjord samples. Indeed, it 378 

exhibited a higher frequency at allele-287 than any other fjords and Northeast Atlantic 379 

samples, and did exhibit a somehow lower allele-275 frequency than the other fjord samples, 380 

differences that the Bayesian cluster analysis did not catch except when an additional 381 

hierarchical analysis was performed on the fjord samples. As suggested above, these observed 382 

genetic differences among the fjord samples might be due to differences in their origin and 383 

their respective interaction with NSSH but might also reflect potential different ongoing 384 

genetic evolution of the fjords populations. 385 

 386 

Fisheries management 387 

In term of management, although the power analysis performed suggested that a relatively 388 

low level of differentiation would be detectable with our research design, we only detected 389 

genetic differences among the North Atlantic and the Norwegian local populations. The 390 

combination of large effective population size and the relatively short time for divergence 391 

since the recovery of the North Atlantic populations might have precluded evolution of 392 

genetic differences. However, the herring populations in the investigated area are exhibiting 393 
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different life-history patterns, which, in the absence of genetic evidence, should be integrated 394 

(and are already) in fisheries management. The observed biological uniqueness of the 395 

Norwegian local populations, and especially the exceptionality of Landvikvannet herring 396 

should be investigated further to decipher their interactions with the NSSH component and 397 

Western Baltic component to ensure appropriate management of herring stocks in future. 398 
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Table 1. Sampling areas and information for 14 samples of North Atlantic herring Clupea harengus. The maturity stage of individual fish is 
expressed in percentage per stages. 

Sample acronym FASH FSSH ISSH403 ISSH411 ISSH463 ISSH473 NASH NSSH12 NSSH10 SCOTLAND NLSSH NLSSH NLSSH NLSSH 

Information               

Sampling area Faroese Islands Faroese 

Islands 

Iceland Iceland Iceland Iceland Lofoten Norway Norway Scotland Trondheims-

fjorden 

Landvik-

vannet 

Lindås 

pollene 

Luster-

fjorden 

Stock acronym FASH FSSH ISSH ISSH ISSH ISSH NASH NSSH NSSH NASH.S NLSSH NLSSH NLSSH NLSSH 

Sample code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Maturity stage*:               

Maturing (3-5) 5 (5) 95 (5) 2 (3) 

17 (4) 

81 (5) 

99 (5) 1 (4) 

9 (5) 

15 (4) 

60 (5) 

 52 (4) 

30 (5) 

13 (4) 

84 (5) 

 na 1 (4) 

62 (5) 

13 (4) 

44 (5) 

77 (4) 

5 (5) 

Spawning (6)  5   90 10 1 18 2 100  36 42  

Recently spawned (7)    1   57  1   1 2  

Resting (8) 95     5 33        

Date 27.11.2009 28.3.2011 5.7.2009 9.7.2009 2.7.2010 5.7.2010 11.8.2010 29.1.2012 14.2.2010 9.1.2010 3.12.2010 12.5.2010 3.2010 8.11.2011 

Coordinates 60°48.00’N 

06°10.80’W 

62°06.06’N 

06°45.00’W 

64°13.75’N 

22°56.29’W 

63°44.84’N 

16°26.80’W 

64°05.40’N 

23°01.90’W 

63°46.10’N 

16°19.40’W 

67°14.60’N 

13°17.00’E 

63°17.50’N 

07°14.70’E 

62°531.00’N 

05°14.00’E 

58°743.80’N 

05°22.20’W 

63°42.00’N 

11°00.00’E 

58°19.20’N 

08°30.10’E 

60°43.80’N 

05°08.00’E 

61°47.67’N 

07°57.33’E 

Sample size 119 40 48 84 70 93 88 87 63 105 120 149 64 128 

Age range 4-11 5-10 4-13 2-11 4-14 2-11 3-12 3-13 4-15 3-12 3-15 2-10 NA 2-6 

Length (mm):              

mean 
373 333 325 326 329 308 338 329 324 296 272 276 325 

181 

SD 
13 11 23 22 19 36 17 15 15 15 12 17 14 

14 

Range 318-396 310-350 280-360 260-360 280-370 190-360 280-370 295-360 295-360 267-337 230-305 225-320 295-360 145-225 

* numbers between brackets indicates the specific stage in which fish were. na, non available data. 
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Figure legends 700 

