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ABSTRACT

Inherently error-resilient applications in areas such as sig-
nal processing, machine learning and data analytics pro-
vide opportunities for relaxing reliability requirements, and
thereby reducing the overhead incurred by conventional er-
ror correction schemes. In this paper, we exploit the tolera-
ble imprecision of such applications by designing an energy-
efficient fault-mitigation scheme for unreliable data memo-
ries to meet target yield. The proposed approach uses a
bit-shuffling mechanism to isolate faults into bit locations
with lower significance. This skews the bit-error distribution
towards the low order bits, substantially limiting the out-
put error magnitude. By controlling the granularity of the
shuffling, the proposed technique enables trading-off quality
for power, area, and timing overhead. Compared to error-
correction codes, this can reduce the overhead by as much
as 83% in read power, 77% in read access time, and 89% in
area, when applied to various data mining applications in
28 nm process technology.
Categories and Subject Descriptors
B.8.1 [Reliability, Testing and Fault-Tolerance]
General Terms
Design, Management, Reliability
Keywords
Significance-driven computing, Priority-ECC, Bit-shuffling,
Approximate Computing, Error-resilient Applications, Un-
reliable Memory, Error Correction, SRAM

1. INTRODUCTION

The demand for on-chip memory capacity continues to
increase today with embedded memories already occupy-
ing 40%-60% of the die area in chip multiprocessors and
expected to exceed 70% by 2017 [1]. While the aggres-
sive shrinking of transistor sizes has been one of the pri-
mary facilitators of this trend, the consequent increase in
parametric variations in deep sub-micron technologies has
introduced new challenges, especially when designing high-
density and energy-efficient memories. In particular, vari-
ations in transistor characteristics significantly reduce the
noise margins of memory cells and the timing margins of
memory blocks, leading to an increased number of mem-
ory failures [2]. When employing mechanisms such as volt-
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age scaling for power savings, the noise margin of the cell
worsens and the failure probability increases. In such sce-
narios, conventional approaches to ensure reliable operation
attempt to correct every single failure through the use of
redundant hardware [3]. One popular solution is the use
of error correcting codes (ECCs) that can detect and cor-
rect one or more faults, depending on the number of extra
parity bits added to each data word [4]. However, the ad-
dition of extra bits, along with the logic required for fault
detection and correction, incurs significant energy, area, and
delay overhead. Moreover, such techniques lead to extensive
over-design, as they are targeted at maintaining fault-free
functionality even for extreme outliers that can occur in the
manufacturing process. The corresponding design margins
and resulting wasted power are expected to further increase
as silicon predictability diminishes, raising further doubts
about the efficiency of such design approaches [3, 5].
The reality described above has led to the quest for alter-

native design strategies and to the promising approximate
computing paradigm, which exploits the error resilient na-
ture of many applications to relax the design constraints
and to save power [3, 5–8]. This paradigm includes the de-
velopment of processors and software that may not always
produce 100% precise results, but their output fidelity is
acceptable for human consumption [3,7]. In this way, signif-
icant power reduction can be achieved, and the overhead re-
quired for fault tolerance mechanisms can be limited. When
designing memories for error-resilient applications, various
opportunities for resource saving emerge, such as restricting
the use of robust and power hungry bit-cells to protect only
the bits that play a more significant role in shaping the out-
put quality [3, 9–11]. A recently proposed approach, known
as priority-based ECC (P-ECC), limits the overhead by ap-
plying ECC only to the higher order bits [4, 12]. The pro-
posed approach is targeted towards platforms used for mul-
timedia applications. As P-ECC attempts to correct every
failure (like ECC) on smaller words, the overheads incurred
are still significant and therefore, further opportunities for
overhead reduction exist.
In this paper, we propose an alternative system-level ap-

proach to reduce the impact of faults on the output quality
of an application, quantified in terms of a suitable qual-
ity metric. Rather than correcting the faults (like ECC),
the proposed approach minimizes the magnitude in error
caused due to a faulty cell. This is ensured by placing bits of
lower significance into the faulty cells. This is implemented
through a hardware mechanism that circular-shifts the data
word (upon every write) such that bits of lower significance
(LSB) are stored in the faulty cells leading to a tolerable
loss in output quality. The number of shifts required is
determined apriori using a built-in self test (BIST) struc-
ture. The proposed scheme was implemented in a 28 nm



