[2] M. Berggren, "An algorithm for characterizing error event sequences in partial response channels," Diploma Project, Swiss Fed. Inst. Tech., Zurich, Switzerland, Aug. 1996.
[3] R. Karabed and P. H. Siegel, "Coding for higher-order partial-response channels," in Coding and Signal Processing for Information Storage, M. R. Raghuveer, S. A. Dianat, S. W. McLaughlin, and M. Hassner, Eds., Proc. SPIE 2605, Oct. 1995, pp. 115-126.
[4] R. Karabed, P. H. Siegel, and E. Soljanin, "Constrained coding for binary channels with high intersymbol interference," submitted for publication to IEEE Trans. Inform. Theory.
[5] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and Coding. Cambridge, U.K.: Cambridge Univ. Press, 1995.
[6] B. H. Marcus, P. H. Siegel, and J. K. Wolf, "Finite-state modulation codes for data storage," IEEE J. Select. Areas Commun., vol. 10, pp. 5-37, Jan. 1992.
[7] B. E. Moision, P. H. Siegel, and E. Soljanin, "Distance-enhancing codes for digital recording," IEEE Trans. Magn., vol. 34, no. 1, pt. 1, pp. 69-74, Jan. 1998.
[8] J. Moon and B. Brickner, "Maximum transition run codes for data storage systems," IEEE Trans. Magn., vol. 32, pp. 3992-3994, Sept. 1996.
[9] W.-H. Sheen and G. L. Stuber, "Error probability for reduced-state sequence estimation," IEEE J. Select. Areas Commun., vol. 10, pp. 571-578, Apr. 1992.
[10] P. H. Siegel "Coded modulation for binary partial response channels: state-of-the-art," in Proc. 1996 Information Theory Workshop (Haifa, Israel, June 9-13, 1996).
[11] E. Soljanin, "On coding for binary partial-response channels that don't achieve the matched-filter-bound," in Proc. 1996 Information Theory Workshop (Haifa, Israel, June 9-13, 1996).
[12] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding. New York: McGraw-Hill, 1979.
[13] A. D. Weathers, S. A. Altekar, and J. K. Wolf, "Distance spectra for PRML channels," IEEE Trans. Magn., vol. 33, no. 5, pt. 1, pp. 2809-2811, Sept. 1997.

On the Distance Distribution of Duals of BCH Codes

Ilia Krasikov and Simon Litsyn, Member, IEEE

Abstract

We derive upper bounds on the components of the distance distribution of duals of BCH codes.

Index Terms-BCH codes, distance distribution.

I. Introduction

Let C be the code dual to the extended t-error correcting Bose-Chaudhuri-Hocquenghem (BCH) code of length $q=2^{m}$, and let $B=\left(B_{0}, \cdots, B_{q}\right)$ stand for the distance distribution of C. Our aim is to derive upper bounds on B_{i} 's. The following theorems summarize our present knowledge.

The first one shows that outside a certain interval B_{i} 's vanish. This is a refinement of the celebrated result by Weil [18] and

Manuscript received November 24, 1997; revised July 16, 1998.
I. Krasikov is with the School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel. He is also with the Beit-Berl College, Kfar-Sava, Israel.
S. Litsyn is with the Center for Discrete Mathematics, Rutgers University, Piscataway, NJ 08854 USA, on leave from the Department of Electrical Engineering-Systems, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel (e-mail: litsyn@eng.tau.ac.il).
Communicated by A. Barg, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(99)00083-8.

Carlitz-Uchiyama [3] due to Serre [14] (it has been adapted for duals of BCH codes in [6] and [12]).
Theorem 1: If $|q / 2-i|>2(t-1)\left[2 \cdot 2^{m / 2}\right], i \neq 0, q$, then $B_{i}=0$.

The next result deals with divisibility properties and is based on the Ax theorem [2], see [7], [11], [13], and [16].

Theorem 2: Let a be the smallest positive integer $\geq m /\left[\log _{2} 2 t\right]$. If i is not a multiple of 2^{a} then $B_{q / 2-i}=0$.

Apart from some particular cases, namely $t=1,2,3$, when all the values of the distribution were computed explicitly, to the extent of our knowledge, no general estimates of B_{i} 's were published.