 701 

Fig. 1. Current migration pattern of the adult part of the Norwegian spring-spawning herring 702 

(NSSH) and interactions with other surrounding stocks, i.e. Icelandic summer-spawning 703 

herring (ISSH), Faroese autumn-spawning herring (FASH), and Norwegian autumn-spawning 704 

herring (NASH). 705 

 706 

Fig. 2. Sampling locations of Atlantic herring C. harengus in Norwegian Sea and surrounding 707 

waters. See Table 1 for sample codes. 708 

 709 

Fig. 3. Multi-dimensional scaling plot of Atlantic herring C. harengus in Norwegian Sea and 710 

surrounding waters: a) all loci included, b) without the outlier Cpa111. See Table 1 for sample 711 

codes. 712 

 713 

Fig. 4. Hierarchical Bayesian cluster analysis performed in STRUCTURE using all loci and 714 

all samples. A total of 10 runs were performed for each K, from K = 1 to 10 with 350,000 715 

Burn-in, 500,000 MCMC, using an admixture model with correlated allele frequencies and no 716 

prior information on sample location. (a) Represents the first hierarchical level including all 717 

samples. Two clusters were detected, the first one composed of composed of all Northeast 718 

Atlantic samples, and the second of the fjord samples (NLSSH), (b) represents the second 719 

hierarchical level only including the NLSSH samples. Two clusters were detected, the first 720 

one composed of composed of sample 12, and the second of samples 11, 13 and 14. See Table 721 

1 for sample codes. 722 

 723 
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Fig. 5. Bayesian cluster analysis performed in STRUCTURE using neutral loci and all herring 724 

samples. A total of 10 runs were performed for each K, from K = 1 to 10 with 350,000 Burn-725 

in, 500,000 MCMC, using an admixture model with correlated allele frequencies and no prior 726 

information on sample location. Additional hierarchical analyses did not detect any additional 727 

clusters within the two main groups, i.e. the Northeast Atlantic samples and the fjords 728 

samples (NLSSH). See Table 1 for sample codes. 729 

 730 

Fig. 6. Allele frequencies at Cpa111 locus. All samples of North Atlantic populations were 731 

combined while allele frequencies of the four Norwegian local-spawning herring are depicted 732 

separately. NA, North Atlantic population; See Table 1 for sample codes. 733 

734 
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Fig. 1. 737 
 738 

739 



 27

 740 
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Fig. 3a. 744 
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Fig. 3b. 746 
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Supplementary Table S1: Characteristics of multiplexes for 24 microsatellite loci of 
Atlantic herring C. harengus. Tm stands for annealing temperature and µl for micro-litres of 
primer used. Genotyping quality reports the percentage of individuals which were correctly 
genotyped at a specific microsatellite loci. 

Multiplex Loci µl Tm Dye Allele range Genotyping quality 
SildPrint2 Cha113 0.10 58 PET 104-156 97 
 Cha17 0.18 58 6FAM 85-189 99 
 Cha1059 0.03 58 NED 63-127 98 
 Cha1020 0.14 58 VIC 153-245 90 
  Cpa111 0.16 58 VIC 256-295 91 
SildPrint4 Cpa113 0.06 57 PET 118-230 93 
 Cha1017 0.15 57 VIC 161-213 98 
 Cpa103 0.13 57 6FAM 163-263 93 
 Cpa112 0.14 57 VIC 232-416 92 
  Cpa108 0.10 57 NED 233-275 96 
SildPrint6 msild12 0.03 58 VIC 73-139 97 
 Cha1027 0.10 58 PET 113-213 100 
 Cha63 0.10 58 NED 137-181 100 
  Cpa101 0.06 58 VIC 169-321 98 
SildPrint7 Cpa104 0.08 60 NED 180-506 97 
 Cpa114 0.08 60 VIC 178-282 98 
  Cha1202 0.10 60 6FAM 97-173 100 
SildPrint9 Cha4 0.07 58 VIC 106-194 99 
 Cpa102 0.06 58 NED 128-420 99 
  msild13 0.16 58 6FAM 176-251 99 
SildPrint13 msild17 0.10 58 VIC 336-420 95 
 msild24 0.15 58 PET 165-351 96 
 msild27 0.06 58 6FAM 185-233 99 
  msild32 0.10 58 VIC 172-272 99 
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Supplementary Table S2: Genetic diversity of the 24 microsatellite loci. Expected heterozygosity (He) and deviation from HWE (FIS) for 24 
microsatellite loci in 14 samples of Atlantic herring C. harengus. See Table 1 for sample codes. 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Locus He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS He FIS 