Figure 1: 32-bit SRAM array with ECC

FD-SOI process and compared with traditional ECC and
P-ECC for a variety of data mining applications, showing
beneficial trade-offs in terms of power, area, and delay at an
acceptable quality loss.

Contributions: Our specific contributions are:

• A bit-shuffling error-mitigation scheme that takes into ac-
count the properties of binary representations that at-
tribute different significance to each bit. The basic idea
of the proposed scheme is to shift the bit-segments of the
original stored word, in order to store the more significant
bits in non-faulty bit-cells, while allowing less significant
bits to be stored in faulty bit-cells. By doing so, the bit-
error distribution is skewed towards the lower significance
bits, substantially limiting the quality loss.

• Application of the proposed scheme to a variety of data
mining and classification algorithms and evaluation of its
efficacy in limiting the quality loss, quantified in terms of
a suitable quality metric. The proposed scheme is com-
pared to P-ECC, which we also apply to the studied ap-
plications. This analysis also further enhances the under-
standing of the efficacy of P-ECC since this method has
so far only been applied to multimedia systems.

• Relaxation of the traditional zero-failure yield criterion to
allow a limited number of faults/limited quality degrada-
tion, leading to a redefined test criterion, which is evalu-
ated for our scheme.

• Implementation of the proposed scheme in a 28 nm FD-
SOI process node, integrated with a 32-bit word memory
block.

• Evaluation of the power, delay, and area overhead vs. loss
of quality achieved by applying the proposed bit-shuffling
scheme with different sizes of bit-segments, and compari-
son with the traditional ECC and P-ECC schemes.

The rest of the paper is organized as follows. Section 2
describes the required background and traditional ECC ap-
proaches. Section 3 presents the proposed approach and
Section 4 discusses an analytical formulation of its benefits
in terms of yield and output quality. Section 5 analyses the
trade-offs between energy savings and output quality and
compares the obtained results to existing schemes. Section 6
concludes the paper.

2. BACKGROUND - MOTIVATION

In general, a static random-access memory (SRAM) is a
2-dimensional array consisting of M = R×W bit-cells orga-
nized in R rows and W columns. In many SRAM architec-
tures, each row stores a W -bit vector, referred to as a word.
These words can be accessed through peripheral memory
circuits, which include address decoders, precharge circuits,
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Figure 2: SRAM cell failure probability under VDD

scaling in 28nm process technology.

column multiplexers, and sense amplifiers, as depicted in
Fig. 1 for an array with 32-bit words.
As discussed previously, while technology scaling may have

helped meet increased memory density requirements, it also
has increased the sensitivity of transistors to parametric
variations. Such variations can impair the functionality of
a bit-cell, rendering it unable to correctly store ‘0’ and ‘1’
levels and/or read out the stored level within the required
time, leading to a number of bit-cell failures, N . The prob-
ability of having a certain number of failures Pr(N = n)
depends on the memory size and the cell failure probability,
Pcell, which is a function of various transistor characteristics
and operating conditions.
Using an in-house developed framework based on SPICE-

level simulations and hypersphere sampling [13] we esti-
mated the total cell failure probability of a classical six-
transistor (6T) SRAM cell in a 28nm process node under
various supply voltages (VDD), as depicted in Fig. 2. While
VDD scaling is one of the primary methods for power reduc-
tion [3], Fig. 2 shows that this results in a rapid increase
in Pcell. It is important to note that once a memory array
is manufactured, the number and location of any variation-
induced bit-cell failures is persistent. In addition, in the
presence of process variations, bit-cell failures caused by
voltage scaling follow the fault inclusion property, i.e., bit-
cells that fail at a given VDD will fail for all lower VDD [14].
Post-manufacturing tests are used to determine if the mem-
ory sample has any failure or not. As defined by the tra-
ditional yield criterion, all memory samples with 1 or more
number of failures are rejected to ensure 100% data integrity.
However, as Pcell increases under technology and VDD scal-
ing, such a conservative criterion provides a low yield (de-
fined as Y = (1−Pcell)

