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ABSTRACT  23 

1. Single component geochemical maps are the most basic representation of spatial elemental 24 

distributions and commonly used in environmental and exploration geochemistry. However, 25 

the compositional nature of geochemical data imposes several limitations on how the data 26 

should be presented. The problems relate to the constant sum problem (closure), and the 27 

inherently multivariate relative information conveyed by compositional data. Well known is, 28 

for instance, the tendency of all heavy metals to show lower values in soils with significant 29 

contributions of diluting elements (e.g., the quartz dilution effect); or the contrary effect, 30 

apparent enrichment in many elements due to removal of potassium during weathering. 31 

The validity of classical single component maps is thus investigated, and reasonable 32 

alternatives that honour the compositional character of geochemical concentrations are 33 

presented. The first recommended such method relies on knowledge-driven log-ratios, 34 

chosen to highlight certain geochemical relations or to filter known artefacts (e.g. dilution 35 

with SiO2 or volatiles). This is similar to the classical normalisation approach to a single 36 

element. The second approach uses the (so called) log-contrasts, that employ suitable 37 

statistical methods (such as classification techniques, regression analysis, principal 38 

component analysis, clustering of variables, etc.) to extract potentially interesting 39 

geochemical summaries. The caution from this work is that if a compositional approach is 40 

not used, it becomes difficult to guarantee that any identified pattern, trend or anomaly is 41 

not an artefact of the constant sum constraint. In summary the authors recommend a chain 42 

of enquiry that involves searching for the appropriate statistical method that can answer the 43 

required geological or geochemical question whilst maintaining the integrity of the 44 

compositional nature of the data. The required log-ratio transformations should be applied 45 
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followed by the chosen statistical method. Interpreting the results may require a closer 46 

working relationship between statisticians, data analysts and geochemists. 47 

Key words: soil geochemistry, compositional data analysis, log-ratios, mapping.  48 



 

4 
 

INTRODUCTION 49 

Over the last decade the focus of digital soil and sediment databases at a regional, national, 50 

transnational and continent scale has increasingly become to provide information for a 51 

range of purposes including geological and soil mapping, baseline quality documentation, 52 

mineral prospecting, land and soil resource assessment, risk evaluation, environmental and 53 

educational purposes, and prediction of soil provenance for forensic purposes (Smith et al., 54 

1997; Reimann et al., 1998, 2003; Morris et al., 2003; Lagacherie et al., 2007; McKinley, 55 

2013). These digital soil databases are generally accompanied by geochemical atlases (e.g. 56 

Caritat and Cooper, 2011a; Young and Donald, 2013; Reimann et al., 2014a,b) showing a 57 

collection of distribution maps for individual geochemical elements. This has been matched 58 

by a corresponding increase in published studies utilising these soil geochemical surveys 59 

(e.g. Chiprés et al., 2008; Grunsky et al., 2009; Carranza, 2010; Ohta et al., 2011; Caritat and 60 

Grunsky, 2013; Cheng et al., 2014; Lancianese and Dinelli, 2014; Birke et al., 2015). The 61 

resolution of the ground-based sampling scheme used for the generation of these databases 62 

is the best compromise between the extent of the region covered, and time and resources 63 

available. Over a local to regional scale, soil sampling can be managed on a 2 km2 grid as 64 

applied by the Geological Survey of Northern Ireland (GSNI)’s Tellus project. A regional scale 65 

dataset such as this is close to exhaustive sampling in terms of geological survey mapping, 66 

reducing the need for interpolation. It is worth noting however that this is not exhaustive 67 

sampling for mineral exploration. Generally surveys are carried out at local (1:10,000), 68 

regional (1:250,000) or continental (1:1,000,000) scales. A number of authors discuss the 69 

scale of geochemical mapping (e.g. Bølviken et al., 1992; Darnley et al., 1995; Reimann et al., 70 

2010). 71 
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The sampling strategy generally follows standard protocols (e.g. UNESCO’s IGCP Global 72 

Geochemical Database – Darnley et al., 1995; G-BASE standard established by BGS - Johnson 73 

2005; FOREGS field handbook – Salminen et al., 1998; GEMAS field handbook – EGS, 2008; 74 

North American Soil Geochemical Landscapes Project – Smith et al. 2011; National 75 

Geochemical Survey of Australia field manual – Lech et al., 2007; Canadian component of 76 

the North American Soil Geochemical Landscapes Project – Friske et al., 2013; China 77 

Geochemical Baseline Project – Wang et al., 2015).  78 

Geochemical survey data are typically represented and interpreted using single element 79 

geochemical maps. The interpretability and validity of these single components have 80 

repeatedly been challenged because they are prone to several artefacts: spurious negative 81 

bias on correlations (Chayes, 1960), dependence of interpretation on other (potentially non-82 

reported) components (Aitchison, 1986), dependence on units (e.g. mass, molar), and 83 

dependence on processes acting on some components (e.g. weathering, dilution) but 84 

influencing all of them (van den Boogaart and Tolosana-Delgado, 2013). All the issues 85 

mentioned are due to the fact that geochemical data constitute amounts of components 86 

with relative portions of a total even if this total is unknown. The components may be 87 

reported in different physical units (ppm, mg/kg or as percentages) and all the components 88 

may not be reported or measured. However, each component has an amount which 89 

represents its importance as part of the whole composition. The constraints of constant sum 90 

or the closed nature of the relative amounts of components have implications for the 91 

analysis of geochemical data. In statistics and mathematical geosciences, powerful solutions 92 

to deal with these issues have been developed in a field known as Compositional Data 93 

Analysis (CoDA) (Aitchison, 1986; Grunsky, 2010; Pawlowsky-Glahn and Buccianti, 2011; van 94 

den Boogaart and Tolosana-Delgado, 2013; Templ et al., 2011). This paper investigates the 95 
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question of what the compositional nature of geochemical data means in regional 96 

geochemical mapping, specifically with regard to single element (univariate) distribution 97 

maps. 98 

The collaborative research presented stems from the first GeoMap Workshop (held in 99 

Olomouc, Czech Republic, 17-20 June 2014) that discussed the consequences of these 100 

challenges and the usefulness of CoDA for regional geochemistry. Present were 101 

representatives from regional geochemical surveys (Tellus Survey covering Northern Ireland 102 

and Tellus Border Survey covering the border counties of the Republic of Ireland (Young and 103 

Donald, 2013)), the GEMAS project covering a large part of Europe (Reimann et al. 2014a,b), 104 

the soil geochemical survey of the conterminous USA (Smith et al., 2011; Drew et al., 2010) 105 

and the continental scale National Geochemical Survey of Australia (Caritat and Cooper, 106 