Cha4 0.874 0.091 0.884 -0.031 0.862 0.098 0.856 0.037 0.889 0.076 0.875 -0.025 0.853 0.020 0.858 0.020 0.865 0.058 0.868 0.074 0.884 0.034 0.852 0.012 0.854 0.060 0.882 0.020 

Cha17 0.941 0.025 0.937 0.002 0.929 0.025 0.944 0.010 0.941 0.023 0.944 0.026 0.943 0.019 0.949 0.036* 0.945 0.024 0.941 0.015 0.942 0.006 0.928 0.007 0.941 -0.055 0.940 0.025 

Cha63 0.862 0.010 0.878 0.136 0.862 0.019 0.868 0.005 0.860 -0.054 0.858 0.005 0.851 0.044 0.855 -0.060 0.847 -0.024 0.841 0.014 0.846 0.021 0.816 -0.083 0.859 -0.022 0.863 0.053 

Cha113 0.891 -0.003 0.875 0.016 0.893 0.026 0.884 -0.017 0.883 0.039 0.872 -0.005 0.877 0.091 0.866 -0.036 0.863 -0.003 0.889 0.010 0.881 0.036 0.861 0.023 0.905 0.010 0.881 -0.014 

Cha1017 0.793 0.018 0.788 0.054 0.839 0.066 0.834 0.095 0.843 0.051 0.798 0.134 0.825 0.008 0.797 0.098 0.833 0.124 0.815 0.047 0.802 0.050 0.778 -0.015 0.762 0.084 0.812 0.035 

Cha1020 0.926 0.008 0.931 -0.003 0.920 -0.004 0.918 -0.042 0.923 0.028 0.923 -0.017 0.914 0.026 0.915 0.013 0.921 0.004 0.920 0.036 0.917 -0.036 0.881 -0.055 0.871 -0.073 0.901 -0.044 

Cha1027 0.934 -0.012 0.923 0.096 0.907 -0.022 0.936 0.052 0.923 0.032 0.930 0.058 0.939 -0.023 0.938 0.139 0.929 -0.022 0.930 0.061 0.922 0.028 0.917 0.023 0.908 0.033 0.914 0.008 

Cha1059 0.670 0.035 0.695 0.257 0.708 0.132 0.674 0.065 0.666 0.020 0.663 0.061 0.660 0.130* 0.679 0.059 0.663 -0.043 0.729 0.091 0.693 0.123 0.668 0.035 0.787 0.080 0.680 0.143 

Cha1202 0.701 0.057 0.744 0.082 0.676 -0.007 0.709 -0.048 0.763 -0.056 0.722 0.023 0.750 0.060 0.761 0.097 0.761 0.009 0.750 -0.085 0.753 0.002 0.704 -0.008 0.760 0.027 0.752 0.065 

Cpa101 0.919 0.000 0.916 0.006 0.909 0.033 0.915 0.047 0.910 0.119 0.915 0.028 0.913 -0.039 0.914 -0.036 0.912 0.044 0.926 -0.006 0.918 -0.011 0.900 0.054 0.912 0.040 0.916 0.032 

Cpa102 0.923 -0.024 0.927 -0.038 0.912 0.034 0.929 -0.031 0.922 0.050 0.924 0.028 0.927 0.062 0.928 -0.001 0.923 0.048 0.930 0.002 0.939 -0.007 0.913 -0.003 0.913 -0.053 0.919 0.060 

Cpa103 0.874 0.045 0.880 0.162 0.878 0.085 0.891 0.086 0.878 0.034 0.885 0.130 0.884 0.025 0.883 0.096 0.870 0.047 0.874 0.144 0.874 -0.018 0.884 0.077 0.865 0.039 0.839 0.045 

Cpa104 0.836 0.022 0.840 0.120 0.823 0.049 0.870 0.041 0.834 0.073 0.878 0.040 0.823 0.155 0.810 0.0182 0.847 0.101 0.832 0.024 0.739 0.071 0.830 0.067 0.719 -0.023 0.699 0.057 