M for a memory of M total bit-cells).
For example, the yield approaches zero for a 16KB memory
operating at 0.73V, as shown in Fig. 2.
Various techniques are used to limit the yield loss, such

as redundant rows and/or columns within each die that
replace any row/column with a faulty cell. However, as
the number of failures increases, the number of redundant
rows/columns required to replace every faulty row/column
increases tremendously [15]. The economics governing re-
dundancy based schemes make it an unviable option when
considering worst-case process variations.
This has led to the use of other schemes, such as ECC, for

maintaining high yield under the impact of parametric fail-
ures due to process variations and voltage scaling [4,15]. In
ECC, each W -bit word is transformed into a C-bit codeword
(C > W ) by adding c = W −C parity bits upon every write
to the memory. This codeword is then compared (using spe-
cialised decoders) against a new codeword generated during
a read to detect and/or correct any failures that might have
occured between the last write and the subsequent read. In



Figure 3: Proposed bit-shuffling scheme.

general, there are various classes of linear-time encodable
and decodable ECCs, but one of the most popular, is the
single error correction, double error detection (SECDED)
Hamming code (which will also be used for comparison in
this paper). For a 32-bit data word, c = 7 parity bits are
needed for SECDED ECC, in what is known as an H(39,32)
code. While such a code can ensure all words in the memory
with a maximum of 1-failure can be corrected, the integra-
tion of the encoding/decoding circuitry, and storage cells for
the parity bits, shown in Fig 1, results in significant area,
delay, power overhead, as we will also show later.

The guarantee of 100% accurate operation in safety crit-
ical applications may justify the overhead incurred by the
use of ECC. However, for many applications, the reliability
constraints, and thus the overhead, can often be relaxed due
to their inherent error resilience [8]. It has been observed,
for instance, that in multimedia and communication applica-
tions, only errors in certain bits or types of data may lead to
non-acceptable quality loss. Such an observation has led to
unequal error protection schemes, according to which larger
bit-cells and more complex ECC are used to guarantee the
accuracy of critical bits, while leaving the rest of the bits un-
protected or encoded with less complex ECC [4,12,16]. For
instance, in [12], it was shown that by protecting only the 32-
higher order bits of each 64-bit memory word can limit the
quality loss in terms of peak-signal-to-noise-ratio (PSNR) in
an H.264 video processing system, even under 30% voltage
scaling, while incurring at least 50% lesser overhead when
compared to traditional ECC schemes.

Although such schemes may reduce the overhead of tradi-
tional ECC, they primarily target multimedia applications,
and their compatibility with other applications still remains
unexplored. In addition, such schemes are still based on
ECC, even if they restrict its use to only part of the mem-
ory words. By doing so they provide only partial protection
of the overall word and thus errors in LSBs might get ne-
glected leading potentially to non-acceptable quality loss.
Such issues motivated us to introduce an alternative and
generic fault mitigation scheme that is not based on ECC
and that fully exploits the properties of common binary for-
mats (which attribute higher significance to MSBs) for tack-
ling any fault in each entire memory word.

3. PROPOSED SCHEME

Taking into account the increasing significance as we move
from lower to higher order bits, we propose a significance-
driven error mitigation approach that reduces the impact
of faulty bit-cells to a level that is acceptable by the target
application. The basic idea of this approach is to shift seg-
ments of the original data words, such that the data bits with
higher significance are stored in non-faulty bitcells, thereby

ensuring that faulty bitcells can only store data bits of lower
significance. By modifying the number of bits that com-
prise a shifted segment, the designer can trade-off quality
for power, delay, and area.
We use a simple example to illustrate the proposed scheme.