2011a,b). This paper, while acknowledging the historically important role of single 107 

component maps, aims to: (1) discuss their appropriateness, (2) provide some examples to 108 

highlight the problems raised above, and (3) offer some solutions to present interpretable 109 

maps free of the issues arising from the compositional nature of geochemical data.  110 

 111 

PROBLEMS RELATED TO SINGLE COMPONENT MAPS 112 

Geochemical surveys generate datasets with several tens of components (between 50 and 113 

up to 70 elements are commonly reported), obtained from different sample materials (soil 114 

horizons, size fractions, vegetal tissues, sediments, water, etc.) and with different analytical 115 

techniques (total analyses, partial or selective digests). For regional geochemistry, the key 116 

applications of the data are generally either to produce and use elemental concentration 117 

maps (i.e. one-component regional distribution maps) or to explore associations between 118 
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elements affected by geological/geochemical processes, which can also be mapped (e.g. 119 

principal components). For the first of these tasks, standard practice has included producing 120 

a single component map thought to represent the raw or “absolute” input data in the form 121 

of dot (or point) maps, but also as interpolated maps of these raw concentrations. Reimann 122 

(2005) defines the purpose of such geochemical maps as ‘to display different processes in a 123 

map form and to detect local deviations from the dominant process in any one sub-area’.  124 

The problems discussed in this section result from the closure property of geochemical 125 

compositions, i.e. the unavoidable fact that samples are aliquots of the geological bodies we 126 

want to investigate and therefore do not really convey information about the element mass 127 

distributions (Aitchison, 1986). This has implications for baseline quality mapping, mineral 128 

prospecting, land and soil resource assessment or risk evaluation, though these issues are 129 

beyond the scope of this contribution. Nevertheless, in the following we show that the 130 

traditional meaning of closure effect (linked to closed data with unit, or any other fixed sum 131 

constraint of components, and the resulting distortion of the correlation structure) should 132 

be considered also in a broader sense. Namely, compositional data are primarily 133 

observations that contain quantitatively expressed relative contributions of parts on a 134 

whole. From this perspective, the unit sum constraint is just a representation, obtained 135 

without altering the source information, conveyed by ratios between the components. 136 

Therefore, even with a variable sum of geochemical concentrations, resulting, e.g., from 137 

designed omitting of some components, one should be aware that the relative nature of 138 

data is still present and needs to be taken into account by proper statistical processing, as 139 

exemplified below by CoDA (Pawlowsky-Glahn et al., 2015). 140 

Point maps – the data “as is”  141 
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It is often thought that raw one-component maps report “what is there”, that they report a 142 

sort of “objective ground truth”. However, Reimann (2005) and others (Reimann and 143 

Filzmoser, 2000; Reimann and Garrett, 2005; Reimann et al., 2005; Reimann et al., 2008) 144 

highlight that to give sense to that set of spatially dispersed values, space-dependent 145 

geochemical processes must be interpreted, and that these are highlighted with a proper 146 

representation. Reimann (2005) discusses the advantages and disadvantages of such 147 

different representations. Reimann (2005) concludes that, actually, the most important 148 

issue becomes the scaling chosen to define the points (colour, size and symbol). Splitting the 149 

data into groups (classes) on the basis of order statistics in exploratory data analysis (such as 150 

the quartiles of boxplots, or other percentiles), Reimann suggests, may shed light on the 151 

spatial structure that reflects at least a number of these processes in a map. Figure 1 shows 152 

how impactful this choice of symbol/colour scaling can be with a real dataset. Obviously, 153 

equidistant colour scales do not necessarily yield the most easily interpretable maps, 154 

neither in raw (or “absolute”) nor in logarithmic values. The proportion of the entire study 155 

area actually measured by the dataset is largely exaggerated by the size of the dots. The 156 

conclusion is that it may be more appropriate to use quantile-based intervals (following the 157 

guidelines on scaling as discussed in Reimann, 2005) to present geochemical data to give an 158 

initial assessment of the distribution of elemental concentrations. Readers are referred to 159 

Reimann (2005) for further details on methods used to establish intervals in data scaling. It 160 

should be pointed out that this choice of scaling does not address the problems resulting 161 

from the relative character of elemental concentrations, an aspect that will be explored 162 

later. 163 
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Figure 1: Three representations of Cr ppm concentrations from the GEMAS European soil 165 

dataset (Reimann et al. 2014a,b), changing the dependence of the colour scale: (A) using 166 

equidistant classes in the raw value scale, (B) using equidistant classes in the log-167 

transformed value scale, and (C) using quantile based (equal probability) classes in the raw 168 

value scale. Note that the units are latitude and longitude coordinates but the orientation of 169 

the image has been changed to highlight changes that are dependent on the colour scale 170 

used. 171 

 172 

Geospatial continuity – the interpolated map  173 

It is becoming increasingly common for geochemical atlases (online and published printed 174 

versions; Reimann et al., 2003, 2014a,b; Young and Donald, 2013) and research publications 175 

to produce smoothed (colour) surface maps because most end-users have come to expect a 176 

“nice looking” output map. Essential to the generation of an interpolated map, is the 177 

demonstration of a spatially coherent pattern through the generation of semi-variograms 178 

and other available geostatistical tools. The issues relating to spatial interpolation are well 179 

documented elsewhere (e.g. Li and Heap, 2011) and are distinct from the question of the 180 

compositional justification for single component maps, which is the focus here. 181 

Nevertheless, it should be noted that when using raw ‘point data’ the interpolation method 182 

should be chosen to ensure several aspects relevant to compositional data, in as much as 183 

the interpolated values should (1) remain in the real positive space, and (2) not sum up to 184 

more than 100%. Thus interpolated maps should not be obtained separately component by 185 

component, as this cannot guarantee adherence to CoDA constraints (as outlined earlier). 186 
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Joint interpolation methods able to cope with these constraints should be preferred (for 187 

example Tolosana-Delgado and van den Boogaart, 2013).  188 

 189 

Do compositions actually represent absolute or relative abundances? 190 

The central question of this paper is whether a single component map can support an 191 

accurate interpretation on its own. As mentioned before, it is often thought that these 192 

geochemical maps do actually represent absolute abundances. However, geochemical data 193 

are just a particular case of compositional data, and compositional variables carry only 194 

relative information of a part to a whole. This can be seen in the conventional concentration 195 

units, such as mg/kg, being essentially a constant multiplied by a dimensionless unit: 1 196 

mg/kg = 1 mg/1,000,000 mg, or 10-6 mg/mg, or simply 10-6. At every sampled or 197 

interpolated point, a concentration value provides information only on the relative weight 198 

of one particular element to the total (Tolosana-Delgado & van den Boogaart, 2013), 199 

regardless of whether we know all, some or none of the other parts of the whole. This is 200 

illustrated in Figure 2 where a lower chromium (Cr) east-west zone is clearly seen in the 201 

quantile scaling plot (Fig. 2a). However a corresponding increase in silica oxide (SiO2) in the 202 

same area, (as shown in Fig.2b) shows that any sensible interpretation must consider some 203 

sort of possible dilution by SiO2 that may be related to a change in geology or soil type for 204 

example . This is a consequence of the constant sum (closure) effect (Chayes, 1960): if one 205 

component increases (due to the addition of a pollutant or a diluent) the mass of all other 206 

components remains unaffected, and their apparent proportions (concentrations) must 207 

decrease. One solution to this problem is to use element ratios, rather than raw 208 

concentrations, because ratios are free of any such effect.  209 
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 210 