Cpa108 0.481 0.070 0.535 0.103 0.492 0.121 0.540 0.135 0.447 0.024 0.461 -0.043 0.424 -0.093 0.543 0.072 0.448 0.059 0.457 0.025 0.627 -0.018 0.396 -0.083 0.533 0.020 0.576 0.082 

Cpa111 0.434 -0.003 0.389 -0.028 0.331 0.003 0.372 -0.001 0.397 0.021 0.402 0.033 0.502 0.009 0.464 0.0138 0.402 0.140 0.349 0.041 0.447 -0.085 0.468 -0.010 0.600 0.019 0.541 -0.065 

Cpa112 0.904 -0.027 0.882 0.066 0.879 -0.078 0.889 0.003 0.886 0.033 0.887 -0.020 0.860 0.038 0.904 -0.092 0.878 0.085 0.885 -0.017 0.901 -0.019 0.791 -0.065 0.872 -0.050 0.880 -0.017 

Cpa113 0.937 0.030 0.921 -0.044 0.919 -0.025 0.935 -0.025 0.925 0.035 0.929 0.016 0.928 0.010 0.919 0.035 0.926 0.030 0.929 0.011 0.935 0.010 0.886 0.022 0.930 0.035 0.924 -0.020 

Cpa114 0.917 0.043 0.903 -0.038 0.902 0.087 0.905 0.049 0.905 0.111 0.908 0.013 0.913 0.089 0.918 0.038 0.910 -0.013 0.905 0.016 0.912 -0.010 0.908 0.044 0.903 0.048 0.909 0.008 

msild12 0.883 0.042 0.849 -0.075 0.892 0.036 0.873 -0.040 0.874 0.004 0.877 0.016 0.876 -0.007 0.893 -0.032 0.883 0.011 0.881 0.005 0.881 0.086 0.860 0.044 0.873 0.015 0.879 0.025 

msild13 0.898 0.012 0.898 0.011 0.899 0.014 0.884 -0.004 0.898 -0.026 0.901 -0.057 0.894 0.005 0.881 0.051 0.907 0.021 0.895 0.028 0.865 0.003 0.845 -0.006 0.838 -0.003 0.851 0.012 

msild17 0.895 0.055 0.898 0.042 0.881 -0.045 0.887 0.024 0.884 0.030 0.888 0.056 0.878 0.002 0.878 0.023 0.894 0.057 0.896 0.058 0.857 -0.034 0.811 0.005 0.847 0.123 0.821 -0.029 

msild24 0.957 0.023 0.943 -0.021 0.943 0.039 0.956 0.053 0.951 0.062 0.951 0.034 0.953 0.041 0.955 -0.006 0.951 -0.016 0.961 0.004 0.949 -0.014 0.925 -0.018 0.945 -0.048 0.952 0.030 

msild27 0.816 0.013 0.790 0.007 0.811 0.040 0.786 0.033 0.791 -0.015 0.823 0.054 0.801 -0.013 0.787 -0.039 0.753 0.020 0.806 0.032 0.816 0.067 0.782 -0.015 0.808 0.010 0.811 0.004 

msild32 0.910 -0.028 0.899 0.178 0.904 -0.025 0.905 0.047 0.891 0.022 0.907 -0.026 0.902 -0.053 0.904 0.056 0.903 0.041 0.908 0.061 0.893 -0.020 0.897 0.040 0.890 -0.037 0.913 -0.028 

Overal all loci 0.844 0.020 0.850 0.042 0.841 0.028 0.845 0.022 0.843 0.032 0.843 0.024 0.841 0.025* 0.847 0.031 0.842 0.032 0.842 0.028 0.845 0.012 0.813 0.007 0.838 0.010 0.836 0.019 

Values in bold indicate significant deviations from HWE (Exact tests, p < 0.05). 
*Values remaining significant after Bonferroni correction (α = 0.05/168 = 0.0003). 
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Supplementary Table S3: Results from Lositan outlier tests for the 24 microsatellite loci 
in 14 samples of Atlantic herring C. harengus. Expected heterozygosity (HE) and FST are 
given. The loci in bold were identified as 95% outliers, while those marked with asterix were 
identified as significant outliers at a false discovery rate of 0.01.  

