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On the Distance Distribution of Duals of BCH Codes

Ilia Krasikov and Simon Litsyn,Member, IEEE

Abstract—We derive upper bounds on the components of the distance
distribution of duals of BCH codes.

Index Terms—BCH codes, distance distribution.

I. INTRODUCTION

Let C be the code dual to the extendedt-error correcting Bose-
Chaudhuri–Hocquenghem (BCH) code of lengthq = 2m, and let
B = (B0; � � � ; Bq) stand for the distance distribution ofC. Our aim
is to deriveupper boundsonBi’s. The following theorems summarize
our present knowledge.

The first one shows that outside a certain intervalBi’s vanish.
This is a refinement of the celebrated result by Weil [18] and

Manuscript received November 24, 1997; revised July 16, 1998.
I. Krasikov is with the School of Mathematical Sciences, Tel-Aviv Uni-

versity, Ramat-Aviv 69978, Tel-Aviv, Israel. He is also with the Beit-Berl
College, Kfar-Sava, Israel.

S. Litsyn is with the Center for Discrete Mathematics, Rutgers University,
Piscataway, NJ 08854 USA, on leave from the Department of Electrical
Engineering–Systems, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv,
Israel (e-mail: litsyn@eng.tau.ac.il).

Communicated by A. Barg, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(99)00083-8.

Carlitz–Uchiyama [3] due to Serre [14] (it has been adapted for duals
of BCH codes in [6] and [12]).

Theorem 1: If jq=2 � ij > 2(t � 1)[2 � 2m=2], i 6= 0; q, then
Bi = 0.

The next result deals with divisibility properties and is based on
the Ax theorem [2], see [7], [11], [13], and [16].

Theorem 2: Let a be the smallest positive integer�m=[log2 2t].
If i is not a multiple of2a thenBq=2�i = 0.

Apart from some particular cases, namelyt = 1; 2; 3; when all
the values of the distribution were computed explicitly, to the extent
of our knowledge, no general estimates ofBi’s were published.

In this correspondence we derive upper bounds onBi’s. Roughly
speaking, these bounds show that the distance distribution can be
upper-bounded by the corresponding normal distribution. To derive
the bounds we use the linear programming approach along with some
estimates on the magnitude of Krawtchouk polynomials of fixed
degree in a vicinity ofq=2:

II. PRELIMINARIES

Let F = FFF q be the finite field ofq = 2m elements andTr denote
the trace function fromF to FFF 2. Let Gt be an additive subgroup
of F [x]

Gt = G(x) =

t

i=1

aix
2i�1: ai 2 F :

Let � be a primitive element inF . For everyG(x) 2 Gt and� 2 FFF 2

we define a vector inFFF q
2

ccc(G; �) = (Tr (G(0)) + �; Tr (G(1)) + �;

Tr (G(�)) + �; � � � ; Tr (G(�q�2)) + �):

WhenG(x) runs overGt, the set of vectorsccc(G; ") constitute the
code dual to the extended BCH codes of lengthq and with minimum
distance2t + 2, see, e.g., [1], [10], and [15]. Letw(ccc(G; �)) stand
for the number of nonzero coordinates inccc(G; �). For i 2 [0; q]

Bi = jfG(x) 2 Gt; � 2 FFF 2: w(ccc(G; �)) = igj:

It is easy to check thatB0 = 1 and q
i=0Bi = 2jGtj = 2qt. By

the MacWilliams identity

q

j=0

BjPi(j) =
2qt; i = 0
0; 1 � i < 2t+ 2.