Figure 2: Illustrative maps from the GEMAS European soil dataset (Reimann et al. 2014a,b): 211 

A) (left) map of Cr ppm, B) (right) map of SiO2 %, showing that the low Cr ppm central band 212 

is due to dilution with SiO2 %. The units are latitude and longitude coordinates. 213 

 214 

Despite this clear limitation, individual raw geochemical maps are deemed fundamental to 215 

several applications of geochemical maps, environmental assessments for instance. Thus 216 

potential toxicity to humans is typically given as a threshold or a range above which some 217 

kind of action is required by law. For example, the Canadian Council for Ministers of the 218 

Environment (CCME, 2014) states that arsenic (As) is considered to be potentially hazardous 219 

to humans if it exceeds 12-50 mg/kg in soils. The range in tolerance is based on whether the 220 
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soils are in residential or industrial sites. In Europe a large variety of soil guideline values for 221 

agricultural and grazing land soils exists (see Appendix A in Reimann et al., 2014b).  222 

Another way of looking at the relative or absolute scale is to consider a simple process 223 

affecting a material. Let us imagine a fresh rock with 20% potassium oxide (K2O) and its in-224 

situ weathered product having 10% of this oxide: what is relevant, that it lost 10% of K2O or 225 

half of it? What would be the most reasonable percentage of K2O in the weathered material 226 

if that original concentration would have been 12%? The correct answer is 6%, and not 2%. 227 

These considerations are nevertheless often clearer for trace elements: if a sample has 20 228 

ppm of element A and another sample, genetically derived from the first, has 10 ppm of it, 229 

half of element A has been removed in the process of forming the second sample. The 230 

relative scale effect applies mostly for components with lower concentrations, e.g., for trace 231 

elements. 232 

 233 

Compositional data are always multivariate 234 

In the preceding example where the distribution of Cr was mapped (Figs. 1 and 2) it became 235 

evident that any interpretation of the variation in Cr should include an awareness of the 236 

dilution effect of other elements and should be done on the basis of ratios such as Cr/ SiO2. 237 

The component increase considered above and its effect on all other components may 238 

appear in many other one-component geochemical maps as (high or low) outlier(s) or 239 

anomalous value(s). The issue is that geochemical components form a multivariate system 240 

that should be analysed as a whole, not component-wise. The following examples from the 241 

regional Tellus Survey (Young and Donald, 2013) highlight this aspect. Figure 3 shows the 242 

north east region of Northern Ireland where Dalradian metasediments are covered with 243 
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Palaeogene flood basalts. The basalt bedrock shows high nickel (Ni) concentrations (Fig. 3a) 244 

with a low Ni area in the uppermost north east corner related to metasedimentary bedrock. 245 

However, lower Ni values are also found in areas where the basaltic bedrock is covered by 246 

peat rather than conventional soils (Fig. 3b). A similar effect is seen for zirconium (Zr), 247 

though it is enriched in the metasedimentary rocks (Fig. 3c). In areas of consistent bedrock, 248 

these low areas of both Ni and Zr are dilution signals formed by high volatiles (represented 249 

by Loss On Ignition, LOI %) in blanket peat areas. The variation in geochemical maps can 250 

therefore be influenced by dilution, enrichment or depletion in other elements, rather than 251 

just by the processes specific to the element mapped. We will show later that maps based 252 

on (log)-ratios can avoid this weakness. 253 
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 254 

 Figure 3: Four map representations using the Tellus soil survey (Young and Donald 2013) 255 

showing the north east region of Northern Ireland: A) Ni mg/kg, B) Loss on Ignition (LOI %), 256 

C) Zr mg/kg and D) Ni/Zr. The units are coordinates in the Irish Transverse Mercator Grid 257 

(EPSG:29903). 258 

 259 
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BASICS OF COMPOSITIONAL ANALYSIS 260 

Generalities 261 

A common way to treat the compositional nature of geochemical data has been the 262 

application of log-ratio techniques (Aitchison, 1986; Filzmoser and Hron, 2011; Pawlowsky-263 

Glahn and Buccianti, 2011; Reimann et al., 2012; van den Boogaart and Tolosana-Delgado, 264 

2013), due to the fact that the ratios between the components are unaffected by constant 265 

sum closure effects related to the relative nature of data (Egozcue and Pawlowsky-Glahn, 266 

2011).  267 

It is important to note that inherent compositional data properties apply to major, minor 268 

and trace elements, so there is no reason to distinguish them methodologically, although 269 

the effects of closure and other compositional properties (such as the relative scale) depend 270 

on abundance and the number of analysed components. In particular, the closure effect can 271 

be expected to be higher with a lower number of components and for the major 272 

components, while the relative scale will apply mostly in the case of trace elements 273 

(Pawlowsky-Glahn and Buccianti, 2011; Egozcue and Pawlowsky-Glahn, 2011; van den 274 

Boogaart and Tolosana-Delgado, 2013). Indeed, the closure effect results from distortion of 275 

the covariance structure of closed data (Aitchison, 1986), where the sum of covariances of 276 

an element to the other components is equal to the negative value of its variance; 277 

accordingly, for the extreme case of two-part (closed) compositions the correlation would 278 

always equal -1. 279 

Advancing towards the conclusions of this paper, the compositional alternative to single 280 

component maps will be maps of certain well-chosen log-ratios of two or several 281 
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components. The next subsections explain the basics of these transformations, followed by 282 

the geochemical and statistical rationale behind each proposed strategy. 283 

 284 

The log-ratio transformations 285 

Standard logarithmic transformations are not sufficient because it is the ratio to another 286 

element that deals with the closure restraint. The use of one to one ratios does eliminate 287 

the initial closure effect but ratio correlations are known to be subject to restrictions or 288 

“spurious” correlations. Several families of log-ratio transformations exist in the literature. 289 

Aitchison (1986) introduced the pairwise log-ratio transformation (pwlr), the additive log-290 

ratio transformation (alr) and the centred log-ratio transformation (clr), along with other 291 

transformations which are not relevant for geochemical purposes. Later, Egozcue et al. 292 