In this correspondence we derive upper bounds on B_{i} 's. Roughly speaking, these bounds show that the distance distribution can be upper-bounded by the corresponding normal distribution. To derive the bounds we use the linear programming approach along with some estimates on the magnitude of Krawtchouk polynomials of fixed degree in a vicinity of $q / 2$.

II. Preliminaries

Let $F=\boldsymbol{F}_{q}$ be the finite field of $q=2^{m}$ elements and Tr denote the trace function from F to \boldsymbol{F}_{2}. Let \mathcal{G}_{t} be an additive subgroup of $F[x]$

$$
\mathcal{G}_{t}=\left\{G(x)=\sum_{i=1}^{t} a_{i} x^{2 i-1}: \quad a_{i} \in F\right\}
$$

Let α be a primitive element in F. For every $G(x) \in \mathcal{G}_{t}$ and $\epsilon \in \boldsymbol{F}_{2}$ we define a vector in \boldsymbol{F}_{2}^{q}

$$
\begin{aligned}
c(G, \epsilon)= & (\operatorname{Tr}(G(0))+\epsilon, \operatorname{Tr}(G(1))+\epsilon \\
& \left.\operatorname{Tr}(G(\alpha))+\epsilon, \cdots, \operatorname{Tr}\left(G\left(\alpha^{q-2}\right)\right)+\epsilon\right)
\end{aligned}
$$

When $G(x)$ runs over \mathcal{G}_{t}, the set of vectors $\boldsymbol{c}(G, \varepsilon)$ constitute the code dual to the extended BCH codes of length q and with minimum distance $2 t+2$, see, e.g., [1], [10], and [15]. Let $w(\boldsymbol{c}(G, \epsilon))$ stand for the number of nonzero coordinates in $\boldsymbol{c}(G, \epsilon)$. For $i \in[0, q]$

$$
B_{i}=\left|\left\{G(x) \in \mathcal{G}_{t}, \epsilon \in \boldsymbol{F}_{2}: w(\boldsymbol{c}(G, \epsilon))=i\right\}\right| .
$$

It is easy to check that $B_{0}=1$ and $\sum_{i=0}^{q} B_{i}=2\left|\mathcal{G}_{t}\right|=2 q^{t}$. By the MacWilliams identity

$$
\sum_{j=0}^{q} B_{j} P_{i}(j)= \begin{cases}2 q^{t}, & i=0 \tag{1}\\ 0, & 1 \leq i<2 t+2\end{cases}
$$

Here $P_{i}(j)$ are Krawtchouk polynomials (orthogonal on the interval $[0, q]$ with weight $\binom{q}{j}$) defined by the following recurrence (for their properties see, e.g., [5], and [8]-[10]):

$$
\begin{align*}
(k+1) P_{k+1}(x) & =(q-2 x) P_{k}(x)-(q-k+1) P_{k-1}(x) \tag{2}\\
P_{0}(x) & =1 \quad P_{1}(x)=q-2 x .
\end{align*}
$$

We need the following facts about Krawtchouk polynomials:
Orthogonality Relation:

$$
\sum_{i=0}^{q}\binom{q}{i} P_{\ell}(i) P_{k}(i)=\delta_{\ell, k} 2^{q}\binom{q}{\ell}
$$

Expansion in the Basis of Krawtchouk Polynomials: For a polynomial $\alpha(x)=\sum_{i=0}^{r} \alpha_{i} P_{i}(x)$

$$
\begin{equation*}
\alpha_{i}=2^{-q} \sum_{j=0}^{q} P_{j}(i) \alpha(j) \tag{3}
\end{equation*}
$$

The Christoffel-Darboux Formula:

$$
\binom{q}{t} \sum_{i=0}^{t} \frac{P_{i}(x) P_{i}(y)}{\binom{n}{i}}=\frac{t+1}{2(y-x)}\left(P_{t+1}(x) P_{t}(y)-P_{t}(x) P_{t+1}(y)\right) .
$$

Letting $y \rightarrow x$ and taking the limit, we get

$$
\binom{q}{t} \sum_{i=0}^{t} \frac{\left(P_{i}(x)\right)^{2}}{\binom{n}{i}}=\frac{t+1}{2}\left(P_{t+1}(x) P_{t}^{\prime}(x)-P_{t}(x) P_{t+1}^{\prime}(x)\right) .
$$

The following lemma is crucial in our considerations, and is a version of a result implicitly appearing in the thesis by Delsarte [4].