(1)

HerePi(j) are Krawtchouk polynomials (orthogonal on the interval
[0; q] with weight q

j
) defined by the following recurrence (for their

properties see, e.g., [5], and [8]–[10]):

(k + 1)Pk+1(x) = (q � 2x)Pk(x)� (q � k + 1)Pk�1(x) (2)

P0(x) = 1 P1(x) = q � 2x:

We need the following facts about Krawtchouk polynomials:
Orthogonality Relation:

q

i=0

q

i
P`(i)Pk(i) = �`; k2

q q

`
:
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Expansion in the Basis of Krawtchouk Polynomials:For a poly-
nomial �(x) = r

i=0 �iPi(x)

�i = 2�q
q

j=0

Pj(i)�(j): (3)

The Christoffel–Darboux Formula:

q

t

t

i=0

Pi(x)Pi(y)
n
i

=
t+1

2(y�x)
(Pt+1(x)Pt(y)� Pt(x)Pt+1(y)):

Letting y ! x and taking the limit, we get

q

t

t

i=0

(Pi(x))
2

n
i

=
t+ 1

2
(Pt+1(x)P

0

t (x)� Pt(x)P
0

t+1(x)):

The following lemma is crucial in our considerations, and is a version
of a result implicitly appearing in the thesis by Delsarte [4].

Lemma 1: Let

�(x) =

r

i=0

�iPi(x); 0 � r < 2t+ 2

then

2qt�0 =

q

j=0

�(j)Bj : (4)

Proof: Calculating2qt r
i=0 �iB

0

i, and taking into account that
�i = 0 for i > r, we get the claim from (1).

To obtain a bound onBk, choose in the previous lemma as�(x)
a nonnegative polynomial of degree less than2t+ 2. It yields

Bk � 2qt
�0
�(k)

: (5)

The following lemma gives a polynomial minimizing the right-hand
side of this inequality under an extra condition�(x) = �(x)2 for
some polynomial�(x).

Lemma 2: For k given, an optimal polynomial is

�(x) =

t

i=0

Pi(x)Pi(k)
q
i

2

=
(t+ 1)2

4 q
t

2
(k � x)2

(Pt+1(k)Pt(x)� Pt(k)Pt+1(x))
2 (6)

yielding

Bk �
4 q

t qt

(t+ 1)(Pt+1(k)P 0

t (k)� Pt(k)P 0

t+1(k))
:

Proof: Let �(x) = t
j=0 �jPj(x) and�(x) = �2(x): Then

�0 =
1

2q

q

i=0

q

i
�(i)

=
1

2q

q

i=0

q

i

t

j=0

�jPj(i)

2

=
1

2q

t

j; `=0

�j�`

q

i=0

q

i
Pj(i)P`(i)

by orthogonality of Krawtchouk polynomials

=
1

2q

t

j; `=0

�j�`�j; `
q

j
2q

=

t

j=0

�2j
q

j
:

Thus for k given

max
�

�(k)

�0
= max

�

t

j=0

�jPj(k)

2

t

j=0

�2j
q
j

= max
�

t

j=0

�j
q
j

Pj(k)
q
j

2

t

j=0

�2j
q
j

by Cauchy–Schwartz inequality

�
t

j=0

P 2
j (k)
q
j

by the Christoffel–Darboux formula

=
t+ 1

2 q
t

(Pt+1(k)P
0

t (k)� Pt(k)P
0

t+1(k)):

This bound is clearly achieved for�j = (Pj(k))=
q
j

, that is, the
optimal choice for a givenk is

�(x) =

t

j=0

Pj(k)Pj(x)
q
j

2

=
(t+ 1)2

4 q
t

2
(k � x)2

(Pt+1(k)Pt(x)� Pt(k)Pt+1(x))
2:

Then the second claim follows from (5).

III. ESTIMATES OF Bk

To use the bound of Lemma 2 one needs a lower estimate
for the Christoffel–Darboux kernelPt+1(k)Pt(x) � Pt(k)Pt+1(x).
Assume thatq is sufficiently large andt is fixed. In this situation, a
classical connection (see, e.g., [17, eq. (2.82.7)]) between Krawtchouk
and Hermite polynomials can be employed. However, we need
somehow more involved estimates for the accuracy of approximation
of Krawtchouk polynomials by Hermite polynomials.