(2003) proposed the isometric log-ratio (ilr) transformation. None is inherently better than 293 

the other, each has advantages and disadvantages. The following explanations assume that 294 

the composition 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝐷] involves D elements (with boldface indicating a vector 295 

and the square brackets enclosing the concentrations 𝑥 of elements 1, 2, … ,D). 296 

The pairwise log-ratio transformation (pwlr) takes all possible pairs of elements and 297 

computes their log-ratios.  298 

pwlr(𝐱) =

[
 
 
 
 
 
 0 ln

𝑥1

𝑥2

ln
𝑥2

𝑥1
0

⋯

ln
𝑥1

𝑥𝐷

ln
𝑥2

𝑥𝐷

⋮ ⋱ ⋮

ln
𝑥𝐷

𝑥1
ln

𝑥𝐷

𝑥2
⋯ 0

]
 
 
 
 
 
 

= [ln
𝑥𝑖

𝑥𝑗
] = [𝜉𝑖𝑗]. (1) 

The pwlr contains all the elemental information in compositional data. The treatment of 299 

below detection values and zeros in compositional data is beyond the scope of this paper 300 
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but readers are directed to Pawlowsky-Glahn and Buccianti (2011), van den Boogaart and 301 

Tolosana-Delgado (2013) and Filzmoser and Hron (2011) for further information on this 302 

subject. This baseline can be used to construct more sophisticated log-ratios, as will be 303 

shown later. The pwlr has the advantage that each transformed coefficient is quite simple 304 

and typically interpretable on its own. Its main inconvenience is the large number of 305 

resulting coefficients, and their high redundancy. For instance even after keeping only one 306 

ratio of each pair of inverse ratios ln (𝑥𝑖/𝑥𝑗) and ln (𝑥𝑗/𝑥𝑖), for D = 40 elements, we still need 307 

to consider 𝐷 ⋅ (𝐷 − 1)/2 = 780 pairwise log-ratios. With regard to redundancy, it can be 308 

seen that any row or column of that matrix can be obtained from additions and subtractions 309 

from the elements of any other row or column, e.g. 𝜉𝑖𝑗 = 𝜉𝑖𝑘 + 𝜉𝑘𝑗 for any three 310 

components 𝑖, 𝑗, 𝑘. Thus, for certain tasks it will be sufficient to take one of the rows or 311 

columns of the pwlr. 312 

The pwlr allows us also to introduce an alternative to correlation to be used as a criterion of 313 

statistical association, given the spurious character of raw Pearson correlation coefficients in 314 

a compositional context. This is called the variation matrix, i.e. the variance of each of the 315 

entries of the pwlr matrix: 𝑡𝑖𝑗 = Var[𝜉𝑖𝑗]. The variation is small for pairs of components 316 

which are highly proportional, and it increases as the two components are less and less 317 

dependent on each other.  318 

The additive log-ratio transformation (alr) takes just one of the rows or columns of the pwlr 319 

(and removes the constant zero), typically the last column: 320 

alr(𝐱) = [ln
𝑥1

𝑥𝐷
ln

𝑥2

𝑥𝐷
⋯ ln

𝑥𝐷−1

𝑥𝐷
] = [𝜉𝑖𝐷], 321 
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here arranged in a row to save space. Its advantages are the low number of log-ratios 322 

capturing all the information, and the simplicity of its interpretation. Its disadvantage is the 323 

fact that some results might depend on the chosen common denominator 𝑥𝐷, and therefore 324 

this must be chosen carefully. The choice usually depends on geochemical context (e.g., 325 

Thomas and Aitchison, 2005), but subjectivity cannot be completely avoided.  Another 326 

consideration is that the denominator should be chosen with a minimum number of, and 327 

preferably no, censored values. This ensures that the log-ratio represents a realistic range of 328 

values without interference of instrumentation or limits in the analytical protocols. The alr 329 

transformation has as well certain geometric inconveniences (Egozcue et al., 2003; Egozcue 330 

and Pawlowsky-Glahn, 2006) not relevant for this contribution. 331 

Another commonly used transformation is the centred log-ratio (clr) transformation. Instead 332 

of choosing a common denominator, this log-ratio transformation represents each element 333 

component as a ratio to a central value: 334 

clr(𝐱) = [ln
𝑥1

𝑔(𝐱)
ln

𝑥2

𝑔(𝐱)
⋯ ln

𝑥𝐷

𝑔(𝐱)
], 335 

corresponding to the geometric mean of all considered components, 336 

𝑔(𝐱) = √∏𝑥𝑖

𝐷

𝑖=1

𝐷

= exp(
1

𝐷
∑ln𝑥𝑖

𝐷

𝑖=1

). 337 

The somewhat artificial role of the geometric mean becomes clear if we consider that each 338 

clr variable represents nothing more than the average of all pairwise log-ratios with one of 339 

the elements, i.e. the averaged sum of a column (or a row) of the pwlr matrix,  340 

ln
𝑥𝑖

𝑔(𝐱)
=

1

𝐷
(𝜉𝑖1 + 𝜉𝑖2 + ⋯+ 𝜉𝑖𝐷). 341 
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Note that this averaged sum of all pairwise log-ratios contains the totality of the variability 342 

of the elemental composition with respect to the set of components that was considered. 343 

Its main advantage is that each transformed score can be related to one component, which 344 

might have some interpretability. However, the clr scores always depend on the geometric 345 

mean in the denominator, so they cannot be simply interpreted as the original element of 346 

interest independently of the other elements. Thus, just as for the individual components, 347 

any single component of the clr transform will depend on the notion of the “total” 348 

(meaning, the set of all components considered) and can be influenced by dilution, 349 

enrichment and depletion in these components. This is the greatest disadvantage of the clr 350 

transform. It should be noted that the clr has some desirable geometric characteristics not 351 

relevant for this contribution (Egozcue et al., 2003; Egozcue and Pawlowsky-Glahn, 2006). It 352 

is important to note that the pwlr, alr and clr transforms do not form orthogonal bases. In 353 

the case of the alr transform, the resulting ratios may not reveal the same patterns when 354 

there is a change of denominator. For the clr transform, scatterplot matrices will have an 355 

intrinsic distortion that may or may not reveal patterns that are meaningful. 356 

 357 

Log-contrasts and the isometric log-ratio transformation 358 

All transformations mentioned before can be seen as vectors of some scores that are 359 

computed as log-contrasts, i.e. linear combination of components in log-scale:  360 

𝜉𝑖 = 𝜔𝑖1 ln 𝑥1 + 𝜔𝑖2 ln 𝑥2 + ⋯+ 𝜔𝑖𝐷 ln 𝑥𝐷 , 361 

the coefficients of which are subject to 𝜔𝑖1 + 𝜔𝑖2 + ⋯+ 𝜔𝑖𝐷 = 0. Log-contrasts form 362 

special one-dimensional “projections” of compositions. Their result is scale invariant, i.e. it 363 

does not depend on the particular units chosen for the components (mg/kg, ppm, 364 
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proportions, etc.), and have many other desirable stability properties required by CoDA 365 

