
Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment

Constantin, J., Wang, L., Karakonstantis, G., Chattopadhyay, A., & Burg, A. (2015). Exploiting dynamic timing
margins in microprocessors for frequency-over-scaling with instruction-based clock adjustment. In Proceedings -
Design, Automation and Test in Europe, 2015. (pp. 381-386). Institute of Electrical and Electronics Engineers
(IEEE).

Published in:
Proceedings -Design, Automation and Test in Europe, 2015

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33591923?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/exploiting-dynamic-timing-margins-in-microprocessors-for-frequencyoverscaling-with-instructionbased-clock-adjustment(463620e3-1a87-4b5b-9a07-1f4774aae4f6).html


Exploiting Dynamic Timing Margins in
Microprocessors for Frequency-Over-Scaling with

Instruction-Based Clock Adjustment

Jeremy Constantin∗, Lai Wang†, Georgios Karakonstantis∗, Anupam Chattopadhyay‡, and Andreas Burg∗
∗ Telecommunications Circuits Laboratory, Institute of Electrical Engineering, EPFL, Switzerland

Email: {jeremy.constantin,georgios.karakonstantis,andreas.burg}@epfl.ch
† MPSoC Architectures Research Group, UMIC, RWTH Aachen University, Germany

‡ School of Computer Engineering, NTU, Singapore

Abstract—Static timing analysis provides the basis for setting
the clock period of a microprocessor core, based on its worst-case
critical path. However, depending on the design, this critical path
is not always excited and therefore dynamic timing margins exist
that can theoretically be exploited for the benefit of better speed
or lower power consumption (through voltage scaling). This paper
introduces predictive instruction-based dynamic clock adjustment
as a technique to trim dynamic timing margins in pipelined
microprocessors. To this end, we exploit the different timing
requirements for individual instructions during the dynamically
varying program execution flow without the need for complex
circuit-level measures to detect and correct timing violations. We
provide a design flow to extract the dynamic timing information
for the design using post-layout dynamic timing analysis and
we integrate the results into a custom cycle-accurate simulator.
This simulator allows annotation of individual instructions with
their impact on timing (in each pipeline stage) and rapidly
derives the overall code execution time for complex benchmarks.
The design methodology is illustrated at the microarchitecture
level, demonstrating the performance and power gains possible
on a 6-stage OpenRISC in-order general purpose processor
core in a 28 nm CMOS technology. We show that employing
instruction-dependent dynamic clock adjustment leads on average
to an increase in operating speed by 38% or to a reduction in
power consumption by 24%, compared to traditional synchronous
clocking, which at all times has to respect the worst-case timing
identified through static timing analysis.

I. INTRODUCTION

Aggressive technology scaling has allowed the continuous
increase of processor performance while maintaining the same
power consumption across generations. However, the worsen-
ing of variations and the enormous design margins enforced
by conventional techniques for avoiding timing failures limit
the performance returns from technology scaling and lead to
power overheads especially in sub-40 nm nodes. Particularly
one type of highly pessimistic margin has already burdened
the traditional design flow even long before the recent rise of
variability issues: the traditional synchronous design paradigm
determines the operating frequency according to the worst crit-
ical path that is identified through static timing analysis under
assumed worst case conditions. However, this critical path is
not always excited, thus leading to processors that perform
(much) slower than what they can theoretically achieve.

A. Related Work

The pessimistic limitation of the clock frequency by the
worst-case path in synchronous designs led to a short research
trend that promoted the idea of asynchronous circuits [1]. How-
ever, even though the success of pioneering early work [2] in

that field showed noticeable speedup and even power savings,
the lack of a consistent methodology and reliable tools, as well
as considerable design risks led industry to effectively abandon
the asynchronous design approach.

More lately, related, but quite different adaptive design
techniques have become popular for limiting the timing mar-
gins (due to delay uncertainty from process-variations) in
pipelined processors. As opposed to asynchronous design,
these techniques focus on in-situ error detection and correction
mechanisms in (near) timing-critical paths [3]–[5]. A popular
approach for operating beyond the ’always correct’ critical tim-
ing/voltage margin is for example to stall a pipeline or replay
instructions, when a timing violation is detected. However,
the enforced timing constraints for timing-error detection and
the overheads for the applied recovery methods (e.g., multi-
cycle replay penalties), especially in case of high activation
probability of critical paths can offset the gains achieved by
removing the static or dynamic safety margins. Alternative
methods include the use of occasional two cycle operations,
when operands are detected that activate the critical path in
arithmetic units through delay prediction circuits [6]. Unfortu-
nately, such a method can also lead to performance overheads
in case of high excitation probability of the long latency paths
and its application has so far been limited to arithmetic circuits.
In any case, both methods still do not consume all margins,
due to the constraints imposed by the used flip-flops and the
widespread coarse grained application of clock stretching from
one to two (or multiple) cycles, leaving a large potential for
unexploited timing slacks on the table.