Locus Heterozygosity FST P(Simul FST < Sample FST) 

Cha4 0.881 0.008 0.824 
Cha17 0.948 0.002 0.113 
Cha63 0.863 0.003 0.344 
Cha113 0.889 0.003 0.358 
Cha1017 0.816 0.003 0.389 
Cha1020 0.927 0.008 0.882 
Cha1027 0.935 0.004 0.480 
Cha1059 0.695 0.004 0.471 
Cha1202 0.742 0.001 0.293 
Cpa101 0.922 0.002 0.236 
Cpa102 0.935 0.006 0.706 
Cpa103 0.885 0.004 0.483 
Cpa104 0.824 0.007 0.691 
Cpa108 0.504 0.005 0.547 
Cpa111* 0.457 0.040 0.998 
Cpa112 0.894 0.011 0.940 
Cpa113 0.936 0.006 0.694 
Cpa114 0.916 0.002 0.209 
msild12 0.884 0.002 0.269 
msild13 0.899 0.012 0.986 
msild17 0.889 0.012 0.972 
msild24 0.960 0.003 0.234 
msild27 0.805 0.001 0.239 
msild32 0.910 0.003 0.298 
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Supplementary Table S4: Outlier tests performed in BAYESCAN for the 24 
microsatellite loci in 14 samples of Atlantic herring C. harengus. The posterior probability 
for the model including selection (p), the log10 of the Posterior Odds for the model including 
selection (log10(PO)), and the estimated alpha coefficient indicating the strength and 
direction of selection (alpha; positive values indicate positive selection, while negative values 
indicate putative balancing selection) are given for each locus. It should be noted that the 
power to detect loci under putative balancing selection is low. The loci in bold were identified 
as significant outliers under a false discovery rate of 0.05.  

Locus p log10(PO) alpha FST 
Cha4 1 1000 -1.40 0.006 

Cha17 1 1000 -2.36 0.002 

Cha63 1 1000 -2.19 0.003 

Cha113 1 1000 -1.77 0.004 

Cha1017 1 1000 -2.46 0.002 

Cha1020 1 1000 -1.14 0.006 

Cha1027 1 1000 -1.81 0.004 

Cha1059 1 1000 -2.30 0.003 

Cha1202 1 1000 -2.04 0.003 

Cpa101 1 1000 -2.71 0.002 

Cpa102 1 1000 -1.60 0.005 

Cpa103 1 1000 -1.48 0.006 

Cpa104 1 1000 -2.03 0.003 

Cpa108 1 1000 -1.65 0.005 

Cpa111 0.046 -1.23 -0.007 0.024 

Cpa112 1 1000 -1.17 0.008 

Cpa113 1 1000 -1.78 0.004 

Cpa114 1 1000 -2.38 0.002 

msild12 1 1000 -2.60 0.002 

msild13 1 1000 -1.11 0.009 

msild17 1 1000 -0.96 0.010 

msild24 1 1000 -2.23 0.003 

msild27 1 1000 -2.31 0.003 

msild32 1 1000 -2.35 0.003 
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Supplementary Table S5: Power of the 24 microsatellite loci in 10 samples of Atlantic 
herring C. harengus. The Norwegian local spring-spawning herring were excluded from the 
analysis. Estimate of the resolution power of the microsatellite loci were performed using 
POWSIM (Ryman & Palm 2006). 
Expected FST Average FST χ2-test Fisher’s test Ne Generation (t) Runs 

0.0000 0.0000 0.077 0.075 1,000 0 1,000 

0.0000 0.0000 0.089 0.076 5,000 0 1,000 

0.0010 0.0010 1.000 1.000 500 1 1,000 

0.0010 0.0010 1.000 1.000 1,000 2 1,000 

0.0010 0.0010 1.000 1.000 5,000 10 1,000 

0.0025 0.0025 1.000 1.000 1,000 5 1,000 

0.0050 0.0050 1.000 1.000 1,000 10 1,000 

The resolution power is assessed by simulating different expected level of FST according to 
the effective population size (Ne) and generations (t) and to Nei (1987) formula: FST = 1 - (1 - 
1/2Ne)

t. The significance, evaluated using Fisher’s exact tests as well as χ2 tests, reflects the 
power to detect any given level of differentiation (Average FST) with the sampling design 
developed during our study. Ne values used during the test are based on estimates calculated 
from fisheries data. “Runs” denotes the number of simulation performed. The setting FST = 0 
and t = 0 estimates α (type I error; in the absence of genetic drift). 
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Supplementary Table S6: Genetic differentiation among samples. Pairwise FST (above diagonal) and p-values (below diagonal) among 14 
samples of Atlantic herring C. harengus based on allelic frequencies at 24 microsatellite loci. See Table 1 for sample codes. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 -0.0010 -0.0008 -0.0003 0.0006 -0.0007 -0.0003 0.0003 0.0008 0.0007 0.0074* 0.0127* 0.0106* 0.0110* 