(Aitchison, 1986). Although log-contrasts seem to be quite complex mathematical objects, 366 

they have a clear geochemical interpretation in connection with chemical equilibrium. If we 367 

assume a reaction 𝑎𝐴 + 𝑏𝐵 ⇌ 𝑐𝐶 + 𝑑𝐷, then the logarithm of the equilibrium constant is 368 

one of such log-contrasts, 𝜉 = 𝜔𝐴 ln 𝐴 + 𝜔𝐵 ln 𝐵 + 𝜔𝐶 ln 𝐶 + 𝜔𝐷 ln 𝐷, with 𝜔𝐴 = 𝜔𝐵 = −1 369 

and 𝜔𝐶 = 𝜔𝐷 = +1, and it is directly proportional to the Gibbs Energy of the reaction Δ𝐺 ∝370 

ln 𝐾𝑒𝑞. Conversely, each log-contrast might be interpreted as a sort of reaction. That might 371 

not be directly meaningful for solid sample geochemistry datasets, but it still offers a way to 372 

interpret log-contrasts. Note that also the components of the above introduced alr and clr 373 

transformations can be seen as log-contrasts. Accordingly, for 𝑖-th alr variable (𝑖 =374 

1, … , 𝐷 − 1) we get 375 

ln
𝑥𝑖

𝑥𝐷
= ln 𝑥𝑖 −  ln 𝑥𝐷 , 376 

while 𝑖-th clr variable (𝑖 = 1,… , 𝐷) can be expressed as  377 

ln
𝑥𝑖

𝑔(𝐱)
= ln 𝑥𝑖 − 

1

𝐷
(ln 𝑥1 + ⋯+ ln 𝑥𝐷). 378 

The last log-ratio transformation mentioned is the (family of) ilr transformations (Egozcue et 379 

al., 2003). These are formed by 𝐷 − 1 log-contrasts which are computed using vectors of 380 

coefficients 𝛚𝑖 = [𝜔𝑖1, 𝜔𝑖2, … , 𝜔𝑖𝐷] which are orthogonal to each other. From all possible 381 

ways of obtaining such orthogonal log-contrasts, the relevant ones for this contribution are: 382 

principal components of the clr-transformed data (Aitchison, 1982; 1986), and balances 383 

(Egozcue et al 2003; Egozcue and Pawlowsky-Glahn, 2005). Balances are simply (normalised) 384 

log-ratios of the geometric means of two groups of elements. One can obtain an ilr based on 385 

balances by choosing a binary hierarchy of association of elements (or a binary partition), 386 
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such as the one represented in Figure 4. For instance the four log-ratios necessary to 387 

describe the behaviour of the subcomposition (Fe2O3, V, Cr, Co, Ni) in this figure are: 388 

𝜉1 =
1

√2
ln

Fe2O3

V
,         𝜉2 =

1

√2
ln

Co

Ni
, 𝜉3 =

√2

√3
ln

Cr

√Co ⋅ Ni
2 , 389 

𝜉4 =
√6

√5
ln

√Fe2O3 ⋅ V
2

√Co ⋅ Ni ⋅ Cr
3  390 

 391 

Figure 4: A) An ilr balance dendrogram and B) associated component variance obtained by 392 

choosing a binary hierarchy of association of elements (or a binary partition). The procedure 393 

is detailed in van den Boogaart and Tolosana-Delgado 2013). 394 

 395 

In general applications of CoDA, the constants of proportionality are necessary to be able to 396 

compare the balances between them. However, in the case of mapping and given that we 397 

are going to use equal-probability intervals (Reimann, 2005), these constants are 398 

superfluous. Interested readers are referred to Pawlowsky-Glahn and Egozcue (2005) and 399 

Pawlowsky-Glahn and Buccianti (2011). 400 

 401 

PROPOSED COMPOSITIONAL ALTERNATIVES  402 
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Univariate maps are actually produced in the hope that they might have a direct 403 

interpretation with respect to specific aspects or processes occurring in the studied region. 404 

However, we have argued that this may not be the case, because of the inherent 405 

multivariate nature of compositional data and the spurious variations induced by the 406 

closure: any process influencing a component will modify all other components (and their 407 

maps). As we cannot display or read maps displaying high-dimensional multivariate 408 

information, we are left with the question of how to choose interpretable univariate (many 409 

single element maps) or low variate (oligovariate) maps (fewer maps displaying two or more 410 

variables). All these maps will be representations of certain log-contrasts. The challenge in 411 

finding good maps is twofold: there are many more log-contrasts than there are elements in 412 

the dataset, and the most appropriate log-contrasts to use will always depend on the aim of 413 

the analysis undertaken (Pawlowsky-Glahn and Buccianti, 2011). Using single elements or 414 

log-contrasts inherently defines an approach using sub-compositions for gaining insight into 415 

geochemical processes. This may work for recognizing obvious processes, but not for 416 

processes that are under-sampled or “swamped” by dominant processes. 417 

Three approaches for selecting good ratios for various aims are discussed and illustrated 418 

with a case study example. These provide alternative approaches to presenting a single 419 

elemental component map that honour the compositional nature of the geochemical data 420 

and offer interpretable mapped outputs. The feature(s) to be mapped can be based on 421 

either (1) a geochemical understanding of the processes under consideration (knowledge-422 

driven log-ratios based on geochemistry),  (2) established mathematical projections (e.g. 423 

pwlr or clr), or (3) based on the data using statistically determined projections that best 424 

capture certain effects, patterns and elemental associations (data-driven projections). These 425 

are illustrated using the regional soil sediment geochemical survey covering Northern 426 
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Ireland, generated as part of the Tellus Survey (Young and Donald, 2013). The soil sediment 427 

dataset used comprises 6862 observations of 19 geochemical variables (Fig. 5). 428 

 429 

Figure 5: Case study A) Simplified geology for Northern Ireland (adapted after Mitchell, 430 

2004) and; B) Sampling locations for the Tellus Geochemical Survey (GSNI).  431 

 432 

1. Knowledge-driven (log)-ratios  433 

In relation to the problem of Ni and Zr dilution by LOI (shown previously in Fig. 3), geological 434 

knowledge would suggest that it may be more useful to analyse a simple log-ratio, or a 435 

certain balance related to a reasonable equilibrium. Indeed, in this example using the (log-) 436 

ratio Ni/Zr reduces the masking effect of peat cover (LOI dilution effect) and illustrates a 437 

greater delimitation of the Palaeogene basalt-Dalradian metasediment boundary than any 438 

of the three single component maps (Fig. 3d). However, although being of possibly highest 439 

interpretational potential, ratio or log-ratio maps present one challenge: we are not used to 440 

reading them. This can be resolved by practice and it is advocated that the expected effect 441 

of less methodological artefacts promises this investment to be worth the time.  442 
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Of course, not everything relevant is always expressible in terms of (log-)ratios. In mining 443 

there is a need to predict excavation and processing costs per mass recovered, hence the 444 

ratio of value element versus mass to be mobilized is relevant, i.e. a quantity proportional to 445 

absolute concentration of the value element. In environmental studies, it is important to 446 

know how much mass of the toxic elements is present, i.e. proportional to its absolute 447 

concentration again. Thus the mass of the element per bulk mass can be a useful proxy. 448 