Lemma 1: Let

$$
\alpha(x)=\sum_{i=0}^{r} \alpha_{i} P_{i}(x), \quad 0 \leq r<2 t+2
$$

then

$$
\begin{equation*}
2 q^{t} \alpha_{0}=\sum_{j=0}^{q} \alpha(j) B_{j} . \tag{4}
\end{equation*}
$$

Proof: Calculating $2 q^{t} \sum_{i=0}^{r} \alpha_{i} B_{i}^{\prime}$, and taking into account that $\alpha_{i}=0$ for $i>r$, we get the claim from (1).

To obtain a bound on B_{k}, choose in the previous lemma as $\alpha(x)$ a nonnegative polynomial of degree less than $2 t+2$. It yields

$$
\begin{equation*}
B_{k} \leq 2 q^{t} \frac{\alpha_{0}}{\alpha(k)} . \tag{5}
\end{equation*}
$$

The following lemma gives a polynomial minimizing the right-hand side of this inequality under an extra condition $\alpha(x)=\beta(x)^{2}$ for some polynomial $\beta(x)$.

Lemma 2: For k given, an optimal polynomial is

$$
\begin{align*}
\alpha(x) & =\left(\sum_{i=0}^{t} \frac{P_{i}(x) P_{i}(k)}{\binom{q}{i}}\right)^{2} \\
& =\frac{(t+1)^{2}}{4\binom{q}{t}^{2}(k-x)^{2}}\left(P_{t+1}(k) P_{t}(x)-P_{t}(k) P_{t+1}(x)\right)^{2} \tag{6}
\end{align*}
$$

yielding

$$
B_{k} \leq \frac{4\binom{q}{t} q^{t}}{(t+1)\left(P_{t+1}(k) P_{t}^{\prime}(k)-P_{t}(k) P_{t+1}^{\prime}(k)\right)}
$$

Proof: Let $\beta(x)=\sum_{j=0}^{t} \beta_{j} P_{j}(x)$ and $\alpha(x)=\beta^{2}(x)$. Then

$$
\begin{aligned}
\alpha_{0} & =\frac{1}{2^{q}} \sum_{i=0}^{q}\binom{q}{i} \alpha(i) \\
& =\frac{1}{2^{q}} \sum_{i=0}^{q}\binom{q}{i}\left(\sum_{j=0}^{t} \beta_{j} P_{j}(i)\right)^{2} \\
& =\frac{1}{2^{q}} \sum_{j, \ell=0}^{t} \beta_{j} \beta_{\ell} \sum_{i=0}^{q}\binom{q}{i} P_{j}(i) P_{\ell}(i)
\end{aligned}
$$

by orthogonality of Krawtchouk polynomials

$$
\begin{aligned}
& =\frac{1}{2^{q}} \sum_{j, \ell=0}^{t} \beta_{j} \beta_{\ell} \delta_{j, \ell}\binom{q}{j} 2^{q} \\
& =\sum_{j=0}^{t} \beta_{j}^{2}\binom{q}{j}
\end{aligned}
$$

Thus for k given

$$
\begin{aligned}
\max _{\beta} \frac{\alpha(k)}{\alpha_{0}} & =\max _{\beta} \frac{\left(\sum_{j=0}^{t} \beta_{j} P_{j}(k)\right)^{2}}{\sum_{j=0}^{t} \beta_{j}^{2}\binom{q}{j}} \\
& =\max _{\beta} \frac{\left(\sum_{j=0}^{t}\left(\beta_{j} \sqrt{\left({ }^{q}\right)} \begin{array}{l}
j \\
j
\end{array}\right)\left(P_{j}(k) / \sqrt{\binom{q}{j}}\right)\right)^{2}}{\sum_{j=0}^{t} \beta_{j}^{2}\binom{q}{j}}
\end{aligned}
$$

by Cauchy-Schwartz inequality

$$
\leq \sum_{j=0}^{t} \frac{P_{j}^{2}(k)}{\binom{q}{j}}
$$

by the Christoffel-Darboux formula

$$
=\frac{t+1}{2\binom{q}{t}}\left(P_{t+1}(k) P_{t}^{\prime}(k)-P_{t}(k) P_{t+1}^{\prime}(k)\right) .
$$

This bound is clearly achieved for $\beta_{j}=\left(P_{j}(k)\right) /\binom{q}{j}$, that is, the optimal choice for a given k is

$$
\begin{aligned}
\alpha(x) & =\left(\sum_{j=0}^{t} \frac{P_{j}(k) P_{j}(x)}{\binom{q}{j}}\right)^{2} \\
& =\frac{(t+1)^{2}}{4\binom{q}{t}^{2}(k-x)^{2}}\left(P_{t+1}(k) P_{t}(x)-P_{t}(k) P_{t+1}(x)\right)^{2} .
\end{aligned}
$$

Then the second claim follows from (5).