The Hermite polynomialsHk(x) are defined by the recurrence
relation

Hk+1(x) = 2xHk(x)� 2kHk�1(x) (7)

H0(x) = 1 H1(x) = 2x:

Let "t stand for the largest root ofHt(x).

Lemma 3:

Pk
q �p2qy

2
=

1

k!2k=2
qk=2Hk(y) + 4q(k�2)=2

k

3
Hk�2(y)

+ 2
k

4
Hk�4(y) + q(k�4)=2Rk(y) (8)

whereR0(y) = R1(y) = 0, and

Rk+1(y) = 2yRk(y)� 2k(q � k + 1)

q
Rk�1(y)

+ 8(k� 1)
k

4
(3Hk�3(y) + 2yHk�4(y)): (9)

In particular, for fixedk and y

Pk
q �p2qy

2
=

qk=2

k!2k=2
Hk(y) +O

1

q
: (10)

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 05:35 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 1, JANUARY 1999 249

Proof: Relations (8) and (9) are verified just by substitution into
(2) and using (7).

In what follows we use the prime sign to denote the derivative iny.

Corollary 1: For k andy fixed andx = (q �
p
2qy)=2

d

dx
Pk(x) = � q(k�1)=2

2(k�1)=2k!
H 0

k(y) +O
1

q
:

Using these approximations we get the following.

Lemma 4: For fixed y andx = (q � p2qy)=2

Pt+1(x)
d

dx
Pt(x)�Pt(x)

d

dx
Pt+1(x)

=
qt

2t+1((t+1)!)2
(H 0

t+1(y))
2�Ht+1(y)H

00
t+1(y) +O(qt�1):

(11)

Proof: With accuracy up toO(1=q) we have from Lemma 3

Pt+1(x)
d

dx
Pt(x)� Pt(x)

d

dx
Pt+1(x)

=
qt

2tt!(t+ 1)!
Ht(y)H

0
t+1(y)�Ht+1(y)H

0
t(y)

and usingH 0
t+1(x) = 2(t+ 1)Ht(x) (see, e.g., [17, p. 106]) we get

the claim.

Now we are in a position to translate the derived estimates to
bounds forBk.

Theorem 3: For fixed y andk = (q � p2qy)=2

Bk � qt(t+ 1)!2t+3

(H 0
t+1(y))

2 �Ht+1(y)H 00
t+1(y)

1 +O
1

q
: (12)

To use this expression we need estimates for Hermite polynomials
when y <

p
2t.

The denominator of (12) can be easily computed ifx does not
belong to the interval where the roots ofPt(x) are located (or, which
is asymptotically the same,jyj > "t). Indeed, by (2),Pt(x) is a
polynomial of degreet in q, and

t

i=0

(Pi(x))
2

q
i

=
(Pt(x))

2

q
t

1 +O
1

q
:

In this case, we have

P 2
t (x)
q
t

� qtH2
t (y)

2t(t!)2 q
t

� (Ht(y))
2

2tt!
:

Theorem 4: Let y = q�2kp
2q

. For j q2 � kj > (t�1)pqp
t+2

Bk � qtt!2t+1

(Ht(y))2
1 +O

1

q
:

Proof: Follows from the estimate on the largest root ofHt(y)
due to Laguerre, see [17, p. 120]

"t �
p
2(t� 1)p
t+ 2

(13)

andy = O(t) by Theorem 1.

To apply this estimate one needs asymptotics for Hermite polyno-
mials. For the interval under consideration it is well known and can
be found, e.g., in [17, p. 200]. Wheny belongs to the interval where
the roots ofHt(y) exist, another approach should be employed.

Lemma 5: Let

Wt(y) = (H 0
t(y))

2 �Ht(y)H
00
t (y):

Then

Wt(0) =

2t
t

t=2
t!; for t even

4t
t� 1

(t� 1)=2
t!; otherwise

and

Wt(y) � ey
p
2t� jyjp

2t
Wt(0); jyj �

p
2t

Wt(y) � ey
p
2t+ jyjp

2t
Wt(0):

Proof: We start with calculatingWt(0). It is known that

Ht(0) =
(�1)t=2 t!