However, in both cases (and in many more examples), other quantities might highlight other 449 

important aspects of the problem, quantities which are often ratios or log-ratios. Mining 450 

requires the ratio of gangue elements against ore elements, because the product’s quality 451 

and value depend on them. In environmental issues, well-chosen log-ratios may incorporate 452 

bioavailability effects (Barsby et al., 2012) and interactions with other components such as 453 

pH or HCO3
-, etc. Environmental or health hazards typically depend both on absolute values 454 

and on ratios, particularly considering bioavailability fractions. Chemical reactions like those 455 

mentioned above also play an important role in mobilizing or trapping these elements. For 456 

soils and sediments that have been weathered or mixed/diluted with other material, no 457 

element shows the same percentages as in the background or source rock, but the ratios of 458 

elements unaffected by the mixing (or by pollution or weathering) are preserved. In 459 

weathering, especially of magmatic plagioclase-rich rocks, all existing measures of alteration 460 

have been defined as (log)ratios, perhaps because quantifying absolute losses of mass 461 

would be nonsensical (the removed mass was washed out of the rock-weathered product 462 

system, we do not know the starting concentrations of elements in the source rock, the 463 

degree of dilution generated from more or less mixing material with the weathered rock is 464 

unknown, etc.). Typical practice tends to be to use the ratio of mobile to immobile 465 

elements.  In studies involving mineral reactions (igneous, metamorphic, diagenesis), Pearce 466 
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Element Ratios (PER) have been successfully used to model mineral paragenesis (Pearce, 467 

1968; Madeisky and Stanley, 2010). In the molar ratio scatterplots used in PER, individual 468 

end-member minerals are represented as points and linear trends are interpretable in terms 469 

of mineral mixtures. This has been shown to be useful for instance to interpret alteration 470 

processes (e.g. Montreuil et al., 2013). Such PER can thus guide the choice of appropriate 471 

knowledge-driven log-ratios to map. 472 

2. The pairwise log-ratio map 473 

The second option is to rely on one of the standard log-ratio transformations, for instance 474 

the pairwise log-ratio (pwlr). The challenge in this case is the number of pairs that are 475 

possible to build: for D elements there are 𝐷 ⋅ (𝐷 − 1)/2 unique maps. For example the 476 

aqua regia analyses from the GEMAS survey result in ~1600 ratio maps, and the XRF 477 

compositions add another ~400 ratio maps. It is impossible to present these within a 478 

classical atlas publication. Although this is becoming less of a problem with interactive 479 

online or electronic atlases, it is not humanly feasible to view and integrate all (or even just 480 

many) of these different perspectives. Therefore, either knowledge-driven or data-driven 481 

criteria will be required to choose which of this vast number of possibilities are most 482 

pertinent for a specific task or problem.  While it is acknowledged that in both the 483 

knowledge-driven and pairwise approaches, any resultant maps may not explicitly show the 484 

impact of other variables relevant for the process being investigated, these approaches do 485 

avoid the potential for artefacts due to the constant sum constraint (closure). 486 

 487 

3. The centred log-ratio component map 488 
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The usage of the clr transformation may be grounded in one of the following options: (1) to 489 

highlight the role of one component, (2) to see the patterns of that element relative to the 490 

average behaviour of other elements at hand in the compositional dataset (using their 491 

geometric mean), and (3) to provide the first visualization towards a deeper understanding 492 

of the underlying geochemical processes.  493 

Mapping single clr scores seems to present a first-step simple solution for an unsupervised, 494 

blind application. However, it must be noted that clr variables have severe limitations. First, 495 

they cannot be interpreted the same way as the variables in the original concentration 496 

units, and there is no straightforward back-transformation. A further problem of the clr is its 497 

sensitivity to replacement values of censored or missing values, because the more 498 

numerous trace elements (with low concentrations and more common censorship) 499 

influence the geometric mean more than the fewer major elements (with high 500 

concentrations and rarely censored). Therefore, if we impute too low values, we shift the 501 

geometric mean to lower values. One solution could be to use a robust central value (e.g. 502 

the median of all the components, a trimmed geometric mean, etc.), although this destroys 503 

many of the nice properties of the clr and may cause problems for the interpretation of any 504 

resulting map. More importantly, as has been mentioned, the clr depends on the set of 505 

components chosen, i.e. any component cannot be analysed separately without 506 

consideration of the others. This might make interpretation of clr maps difficult, especially 507 

when the other components are driven by their own geochemical processes. 508 

The above features are illustrated using the Tellus dataset. Figure 6a demonstrates the 509 

effect of employing the whole composition or the subcomposition of major oxides, 510 

respectively, for clr scores of these elements. In addition to a shifting of the distribution, a 511 
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result of excluding  the trace elements, the positive linear correlation between values of 512 

both scores is substantially disturbed for some components (e.g. in particular for Al2O3 , 513 

MgO, SiO2). This is also reflected in the corresponding univariate maps (as in the case of clr 514 

Al2O3, see Figure 6b and c). This clearly demonstrates that the selection of the 515 

subcomposition is important for the construction of clr scores. Here the use of the 516 

subcomposition of major oxides clr scores seems to be reasonable due to their higher 517 

geochemical stability in the study area. On the other hand, by employing all elements we 518 

can observe some clear regional patterns, that may indicate interesting inherent processes 519 

in the data that are not so well reflected from the major oxides subcompositional clr.  520 
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 521 

Figure 6: A) The effect of employing the clr of the whole composition and the clr of the 522 

subcomposition of the major oxides is illustrated for Al2O3. Note the substantial 523 

disturbance in the positive linear correlation. The corresponding univariate maps 524 

demonstrating the effect of employing B) the clr (Al2O3) of the subcomposition of major 525 

oxides or C) the clr (Al2O3) of the whole composition is shown. The units are coordinates in 526 

the Irish Transverse Mercator Grid (EPSG:29903).  527 
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 528 