III. Estimates of B_{k}

To use the bound of Lemma 2 one needs a lower estimate for the Christoffel-Darboux kernel $P_{t+1}(k) P_{t}(x)-P_{t}(k) P_{t+1}(x)$. Assume that q is sufficiently large and t is fixed. In this situation, a classical connection (see, e.g., [17, eq. (2.82.7)]) between Krawtchouk and Hermite polynomials can be employed. However, we need somehow more involved estimates for the accuracy of approximation of Krawtchouk polynomials by Hermite polynomials.

The Hermite polynomials $H_{k}(x)$ are defined by the recurrence relation

$$
\begin{align*}
H_{k+1}(x) & =2 x H_{k}(x)-2 k H_{k-1}(x) \tag{7}\\
H_{0}(x) & =1 \quad H_{1}(x)=2 x .
\end{align*}
$$

Let ε_{t} stand for the largest root of $H_{t}(x)$.

Lemma 3:

$$
\begin{align*}
P_{k}\left(\frac{q-\sqrt{2 q} y}{2}\right)= & \frac{1}{k!2^{k / 2}}\left(q^{k / 2} H_{k}(y)+4 q^{(k-2) / 2}\right)\binom{k}{3} H_{k-2}(y) \\
& +2\binom{k}{4} H_{k-4}(y)+q^{(k-4) / 2} R_{k}(y) \tag{8}
\end{align*}
$$

where $R_{0}(y)=R_{1}(y)=0$, and

$$
\begin{align*}
R_{k+1}(y)= & 2 y R_{k}(y)-\frac{2 k(q-k+1)}{q} R_{k-1}(y) \\
& +8(k-1)\binom{k}{4}\left(3 H_{k-3}(y)+2 y H_{k-4}(y)\right) \tag{9}
\end{align*}
$$

In particular, for fixed k and y

$$
\begin{equation*}
P_{k}\left(\frac{q-\sqrt{2 q} y}{2}\right)=\frac{q^{k / 2}}{k!2^{k / 2}} H_{k}(y)+O\left(\frac{1}{q}\right) . \tag{10}
\end{equation*}
$$

Proof: Relations (8) and (9) are verified just by substitution into (2) and using (7).

In what follows we use the prime sign to denote the derivative in y.
Corollary 1: For k and y fixed and $x=(q-\sqrt{2 q} y) / 2$

$$
\frac{d}{d x} P_{k}(x)=-\frac{q^{(k-1) / 2}}{2^{(k-1) / 2} k!} H_{k}^{\prime}(y)+O\left(\frac{1}{q}\right)
$$

Using these approximations we get the following.
Lemma 4: For fixed y and $x=(q-\sqrt{2 q} y) / 2$

$$
\begin{align*}
& P_{t+1}(x) \frac{d}{d x} P_{t}(x)-P_{t}(x) \frac{d}{d x} P_{t+1}(x) \\
& \quad=\frac{q^{t}}{2^{t+1}((t+1)!)^{2}}\left(\left(H_{t+1}^{\prime}(y)\right)^{2}-H_{t+1}(y) H_{t+1}^{\prime \prime}(y)\right)+O\left(q^{t-1}\right) \tag{11}
\end{align*}
$$

Proof: With accuracy up to $O(1 / q)$ we have from Lemma 3

$$
\begin{aligned}
P_{t+1}(x) \frac{d}{d x} P_{t}(x) & -P_{t}(x) \frac{d}{d x} P_{t+1}(x) \\
& =\frac{q^{t}}{2^{t} t!(t+1)!}\left(H_{t}(y) H_{t+1}^{\prime}(y)-H_{t+1}(y) H_{t}^{\prime}(y)\right)
\end{aligned}
$$

and using $H_{t+1}^{\prime}(x)=2(t+1) H_{t}(x)$ (see, e.g., [17, p. 106]) we get the claim.