Let us assume that 32-bit integers in 2’s complement rep-
resentation are stored in a 32-bit wide standard memory
architecture with several faulty bits, as illustrated in Fig. 1.
Without any correction mechanism, the output error mag-
nitude would be as high as 232, for the top word in the illus-
trated memory. Although integrating an H(39,32) SECDED
ECC scheme would correct such faults, this requires the ad-
dition of 7 extra columns for storing the parity bits and com-
plex encoding/decoding logic, which adds approximately 13
gate delays to the read access time of the memory [17]. In ad-
dition, the power and area overhead of adding such a scheme
can be significant, depending on the size of the memory [4].
The same faulty array is illustrated in Fig. 3 with the

proposed bit-shuffling scheme integrated instead of ECC. In
this example, a 5 column wide fault-map look-up table (FM-
LUT) is used. Each entry in this FM-LUT indicates the
amount of right-circular shift that needs to be applied to en-
sure that only the least significant segment of a word stored
on a row with a faulty cell will be affected by the potential
error. In the particular example (of a 32-bit wide memory),
the 5-bit wide FM-LUT allows application of shifting at a
single-bit granularity. The overall procedure for applying
the proposed scheme consists of two steps. First, the loca-
tion of the faulty cell in each row/word is detected during
BIST and a shifting value, xFM(r), is recorded in the FM-
LUT for each row r. Second, when writing to the memory,
the shifting value for the selected word address is read out
and a right-circular shift is applied to the data word accord-
ing to this value. By doing so, the least significant segment
of the data word is moved to the location of the faulty cell
before storing the data. In the example of Fig. 3, the LSB
(due to the assumed single-bit segment size) of the top word
is shifted-right by 31 positions and stored in bit-position
31 of the memory word. During readout, the FM-LUT is
checked again, this time initiating a left-circular shift of the
readout value, thereby restoring the original bit locations.
In this single-bit segment case, a maximal error-magnitude
of 20=1 is obtained for each row under the assumption of a
single fault per word
Integration of the bit-shuffling scheme into a standard

memory architecture requires the addition of the FM-LUT
and a shifter. The number of bits per row in each FM-
LUT entry, nFM, sets the segment size S of the bit-shuffling
scheme, which is given by:

S = W/2nFM (1)

with 1 ≤ nFM ≤ ⌈log2W ⌉ for a W -bit word. The segment
size should be selected according to the residual error tol-
erated by the application. Fig. 4 displays the error magni-
tude per faulty bit position of all nFM implementation pos-
sibilities for a 32-bit memory storing 2’s complement inte-
gers. While the maximum error magnitude for nFM=5 is 20,
the area, delay, power overhead can be reduced by choosing
lower values of nFM. For all cases, the worst-case error mag-
nitude is bounded by 2S−1, based on the maximum distance
of the faulty bit from the LSB of the shifted segment.
The locations of the faulty bits, as previously mentioned,

are determined through the memory BIST, which can be ex-
ecuted either during post-fabrication testing or during power-
on startup testing (POST). The process of performing this
routine every time the system is booted provides the ad-
vantage of tracking potential failures induced by temporal
degradation (i.e., due to aging). According to the fault lo-
cations, the shifting value, xFM(r), is stored in the FM-LUT
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Figure 4: Error-magnitude of failures per faulty bit
position for all options of FM sizes, assuming a 32-
bit integer in case of 2’s complement representation.

for each row r. This defines the circular shift rotation mag-
nitude T (r) that needs to be applied to the data word, as:

T (r) = S · (2nFM − xFM(r)). (2)

For example, in the case of the faulty array of Fig. 3, with
W=32 and nFM=5, the bottom word has a failure in its
third bit. Therefore, T (bottom row)=29, and the data word
is circularly shifted right by 29 positions, such that the LSB
is stored in the faulty position.