In the authors’ opinion, using the geometric mean of a geologically meaningful subset of 529 

components, selected on the basis of a geological understanding, may offer a possible way 530 

to form a compromise between the two situations that we have demonstrated (Fig. 6 b and 531 

c). That is using pairwise log-ratio maps (one element to another, or any knowledge-driven 532 

log-ratio) and using the clr scores of the full composition including the problematic 533 

components (i.e. those having a high proportion of values that are censored, close to the 534 

detection limit, or rounded). The result may offer a reasonable number of single (clr score) 535 

or low) component maps. For the Tellus Survey example it would seem a sensible approach 536 

to include the major oxides Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O, P2O5, SiO2 and TiO2, 537 

with the exception of LOI and SO3 to avoid problems with the soil water content and with 538 

the large number of missing values of SO3. Their subcompositional clr-scores could then be 539 

mapped. For the remaining elements, comprising the trace elements, LOI and SO3, the 540 

balance of each element against the geometric mean of the major component 541 

subcomposition could be mapped. 542 

Another use of a subcompositional clr is to restrict attention to a knowledge-driven 543 

selection of parts, and constructing and mapping their subcompositional clr scores. If the 544 

rationale for the study is set out beforehand, then these clr maps of subcompositions should 545 

be interpretable, because the subcomposition was selected and studied for a particular 546 

reason. An example of this approach could be to use a subcomposition of potentially 547 

harmful elements that are known to adversely affect human health (for example As, Cr, Pb 548 

and Cd). In fact, this approach is reminiscent of the first method, knowledge-driven log-549 
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ratios, where the interpretability of the resulting variables is assumed since there was a 550 

knowledge-driven rationale for the approach.  551 

 552 

4. Exploring patterns and elemental associations (data-driven projections) 553 

Multi-element geochemical datasets are often analysed to explore patterns, links and 554 

associations between elements as part of the ‘Discovery Process’ (Grunsky et al., 2014). 555 

Multivariate methods available include principal component analysis (PCA), regression-556 

related techniques (regression analysis, analysis of variance, total and partial least squares 557 

regression or canonical correlation) and grouping techniques (cluster analysis, discriminant 558 

analysis), often used to explore these patterns or links. From the point of view of mapping, 559 

most of these methods can actually be seen as a way to choose one (or a few) log-contrasts 560 

of potential interest. There is thus a range of techniques available and the issue is to choose 561 

the best one. Two families of approaches can be considered: supervised and unsupervised 562 

methods. Again, these will be exemplified using the Tellus case study.  563 

Supervised Approaches 564 

 In the supervised approach the goal is to find which log-contrast better relates to known 565 

secondary information which is also available. For example, we may be interested in 566 

identifying the log-contrast which best distinguishes between two types of geochemical 567 

situations such as two terranes, or areas of peat coverage and peat free areas. In that case 568 

we could start from a subset of the data, where this extra information is known (i.e. a 569 

training set). The best log-ratio can be computed by a linear discriminant analysis derived 570 

from any log-ratio transformed composition, although due to numerical issues, ilr and alr 571 

are the best in this case (readers are referred to van den Boogaart and Tolosana-Delgado, 572 
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(2013) for further detail). Such a linear discriminant analysis has been conducted on the 573 

Tellus soil geochemical dataset on the basis of areas covered by blanket peat (Figure 7). The 574 

linear discriminant analysis suggests that many more elements and oxides (Ni, Rb, Hf, Nb, 575 

Cr, K2O, MnO, Fe2O3, some with positive weight, some with negative weight; Fig.3a) are 576 

useful for blanket peat delineation than solely using LOI %, as is traditionally the case. 577 

Overall, the histograms shown in Figure 7b and 7c show that the classification between peat 578 

covered and peat free areas, produced by  geostatistical Fisher discriminant analysis in this 579 

example (Tolosana-Delgado et al. 2015),  is reasonably successful. On further investigation it 580 

is observed that misclassified points are found mainly at the boundaries between peat-581 

covered areas and peat-free areas and most likely related to point-polygon mismatch 582 

between the Tellus data points and peat assigned polygons (discussed in more detail in 583 

Tolosana-Delgado et al. 2015). A full discriminant analysis approach could be applied in that 584 

results could be validated further using cross-validation, the log-contrast could be derived 585 

from a training set and the discriminant power of the analysis could be evaluated. 586 
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 587 

Figure 7: Illustrating a supervised method: Linear discriminant analysis using the Tellus soil 588 

geochemical dataset on the basis of blanket peat; A) elemental linear discriminant analysis, 589 

showing positive and negative weightings and histograms showing the classification 590 

between B) peat covered and C) peat free areas, produced by the geostatistical Fisher 591 

discriminant analysis. Readers are referred to Tolosana-Delgado et al. (2015) for further 592 

detail. 593 

 594 

 In a similar way, if the covariable(s) of interest is (are) a numeric quantity or a set of them 595 

(magnetics, gravimetrics, Th-channel radiometrics, total gamma-ray counts, proportion of 596 
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sand, log-ratio of silt to sand, pH, etc.), compositional regression analysis could be used in 597 

order to identify the optimal log-contrast (e.g McKinley et al. in review). The composition 598 

should be expressed in log-ratios (alr or ilr) and a classical regression applied between the 599 

log-ratio scores and the chosen covariable. The explanatory power of the resultant model 600 

can be measured by its associated R-square. Thus, beyond the classical use of regression, it 601 

is possible to use this criterion to select the optimal pairwise log-ratio that maximizes the R-602 

square of the simple regression model with the covariable of interest. This requires the 603 

exhaustive exploration of all possible pairwise log-ratios, though the selection of the “best” 604 

is automatically done by the method and not by visual inspection. Note that these 605 

techniques, although explained for one covariable or two groups, can be easily generalized 606 

towards multiple groups or covariables, providing an extra direction for each added group 607 

or covariable is known (van den Boogaart and Tolosana-Delgado, 2013). 608 

 609 

Unsupervised approaches 610 

Even in the absence of additional information, multivariate analysis techniques can help to 611 

identify interesting log-contrasts to map. These often show either large variability or very 612 

low variability. For example, the variation coefficient 𝑡𝑖𝑗 of two components provides a 613 

measure of their association, which can be used in cluster analysis as a measure of distance 614 

between variables. The application of cluster analysis for compositional data (compositional 615 

Q-mode clustering) is explained in detail by van den Boogaart and Tolosana-Delgado (2013). 616 

Clusters will contain elements behaving proportionally throughout the dataset. Log-ratios 617 

between elements of two different clusters should thus be similar to other log-ratios of the 618 

elements of the same clusters. Therefore, one of these log-ratios or a balance of one cluster 619 
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against the other might be representative for many log-ratios, and consequently may 620 

represent a process influencing many elements in the same way. Balances of elements 621 

within the cluster will filter out these large-variability effects and focus on differences 622 

between elements behaving similar with respect to major processes. In a sense this is the 623 

approach that geochemists instinctively use when applying simple ratios. The advantage of 624 

this unsupervised CoDA approach that reflects a classical supervised approach is that these 625 

balances should thus be able to highlight processes differentiating between similar 626 

elements, i.e. second-order processes that would otherwise be overshadowed by the major 627 

processes.  628 

In the example shown in Figure 8 using the Tellus regional soil data, a cluster dendrogram is 629 

constructed using all those components without missing values (shown in Figure 4). 630 