Now we are in a position to translate the derived estimates to bounds for B_{k}.

Theorem 3: For fixed y and $k=(q-\sqrt{2 q} y) / 2$

$$
\begin{equation*}
B_{k} \leq \frac{q^{t}(t+1)!2^{t+3}}{\left(H_{t+1}^{\prime}(y)\right)^{2}-H_{t+1}(y) H_{t+1}^{\prime \prime}(y)}\left(1+O\left(\frac{1}{q}\right)\right) \tag{12}
\end{equation*}
$$

To use this expression we need estimates for Hermite polynomials when $y<\sqrt{2 t}$.
The denominator of (12) can be easily computed if x does not belong to the interval where the roots of $P_{t}(x)$ are located (or, which is asymptotically the same, $\left.|y|>\varepsilon_{t}\right)$. Indeed, by (2), $P_{t}(x)$ is a polynomial of degree t in q, and

$$
\sum_{i=0}^{t} \frac{\left(P_{i}(x)\right)^{2}}{\binom{q}{i}}=\frac{\left(P_{t}(x)\right)^{2}}{\binom{q}{t}}\left(1+O\left(\frac{1}{q}\right)\right)
$$

In this case, we have

$$
\frac{P_{t}^{2}(x)}{\binom{q}{t}} \approx \frac{q^{t} H_{t}^{2}(y)}{2^{t}(t!)^{2}\binom{q}{t}} \approx \frac{\left(H_{t}(y)\right)^{2}}{2^{t} t!}
$$

Theorem 4: Let $y=\frac{q-2 k}{\sqrt{2 q}}$. For $\left|\frac{q}{2}-k\right|>\frac{(t-1) \sqrt{q}}{\sqrt{t+2}}$

$$
B_{k} \leq \frac{q^{t} t!2^{t+1}}{\left(H_{t}(y)\right)^{2}}\left(1+O\left(\frac{1}{q}\right)\right)
$$

Proof: Follows from the estimate on the largest root of $H_{t}(y)$ due to Laguerre, see [17, p. 120]

$$
\begin{equation*}
\varepsilon_{t} \leq \frac{\sqrt{2}(t-1)}{\sqrt{t+2}} \tag{13}
\end{equation*}
$$

and $y=O(t)$ by Theorem 1.
To apply this estimate one needs asymptotics for Hermite polynomials. For the interval under consideration it is well known and can be found, e.g., in [17, p. 200]. When y belongs to the interval where the roots of $H_{t}(y)$ exist, another approach should be employed.

Lemma 5: Let

$$
W_{t}(y)=\left(H_{t}^{\prime}(y)\right)^{2}-H_{t}(y) H_{t}^{\prime \prime}(y)
$$

Then

$$
W_{t}(0)= \begin{cases}2 t\binom{t}{t / 2} t!, & \text { for } t \text { even } \\ 4 t\binom{t-1}{(t-1) / 2} t!, & \text { otherwise }\end{cases}
$$

and

$$
\begin{aligned}
& W_{t}(y) \geq e^{y^{2}} \frac{\sqrt{2 t}-|y|}{\sqrt{2 t}} W_{t}(0), \quad|y| \leq \sqrt{2 t} \\
& W_{t}(y) \leq e^{y^{2}} \frac{\sqrt{2 t}+|y|}{\sqrt{2 t}} W_{t}(0) .
\end{aligned}
$$

Proof: We start with calculating $W_{t}(0)$. It is known that

$$
H_{t}(0)= \begin{cases}(-1)^{t / 2} \frac{t!}{(t / 2)!}, & \text { for } t \text { even } \\ 0, & \text { otherwise }\end{cases}
$$

From the differential equation for Hermite polynomials

$$
H_{t}^{\prime \prime}(y)=2 y H_{t}^{\prime}(y)-2 t H_{t}(y)
$$

and

$$
\begin{equation*}
H_{t}^{\prime}(y)=2 t H_{t-1}(y) \tag{14}
\end{equation*}
$$

we get for t even

$$
W_{t}(0)=2 t\left(H_{t}(0)\right)^{2}=2 t\binom{t}{t / 2} t!
$$

For t odd

$$
W_{t}(0)=4 t^{2}\left(H_{t-1}(0)\right)^{2}=4 t\binom{t-1}{(t-1) / 2} t!
$$

Notice that $W_{t}(y)$ is strictly positive. Indeed, let y_{i} stand for the i th root of $H_{t}(y)$. Then