(t=2)!
; for t even

0; otherwise.

From the differential equation for Hermite polynomials

H 00
t (y) = 2yH 0

t(y)� 2tHt(y)

and

H 0
t(y) = 2tHt�1(y) (14)

we get for t even

Wt(0) = 2t(Ht(0))
2 = 2t

t

t=2
t!:

For t odd

Wt(0) = 4t2(Ht�1(0))
2 = 4t

t� 1

(t� 1)=2
t!:

Notice thatWt(y) is strictly positive. Indeed, letyi stand for theith
root of Ht(y). Then

Ht(y) = 2t
t

i=1

(y � yi)

and differentiating it we get

H 0
t(y) =Ht(y)

t

i=1

1

y � yi
;

H 00
t (y) =H 0

t(y)

t

i=1

1

y � yi
�Ht(y)

t

i=1

1

(y � yi)2

=Ht(y)

t

i=1

1

y � yi

2

�
t

i=1

1

(y � yi)2
:

Thus

Wt(y) = (Ht(y))
2

t

i=1

1

(y � yi)2
> 0:

Without loss of generality we assumey is nonnegative. Using (14)
we obtain

Wt(y) = 2t(Ht(y))
2 � 2yHt(y)H

0
t(y) + (H 0

t(y))
2

W 0
t (y) = 4ty(Ht(y))

2 � 2(1 + 2y2)Ht(y)H
0
t(y) + 2y(H 0

t(y))
2:

Denoting t = �2=2, we get

W 0
t (y) +

1� 2�y + 2y2

�� y
Wt(y) =

(�Ht(y)�H 0
t(y))

2

�� y

W 0
t (y)� 1 + 2�y + 2y2

�+ y
Wt(y) = � (�Ht(y) +H 0

t(y))
2

�+ y
:
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From the first equality, for0 � y < �, and taking into account that
Wt(y) > 0, we conclude

W 0

t (y)

Wt(y)
� �1� 2�y + 2y2

�� y
: (15)

On the other hand, from the second equality

W 0

t (y)

Wt(y)
� 1 + 2�y + 2y2

�+ y
: (16)

Integrating (15), we obtain
y

0

W 0

t (z)

Wt(z)
dz = ln

Wt(y)

Wt(0)
� y

2 + ln
�� y

�

thus proving the lower bound onWt(y). Similarly, integrating (16),
we get the claimed upper bound.

Notice, that the estimates of the lemma are quite accurate for
y <

p
2t. Indeed, the maximum of the function

e
y

p
2t� jyjp

2t

is achieved at

jyj =
p
t+

p
t� 1p
2

�
p
2t� 1p

8t
> "t

i.e., almost at the end of the intervaljyj < p
2t. Even at this point

the ratio between the upper and lower bound is less than8t, and all
the roots ofHt(y) are within this interval.

Numerical evidence suggests that (11) still gives an accurate
approximation in a much wider interval oft andy. It is tempting to
conjecture that actually the Christoffel–Darboux kernel can be well
approximated by Hermite polynomials for allt = o(

p
q).

Now we can give an upper bound onBk for the interval containing
zeroes ofHt(y).

Theorem 5: Let q
2�k

< (t+ 1)q, then

Bk �
p
q qt2t+4

p
t+ 1j2 q(t+ 1)� q + 2kj t+1

(t+1)=2

� e�((q�2k) =8q) 1 +O
1

q
; for t odd

Bk �
p
q qt2t+3

p
t+ 1j2 q(t+ 1)� q + 2kj t

t=2

� e�((q�2k) =8q) 1 +O
1

q
; for t even

Bk � 4
p
2�qqt

2 q(t+ 1)� q + 2k

� e�((q�2k) =q) 1 +O
1

t
; for sufficiently larget:
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