Although it is acknowledged that this introduces a bias, since the treatment of below 631 

detection values and zeros in compositional data is beyond the scope of this paper, this 632 

simplified approach is used here to exemplify the approach. The hierarchical cluster has 633 

been produced with a Ward cluster analysis with the variation matrix as distance between 634 

elements, the procedure is detailed in van den Boogaart and Tolosana-Delgado (2013). Six 635 

resultant ilr balances have been shown to demonstrate different features: spatial 636 

randomness (Fig. 8a; Yb vs Sm); the identification of granitic bedrock areas (Fig. 8b; Nb, Hf 637 

vs SiO2); an artefact in the central region perhaps related to the analytical method of Ag 638 

detection (Energy Dispersive Polarised X-Ray Fluorescence, Fig. 8c, Te, Sm, Yb, Tl vs Ag ); 639 

Geological bedrock units including Palaeogene basalts, a granodiorite complex and  640 

Dalradian metasediments (Fig. 8d, Rb vs K2O); Ordovician- Devonian sandstone units and 641 

granitic rocks (Fig. 8e, Zr vs Na2O ); Palaeogene basalt detection and LOI-related peat 642 

unsupervised detection (Fig. 8f). 643 
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 644 
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Figure 8: The figures illustrate an unsupervised method based on the ilr balance 645 

dendrogram shown in Figure 4: Six resultant ilr balances are selected to illustrate different 646 

features: A) spatial randomness (Yb vs Sm); B) granitic bedrock areas ( Nb,Hf vs SiO2); C) an 647 

artefact related to the analytical method of Ag detection (Te,Sm,Yb,Tl vs Ag ); D) Geological 648 

bedrock units including Palaeogene basalts, granodiorite complex and Dalradian 649 

metasediments (Rb vs K2O); E) Ordovician- Devonian sandstone units and granitic rocks (Zr 650 

vs Na2O ; F) Palaeogene basalt detection and LOI-related peat detection. 651 

 652 

Another popular approach traditionally used for identifying interesting log-contrasts is 653 

principal component analysis of the clr-transformed dataset and its graphical display, the 654 

compositional biplot (Aitchison and Greenacre, 2002; Caritat and Grunsky, 2013). Within a 655 

compositional approach this allows the identification of directions or log-contrasts of large 656 

or small variations based on a variance-covariance matrix. Log-contrasts of strong variation 657 

might be useful for identifying major processes strongly influencing many elements at the 658 

same time. The directions of small variation are more useful for identifying common 659 

equilibrium-like laws and anomalies by highlighting cases showing strong deviations from 660 

otherwise stable log-contrasts. These directions of lesser magnitude may also represent 661 

random processes in the data. Any of the methods mentioned before can be used in several 662 

different ways with the purpose of focussing on specific features and aspects of the dataset. 663 

In summary, there are many possible tools and approaches for selecting informative and 664 

valid univariate projections of a composition. The key point is to relate them to specific 665 

research questions to address pertinent geochemical and geological issues.  666 

CONCLUSIONS - BEST PRACTICE AND RECOMMENDATIONS 667 
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The question that this paper has addressed is whether the single component elemental map 668 

is meaningful: can it be interpreted as fact or is it indeed no more than a fictional 669 

representation? The essence of this dilemma is that geochemical data are compositional 670 

variables and as such carry only relative information. In some cases, the classical single-671 

component maps might carry some relevant information, but most of the time the 672 

information-rich relative data are not properly represented. On reflection, this research 673 

recommends the following: 674 

2. An appropriate manner to represent "measured" raw or absolute geochemical values is in 675 

the form of a single component point source or ‘dot maps’ with an acknowledgement about 676 

dependence to all other variables. This may be useful for the purpose of geochemical 677 

exploration but is critical for environmental studies where stated values fall below/above 678 

guidelines. Generally, without considering or knowing the other elements of the 679 

composition, we are not able to fully interpret the component of interest. That is to say that 680 

involving more components in the interpretation can reveal the reason behind the relative 681 

increase or decrease in the component of interest. 682 

3. A complementary compositional approach is required to ensure that mapped outputs are 683 

accurate and robust to interpret the underlying geochemical processes and highlight any 684 

anomalies of interest. One suggestion is to look at log-ratio maps, which may include either 685 

knowledge-driven log-ratios, pairwise log-ratios, any reasonably aggregated log-ratios or 686 

data-driven projections, in addition to single element maps whenever possible. In this case, 687 

the authors propose the following chain of representations:   688 
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 in paper format, the maps of clr-transformed major components together with the 689 

balance of each trace component to the major components; in electronic interactive 690 

formats, this can be complemented with maps of each pwlr score; 691 

 maps of clr- or ilr-based principal components, those  with highest variability and 692 

also those with very low variability; it is worth noting that one should be careful if 693 

including all elements for principal component analysis as trace ones (resulting in 694 

highest variability due to relative scale of compositions) are often burdened by 695 

measurement errors; 696 

 maps of the balances resulting from a compositional cluster analysis based on the 697 

variation matrix. 698 

4. No matter whether absolute or log-ratio maps are used, most commonly it will be necessary 699 

to use quantile-based colour and symbol scales to highlight the patterns captured. In log-700 

ratio maps, equal length intervals for colours and symbols are often useful as well. However 701 

this is close to useless in absolute maps except to highlight a few high-value outliers. 702 

5. If a compositional approach is not used, it becomes difficult to guarantee that any identified 703 

pattern, trend or anomaly is not an artefact of the constant sum constraint. Nevertheless, it 704 

should be noted that if the elements do not sum up to the same constant, the relative scale 705 

of compositions still needs to be taken in account. 706 

6. The evaluation of individual component maps is a first step towards a comprehensive 707 

understanding of geochemical processes that are reflected in the material that has been 708 

analysed geochemically. It is the initial step in the “Discovery Process” from which 709 

geologically meaningful log-contrasts can be derived. There are so many possible supervised 710 

and unsupervised data-driven methods, that it is necessary to: (1) clearly state the 711 
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geological/geochemical question to ask; (2) search for the appropriate statistical method 712 

that can answer that question; (3) ensure that the data available are sufficient to answer 713 

that question with the selected method; (4) apply the required log-ratio transformations 714 

and the chosen statistical method; and (5) learn to interpret the results. This will most often 715 

require statisticians, data analysts and geochemists working together. 716 
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