$$
H_{t}(y)=2^{t} \prod_{i=1}^{t}\left(y-y_{i}\right)
$$

and differentiating it we get

$$
\begin{aligned}
H_{t}^{\prime}(y) & =H_{t}(y) \sum_{i=1}^{t} \frac{1}{y-y_{i}} \\
H_{t}^{\prime \prime}(y) & =H_{t}^{\prime}(y) \sum_{i=1}^{t} \frac{1}{y-y_{i}}-H_{t}(y) \sum_{i=1}^{t} \frac{1}{\left(y-y_{i}\right)^{2}} \\
& =H_{t}(y)\left(\sum_{i=1}^{t} \frac{1}{y-y_{i}}\right)^{2}-\sum_{i=1}^{t} \frac{1}{\left(y-y_{i}\right)^{2}}
\end{aligned}
$$

Thus

$$
W_{t}(y)=\left(H_{t}(y)\right)^{2} \sum_{i=1}^{t} \frac{1}{\left(y-y_{i}\right)^{2}}>0 .
$$

Without loss of generality we assume y is nonnegative. Using (14) we obtain

$$
\begin{aligned}
& W_{t}(y)=2 t\left(H_{t}(y)\right)^{2}-2 y H_{t}(y) H_{t}^{\prime}(y)+\left(H_{t}^{\prime}(y)\right)^{2} \\
& W_{t}^{\prime}(y)=4 t y\left(H_{t}(y)\right)^{2}-2\left(1+2 y^{2}\right) H_{t}(y) H_{t}^{\prime}(y)+2 y\left(H_{t}^{\prime}(y)\right)^{2} .
\end{aligned}
$$

Denoting $t=\mu^{2} / 2$, we get

$$
\begin{aligned}
& W_{t}^{\prime}(y)+\frac{1-2 \mu y+2 y^{2}}{\mu-y} W_{t}(y)=\frac{\left(\mu H_{t}(y)-H_{t}^{\prime}(y)\right)^{2}}{\mu-y} \\
& W_{t}^{\prime}(y)-\frac{1+2 \mu y+2 y^{2}}{\mu+y} W_{t}(y)=-\frac{\left(\mu H_{t}(y)+H_{t}^{\prime}(y)\right)^{2}}{\mu+y}
\end{aligned}
$$

From the first equality, for $0 \leq y<\mu$, and taking into account that $W_{t}(y)>0$, we conclude

$$
\begin{equation*}
\frac{W_{t}^{\prime}(y)}{W_{t}(y)} \geq-\frac{1-2 \mu y+2 y^{2}}{\mu-y} \tag{15}
\end{equation*}
$$

On the other hand, from the second equality

$$
\begin{equation*}
\frac{W_{t}^{\prime}(y)}{W_{t}(y)} \leq \frac{1+2 \mu y+2 y^{2}}{\mu+y} . \tag{16}
\end{equation*}
$$

Integrating (15), we obtain

$$
\int_{0}^{y} \frac{W_{t}^{\prime}(z)}{W_{t}(z)} d z=\ln \frac{W_{t}(y)}{W_{t}(0)} \geq y^{2}+\ln \frac{\mu-y}{\mu}
$$

thus proving the lower bound on $W_{t}(y)$. Similarly, integrating (16), we get the claimed upper bound.

Notice, that the estimates of the lemma are quite accurate for $y<\sqrt{2 t}$. Indeed, the maximum of the function

$$
e^{y^{2}} \frac{\sqrt{2 t}-|y|}{\sqrt{2 t}}
$$

is achieved at

$$
|y|=\frac{\sqrt{t}+\sqrt{t-1}}{\sqrt{2}} \approx \sqrt{2 t}-\frac{1}{\sqrt{8 t}}>\varepsilon_{t}
$$

i.e., almost at the end of the interval $|y|<\sqrt{2 t}$. Even at this point the ratio between the upper and lower bound is less than $8 t$, and all the roots of $H_{t}(y)$ are within this interval.

Numerical evidence suggests that (11) still gives an accurate approximation in a much wider interval of t and y. It is tempting to conjecture that actually the Christoffel-Darboux kernel can be well approximated by Hermite polynomials for all $t=o(\sqrt{q})$.