4. YIELD CRITERION AND IMPACT

As discussed in Section 2, yield is traditionally defined as
the percentage of memories that are fault-free (zero failures).
However, to depart from the paradigm of 100% reliable oper-
ation, the yield criterion has to be modified; memories with
up to a certain number of failures still qualify, as long as
the failing bit-cells have no relevant impact on the quality
of service of the considered application [8, 10, 11]. As the
quality metric and the error tolerance limits vary across ap-
plications, this type of yield criterion will have to be set on
a per-application basis. Furthermore, this criterion needs to
account for any technique integrated on the chip to mitigate
the quality-impact of failing bit-cells.

To this end, we propose a qualitative cost function that
considers not only the number of failures, but also the spe-
cific application-error magnitude of each tested die. To il-
lustrate this idea, let us assume that the impact of faults in
an unreliable memory with N failures is quantified in terms
of a quality metric Q. The joint probability that a memory
has quality Q=q with N=n failures is given by:

Pr(N = n,Q = q) = Pr(Q = q | N = n) ·Pr(N = n), (3)

where the probability of a memory of size M having exactly
n failures is given by:

Pr(N = n) =

(

M

n

)

P
n

cell ∗ (1− Pcell)
M−n

, (4)

where Pcell is the SRAM bit-cell failure probability. Since
we know that memories with a certain bit-cell failure proba-
bility can result in memory samples with different numbers
of failures, the probability of getting a die with quality q
over the range of up-to n failures is:

Pr(Q = q) =

n
∑

i=1

Pr(N = i, Q = q). (5)

Equation (5) provides an estimate of the probability of the
memory having a specific quality, as defined by the quality
function. Therefore, (5) measures the yield of a memory
that satisfies a given quality constraint.

The chosen quality function should be representative of
an appropriate quality metric of the underlying application,
and should show good correlation with the output quality of
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and iii) all segment size options of the proposed bit-
shuffling scheme

the application under the impact of failures. If only applied
locally to the memory, the quality function must still prop-
erly capture the impact of a fault at a given bit location on
the output error magnitude. The mean square error (MSE),
computed over the error magnitude of all words in the mem-
ory, often provides a good local estimate of the achievable
final output quality. Using the local MSE as an indicator
for the application dependent output quality metric has two
main advantages: a) Both the locations of the failures and
the corresponding MSE can be rapidly determined at test
time, avoiding the need for executing a large number of test-
time simulations to determine if a specific memory sample
satisfies all quality constraints. b) The MSE still provides a
means to differentiate between memories that have the same
number of failures, but different output quality characteris-
tics by virtue of the location of the failures. For the previous
example of a 2’s complement integer, the magnitude of the
impact of a failure at bit position b is given by 2b. The
overall error magnitude of an R×W memory array storing
2’s complement integers can then be defined by the MSE, as
given by:

MSE =
1

R

Nfailures
∑

i=1

(2bi)2, 0 ≤ bi < W, (6)

where bi is the location of the i th failure and Nfailures is the
number of failures in the specific memory sample.
Fig. 5 shows the cumulative density function (CDF) of the

MSE for a 16kB memory with a cell failure probability of
5 · 10−6 obtained by evaluating equations (3) to (6). The
CDF was obtained for both an unprotected memory and a
memory with a P-ECC scheme using an H(22,16) SECDED
code for protecting the 16 MSBs as well as for memories
utilizing the proposed bit-shuffling scheme with various seg-
ment sizes. For each number of failures, from 1 to 150,
random bit-flips were injected considering in total Trun=107