2 0.998 0 -0.0006 -0.0004 -0.0002 0.0001 -0.0005 -0.0001 0.0012 -0.0004 0.0082* 0.0154* 0.0117* 0.0115* 

3 0.907 0.850 0 -0.0002 -0.0009 -0.0008 -0.0014 0.0001 0.0007 -0.0013 0.0064* 0.0124* 0.092* 0.0010* 

4 0.494 0.803 0.490 0 0.0005 -0.0001 -0.0001 0.0003 0.0011 0.0024 0.0087* 0.0150* 0.0122* 0.0116* 

5 0.127 0.808 0.598 0.117 0 -0.0005 -0.0001 0.0011 0.0012 0.0015 0.0088* 0.0160* 0.0130* 0.0115* 

6 0.928 0.929 0.916 0.639 0.038 0 0.0009 -0.0003 0.0001 0.0002 0.0082* 0.0115* 0.0122* 0.0122* 

7 0.972 0.951 0.986 0.590 0.310 0.957 0 -0.0007 -0.0001 0.0003 0.0073* 0.0113* 0.0093* 0.0101* 

8 0.138 0.811 0.720 0.024 0.038 0.912 0.972 0 -0.0001 0.0008 0.0067* 0.0120* 0.0090* 0.0092* 

9 0.097 0.766 0.549 0.122 0.018 0.332 0.497 0.014 0 -0.0001 0.0074* 0.0127* 0.0121* 0.0122* 

10 0.112 0.783 0.989 0.001 0.006 0.359 0.155 0.416 0.083 0 0.0075* 0.0119* 0.0115* 0.0107* 

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.0182* 0.0079* 0.0069* 

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.0160* 0.0169* 

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 0.0022 

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0 

Emboldened values differ significantly from zero (Fisher’s exact test. p < 0.05). 
* Values remaining significant after Bonferroni correction (α = 0.05/91 = 0.0005). 
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Supplementary Table S7: Genetic differentiation among samples. Pairwise FST (above diagonal) and p-values (below diagonal) among 14 
samples of Atlantic herring C. harengus based on allelic frequencies at Cpa111. See Table 1 for sample codes. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 -0.0066 0.0013 -0.0020 -0.0021 -0.0038 -0.0004 0.0011 -0.0048 0.0023 0.0300 0.0054 0.1196 0.0965 

2 0.791 0 -0.0087 -0.0070 -0.0067 -0.0077 0.0018 0.0018 -0.0102 -0.0067 0.0282 0.0060 0.1234 0.1000 

3 0.636 0.891 0 -0.0048 -0.0024 0.0004 0.0137 0.0155 -0.0052 -0.0050 0.0266 0.0162 0.1367 0.1053 

4 0.616 0.313 0.445 0 -0.0049 -0.0022 0.0091 0.0109 -0.0042 -0.0002 0.0308 0.0135 0.1389 0.1078 

5 0.744 0.871 0.586 0.652 0 -0.0020 0.0091 0.0137 -0.0024 0.0035 0.0288 0.0177 0.1325 0.1041 

6 0.691 0.587 0.162 0.111 0.405 0 0.0044 0.0021 -0.0050 -0.0006 0.0427 0.0086 0.1435 0.1176 

7 0.756 0.566 0.408 0.136 0.164 0.083 0 -0.0035 0.0010 0.0134 0.0263 -0.0003 0.0836 0.0715 

8 0.424 0.483 0.217 0.124 0.110 0.261 0.517 0 -0.0014 0.0084 0.0468 -0.0038 0.1112 0.1002 

9 0.750 0.893 0.923 0.492 0.646 0.342 0.465 0.698 0 -0.0048 0.0301 0.0031 0.1233 0.0998 