Now we can give an upper bound on B_{k} for the interval containing zeroes of $H_{t}(y)$.

$$
\begin{aligned}
& \text { Theorem 5: Let }\left|\frac{q}{2-k}\right|<\sqrt{(t+1) q}, \text { then } \\
& B_{k} \leq \frac{\sqrt{q} q^{t} 2^{t+4}}{\sqrt{t+1}|2 \sqrt{q(t+1)}-q+2 k|\binom{t+1}{(t+1) / 2}} \\
& \cdot e^{-\left((q-2 k)^{2} / 8 q\right)}\left(1+O\left(\frac{1}{q}\right)\right), \quad \text { for } t \text { odd } \\
& B_{k} \leq \frac{\sqrt{q} q^{t} 2^{t+3}}{\sqrt{t+1}|2 \sqrt{q(t+1)}-q+2 k|\left({ }^{t} t_{2}^{t}\right)} \\
& \cdot e^{-\left((q-2 k)^{2} / 8 q\right)}\left(1+O\left(\frac{1}{q}\right)\right), \quad \text { for } t \text { even } \\
& B_{k} \leq \frac{4 \sqrt{2 \pi q} q^{t}}{|2 \sqrt{q(t+1)}-q+2 k|} \\
& \cdot e^{-\left((q-2 k)^{2} / q\right)}\left(1+O\left(\frac{1}{t}\right)\right), \quad \text { for sufficiently large } t .
\end{aligned}
$$

Acknowledgment

The authors are grateful to A. Barg and R. J. McEliece for many

References

[1] D. R. Anderson, "A new class of cyclic codes," SIAM J. Appl. Math., vol. 16, pp. 181-197, 1968
[2] J. Ax, "Zeroes of polynomials over finite fields," Amer. J. Math., vol. 86, pp. 255-261, 1964.
useful comments.

3] L. Carlitz and S. Uchiyama, "Bounds for exponential sums," Duke Math. J., vol. 24, pp. 37-41, 1957.
[4] Ph. Delsarte, "An algebraic approach to the association schemes of coding theory," Philips Res. Rept. Suppl., no. 10, 1973.
[5] I. Krasikov and S. Litsyn, "On integral zeroes of Krawtchouk polynomials," J. Comb. Theory, Ser. A 150, pp. 441-447, 1996.
[6] G. Lachaud, "Artin-Schreier curves, exponential sums and the Car-litz-Uchiyama bound for geometric codes," J. Number Theory, vol. 39, no. 1, pp. 485-494, 1991.
[7] S. Litsyn, C. J. Moreno, and O. Moreno, "Divisibility properties and new bounds for cyclic codes and exponential sums in one and several variables," AAECC, vol. 5, no. 2, pp. 105-116, 1994.
[8] V. Levenshtein, "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces," IEEE Trans. Inform. Theory, vol. 41, pp. 1303-1321, Sept. 1995.
[9] J. H. van Lint, Introduction to Coding Theory. New York: SpringerVerlag, 1992.
[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. Amsterdam, The Netherlands: North Holland, 1983.
[11] R. J. McEliece, "Weight congruences for p-ary cyclic codes," Discr. Math., vol. 3, pp. 177-192, 1972.
[12] C. J. Moreno and O. Moreno, "An improved Bombieri-Weil bound and applications to coding theory," J. Number Theory, vol. 42, pp. 32-46, 1992.
[13] O. Moreno and C. J. Moreno, "The MacWilliams-Sloane conjecture on the tightness of the Carlitz-Uchiyama bound and the weights of duals of BCH codes," IEEE Trans. Inform. Theory, vol. 40, pp. 1894-1907, Nov. 1994.
[14] J. P. Serre, "Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini," C. R. Acad. Sci. Paris, vol. 296 Série I, pp. 397-402, 1983.
[15] V. M. Sidel'nikov, "On mutual correlation of sequences," Sov. Math.-Dokl., vol. 12, no. 1, pp. 197-201, 1971.
[16] G. Solomon and R. J. McEliece, "Weights of cyclic codes," J. Comb Theory, vol. 1, pp. 459-475, 1966.
[17] G. Szegö, "Orthogonal polynomials," Amer. Math. Soc. Colloq. Publ. (Providence, RI), vol. 23, 1975.
[18] A. Weil, "On some exponential sums," Proc. Nat. Acad. Sci. USA., 1948, pp. 204-207, vol. 34.