Monte Carlo (MC) generated memory samples, and the re-
sulting MSE was computed for each sample. The fault injec-
tion was performed by generating maps of random bit-flip
locations for each failure count. The number of samples per
failure count n is determined by Pr(N=n)·Trun. The results
show that the proposed approach leads to a minimum 30×
reduction in MSE that must be tolerated to achieve a given
target yield, even for the nFM=1 case. This can directly
be translated into yield improvement, as for example, by
setting the maximum target MSE to MSE < 106, the pro-
posed scheme achieves 99.9999% yield for the nFM=1 con-
figuration, as opposed to a yield of <6% for the unprotected



Figure 6: Overhead comparison of the proposed
scheme using nFM=1, ..., 5 and a H(22,16) P-ECC
scheme with a H(39,32) SECDED ECC scheme

memory (based on no correction mechanism). In addition,
we observe that the proposed scheme also outperforms P-
ECC in most cases, providing a significantly lower MSE for
a given yield target with nFM=2, ..., 5.

5. EVALUATION METHODOLOGY AND RE-

SULTS
Evaluation of the proposed scheme was performed in two

parts. First, bit-shuffling, ECC, and P-ECC schemes were
implemented for overhead comparison. Second, a simula-
tion framework for evaluating the output quality was devel-
oped for running representative benchmarks on real-world
datasets, and used to evaluate and compare the quality degra-
dation due to bit-shuffling and P-ECC schemes [4].

5.1 Hardware Overhead Comparison
In order to quantify the reduction in overhead by using the

proposed error-mitigation technique as compared to alterna-
tive error-correction solutions, a power, delay, and area com-
parison was carried out versus a classical H(39,32) SECDED
ECC and an H(22,16) P-ECC scheme. The encoder/decoder
blocks of the two ECC techniques and all segmenting options
for a 32-bit wide memory (nFM=1, ..., 5) were implemented
in a 28 nm FD-SOI technology, synthesized with Synopsys
Design Compiler, and placed and routed with Cadence SoC
Encounter. The resulting layouts were evaluated for power
consumption, using a value change dump (VCD) based flow
in the Cadence Encounter Power System. Power and area
overheads due to the addition of extra columns (parity bits
and LUTs) were estimated based on SRAM macros available
in this technology. Note that this comparison only takes
into account the readout path, as for the considered appli-
cations, write operations are not on the critical path and
are carried out much less frequently than reads. In addi-
tion, the LUTs are implemented as entire bit columns in
the array to demonstrate the achievable saving through the
most straightforward realization of the proposed technique.
However, the LUT could be realized with, for example, a
content-addressable memory (CAM) or register file, to pro-
vide much less overhead, especially in terms of write latency,
which in the case of bit-shuffling, requires a read prior to a
write.

Fig. 6 presents the comparison of the read power, read
delay, and area of each of the aforementioned techniques,
relative to the overhead required by the H(39,32) SECDED
ECC. The proposed scheme provides an advantage over both
ECC-based methods in all design aspects. In terms of read
power overhead, the bit-shuffling techniques save 20%–83%

Table 1: Evaluation Applications and Datasets

Class Algorithm Dataset Metric

Regression Elasticnet Wine Quality [18] R2

Dimensionality Principal Component Madelon [19] Explained

Reduction Analysis (PCA) Variance

Classification K-Nearest Activity Score

Neighbors (KNN) Recognition [20]

depending on the bit-segment size, while the read delay and
area overhead are reduced by 41%–77% and 32%–89%, re-
spectively, as compared to the overheads required by SECDED
ECC. When considering the P-ECC, the bit-shifting tech-
nique provides as much as 59%, 64%, and 57% reduction in
read power, read delay, and area overhead, respectively.