10 0.097 0.480 0.770 0.066 0.051 0.118 0.018 0.270 0.884 0 0.0440 0.0122 0.1620 0.1277 

11 0.000* 0.000* 0.007 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0 0.0371 0.0580 0.0334 

12 0.001 0.015 0.052 0.004 0.000* 0.000* 0.002 0.027 0.019 0.001 0.000* 0 0.1042 0.0890 

13 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.001 0.000* 0 -0.0004 

14 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.320 0 

Emboldened values differ significantly from zero (Fisher’s exact test. p < 0.05). 
* Values remaining significant after Bonferroni correction (α = 0.05/91 = 0.0005). 
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Supplementary Table S8: Results from the hierarchical Bayesian cluster analysis 
(STRUCTURE) based on all 24 microsatellite loci and all samples. STRUCTURE was run 
using 350,000 burn-in and 500,000 iterations for 10 independent runs for K = 1 to 10 for the 
North Atlantic samples and from K = 1 to 4 for the local Norwegian fjords (samples 11, 12, 
13 and 14). An admixture model with correlated allele frequencies without prior information 
on sample location was implemented. Bold values indicate the most likely number of clusters. 

 K Mean LnP(K) StDev LnP(K) 
North Atlantic 1 -87102 0.2898 
 2 -87261 12.7600 
 3 -87740 91.5819 
 4 -88410 95.0116 
 5 -89562 271.3621 
 6 -91281 799.5722 
 7 -93083 1390.0332 
 8 -95410 1819.3528 
 9 -95538 2152.4678 
 10 -95920 1641.7548 
Local fjords (all) 1 -49481 2.0991 
 2 -48829 5.9326 
 3 -49195 180.2179 
 4 -49718 1186.7621 
Local fjords (samples 11, 13 and 14) 1 -33530 1.0390 
 2 -33627 23.2868 
 3 -34463 254.8380 
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Supplementary Table S9: Results from the hierarchical Bayesian cluster analysis 
(STRUCTURE) based only on neutral microsatellite loci and all samples. STRUCTURE 
was run using 350,000 burn-in and 500,000 iterations for 10 independent runs for K = 1 to 10 
for the North Atlantic samples and from K = 1 to 3 for the local Norwegian fjords (samples 
11, 13 and 14). An admixture model with correlated allele frequencies without prior 
information on sample location was implemented. Bold values indicate the most likely 
number of clusters. 

 K Mean LnP(K) StDev LnP(K) 
North Atlantic 1 -85817 0.1871 
 2 -85981 25.6621 
 3 -86425 74.1802 
 4 -87096 124.9924 
 5 -88564 489.7930 
 6 -90622 1073.9283 
 7 -92667 2955.3703 
 8 -94162 2935.9272 
 9 -96560 3065.5698 
 10 -97251 3204.5460 
Local fjords 1 -32919 0.6579 
 2 -32999 21.2130 
 3 -33709 251.2843 
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Supplementary Fig. S1: Results of the Bayesian cluster analysis performed in Structure 
for all microsatellite loci and all samples. Two clusters were detected both at the LnP(K) 
(left figure) and ∆K levels (Right figure). STRUCTURE was run using 350,000 burn-in and 
500,000 iterations for 10 independent runs for K = 1 to 10 using an admixture model with 
correlated allele frequencies. No prior information on sample location was implemented. 
 
 

 
 

 
Supplementary Fig. S2: Results of the Bayesian cluster analysis performed in Structure 
for all microsatellite loci and the fjord samples. Two clusters were detected both at the 
LnP(K) (left figure) and ∆K levels (Right figure). STRUCTURE was run using 350,000 burn-
in and 500,000 iterations for 10 independent runs for K = 1 to 5 using an admixture model 
with correlated allele frequencies. No prior information on sample location was implemented. 
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Supplementary Fig. S3: Results of the Bayesian cluster analysis performed in Structure 
for neutral microsatellite loci only and all samples. Three clusters were detected both at the 
LnP(K) (left figure) and ∆K levels (Right figure). STRUCTURE was run using 350,000 burn-
in and 500,000 iterations for 10 independent runs for K = 1 to 10 using an admixture model 
with correlated allele frequencies. No prior information on sample location was implemented. 
No additional clusters were detected. 
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