5.2 Impact on Quality
In order to evaluate the efficacy of the proposed scheme

in limiting the quality loss at the application level under
potential memory failures, we applied it to various data
mining and classification applications. Although our pro-
posed scheme is developed keeping in mind its applicabil-
ity to a wide range of error-resilient applications, for the
sake of brevity, we will limit our discussion of the impact
to only three very widely-used algorithms in these domains.
In particular, we consider: i) Elasticnet - used for data re-
gression, ii) Principal Component Analysis (PCA) - used
for dimensionality reduction, and iii) K-Nearest Neighbors
(KNN) - used for data classification. These popular algo-
rithms have yet to be studied extensively in the context of
fault-mitigation, especially in the case of the P-ECC schemes.
All benchmark algorithms under consideration require a

set of training data, which is processed initially by each algo-
rithm for developing the actual model. The developed model
is then validated by executing a set of test data and evaluat-
ing a quality metric suitable for each target application, as
summarized in Table 1. For the Elasticnet benchmark, we
used a wine taste preference dataset and use R2 as an indi-
cator o fthe goodness of fit [18]. For the PCA benchmark,
a synthetic dataset from the 2003 NIPS feature selection
challenge was used [19]. Explained variance is the measured
quality metric. The classification (KNN) benchmark per-
forms human activity recognition based on accelerometer
readings from the dataset [20]. The benchmarks were devel-
oped using the open-source Scikit-Learn framework [21] and
the datasets were obtained from the UCI machine learning
repository [22].
A software simulation framework was developed, for stor-

ing and processing the input training dataset of each bench-
mark and evaluating the resulting output quality. For each
benchmark, the dataset is partitioned into training and test-
ing inputs (0.8:0.2 ratio), and a functional model of a 16KB
memory is used to inject bit-flips, according to the random
fault maps based on the assumed Pcell, as described in Sec-
tion 4. In particular for each number of failuresN=1, ..., Nmax,
we determined the probability that a memory sample will
have N bit-cell failures using (4) for a given Pcell, where 99%
of the memories have no more than Nmax failures. For each
N , we generated 500 MC samples of random fault maps and
executed the benchmarks on the functional faulty memory
to determine the output quality.
Fig. 7 plots the resulting cumulative distribution function

(CDF) of the specific quality metric for each benchmark for
a 16kB memory with a Pcell of 10

−3. The plots assume that
the small number of samples with more than one error per
word are discarded, such that H(39,32) ECC provides error-
free operation, and therefore, a perfect normalized metric of
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Figure 7: Measured CDF of quality for three different applications under the impact of memory failures with
a.)no protection b.) P-ECC c.) bit-shuffling

1 for each benchmark in fault-free cases. The CDF indicates
the yield as a function of the quality obtained when execut-
ing the specific benchmarks. The CDF of the metric is then
plotted for the use of: i) no error protection; ii) bit-shuffling
with nFM=1; iii) bit-shuffling with nFM=2; and iv) H(22,16)
P-ECC on the MSB bits. For each benchmark, the nFM=2
bit-shuffling scheme already provides better error-mitigation
than the P-ECC, and therefore, higher values of nFM are
not plotted. In the case of the Elasticnet benchmark, while
without any correction, the R

2 metric is extremely low for
virtually all samples, even the addition of a single bit LUT
provides very good results, clearly surpassing the P-ECC
technique. As shown previously, this also comes with signif-
icantly less overhead.

6. CONCLUSION

A fault mitigation scheme that departs from the conven-
tional 100% error detection and correction mechanisms, and
instead reduces the impact of errors on output quality by
utilizing the relaxed reliability constraints enabled by error
resilient applications is presented. By exploiting the fact
that all popular binary representations attribute different
significance to each bit location, the proposed scheme shifts
the stored bits such that only less significant bits are affected
by any fault. By doing so, the loss in output quality is kept
low, as quantified in terms of suitable metrics and shown
for a variety of data mining and classification algorithms.
Our results in a 28 nm process node indicate that the adop-
tion of the proposed scheme, instead of traditional ECC,
can reduce the read power, read delay, and area overhead
by as much as 83%, 77% and 89%, respectively. Overall,
the proposed mechanism provides a low-cost alternative to
traditional fault-tolerant schemes and can be used to exploit
the properties of a variety of error-resilient applications for
allowing operation at scaled voltages and advanced technol-
ogy nodes.
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