Recently another method was proposed [7] that enforces
time borrowing within a fixed window between pipeline stages
and that stretches the clock in the next clock cycle for
avoiding any timing failure. Although such a method can
reduce the incurred penalties of the aforementioned techniques,
it still leaves unexploited potential timing margins due to
the fixed time borrowing windows and entails considerable
design complexity due to the special flip-flops that need to be
integrated. Only last year a less intrusive design method was
proposed that tried to reduce static timing margins by applying
application-adaptive guard-banding [8]. Although this method
is very attractive, it mainly focused on tackling temperature
and process variations, while the dynamic clock adjustment in
the used LEON3 core is applied on a rather coarse granularity,
discerning only two instruction classes based on their error
tolerance capability. In addition, a systematic approach for
characterizing the required execution time per instruction is
required to apply the idea on a finer granularity.



B. Contributions and Outline

In this paper, we depart from the conventional static timing
analysis based clocking and from existing design intrusive
techniques based on a-posteriori timing-error detection and
correction. Instead, we introduce a predictive dynamic clock
adjustment technique to trim dynamic timing margins by
exploiting the different timing requirements of individual in-
structions in a processor. Our approach not only limits the
design complexity of the aforementioned approaches but its ap-
plication at the instruction level combined with its fine grained
clock adjustment also ensures the utilization of a large part of
the timing slacks that are available during the dynamically
varying program execution flow. More specifically, the paper
makes the following contributions:

• We propose to dynamically adjust the clock period of
a pipelined microprocessor on a cycle-by-cycle basis
to achieve an average clock frequency beyond the one
given by the static timing analysis limit (frequency-
over-scaling without introducing timing errors).

• We propose and show how to dynamically set the
clock period based on the instructions in the pipeline.

• We develop a generic framework that characterizes the
delay required per instruction and per pipeline stage,
through post-layout dynamic timing analysis.

• We apply the proposed approach to a popular open
source RISC processor core after optimizing it to
smoothen the timing wall that would otherwise reduce
the gains from our technique.

• To allow rapid evaluation of the proposed approach
for any complex benchmark, we develop a fast custom
cycle accurate simulator, which accurately tracks the
dynamic clock adjustment and reveals the overall code
execution time (average/effective clock frequency).

• Finally, we show the potential improvements in speed
and power consumption (by utilizing the speed gains
for voltage-frequency scaling) for various benchmarks
with an advanced technology node.

The rest of the paper is organized as follows: Section II
presents the proposed design technique and the steps of the
proposed design flow. Section III describes the processor core
used as a case study for applying our method, briefly presents
the microarchitecture modifications and introduces our custom
instruction set simulator, used for performance evaluation. The
performance gains for several benchmarks and the obtained
energy efficiency improvements are presented in Section IV.
Conclusions are drawn in Section V.

II. PROPOSED APPROACH AND DESIGN FLOW

As almost any digital circuit, a pipelined processor typ-
ically consists of a set of N unique combinational paths
P = {p1, ..., pN}, which are characterized by their delays
D(pn) for n = 1, ..., N (each including the setup time of
the end-point). In a pipeline with S stages, each path can be
attributed to exactly one stage s = 1, ..., S, based on its end-
point, and we can define corresponding exclusive per-stage
path groups Ps such that

⋃S
s=1 Ps = P and Ps∩Ps′ = ∅ for

s �= s′. In a synchronous design, the longest path (in terms of
delay) across all pipeline stages determines the clock period
such that

T staticCLK = max
s=1,...,S

{
max
p∈Ps

{D(p)}
}

= max
p∈P

{D(p)} . (1)

Fig. 1. Proposed instruction-based dynamic-clock adjustment technique in a
S=3-stage pipelined processor

However, the bound put on the clock period in (1) is overly
pessimistic since it ignores the fact that in each pipeline stage,
the respective longest path maxp∈Ps {D(p)} is not always
excited. Instead, at time t, both operands and especially the
instruction Is[t] that is currently in-flight in stage s determine
a subset of relevant paths Ps

Is[t]
⊂ Ps that is sufficient to

determine the position of the next clock-edge for that pipeline
stage. Since all registers are connected to the same clock, we
can now determine a safe, but less pessimistic clock period for
time instant t as follows

T dynCLK[t] = max
s=1,...,S

{
max

p∈Ps
Is[t]

{D(p)}
}

≤ max
p∈P

{D(p)} . (2)

The corresponding relevant (active) instructions Is[t] = L[t+
1−s], s = 1, ..., S are thereby determined by the S subsequent
instructions in the program trace L[t], t = 1, ...,M which
therefore influence the average cycle time taken over the entire
program execution 1 T avgCLK = 1

M

∑M
t=1 T

dyn
CLK[t].

In less formal words, we can say that in each cycle
the relevant path for each pipeline stage depends on the
instruction 2 of the program that is currently in that stage.
The longest relevant path across all stages then determines the
clock period for that cycle that is necessary to avoid timing
violations.

A. Instruction Based Clock Adjustment

The main idea behind our approach is to exploit different
timing requirements of the various instruction sequences in
the program trace to opportunistically over-scale the average
frequency (i.e., to operate effectively at T avgCLK < T staticCLK ). To
this end, we propose to adjust the clock period on a cycle-
by-cycle basis, ideally according to (2). The corresponding
architecture, as shown in Fig.1 monitors the instructions Is[t]
that are in-flight in all processor pipeline stages s = 1, ..., S
and uses a lookup table (LUT) for each stage that contains
for each instruction type the maximum delay of all relevant
paths dsI = maxp∈Ps

I
{D(p)} in that stage. These per-stage

maximum delays (for the respective current instructions IsIs[t])

are then combined to yield T dynCLK[t] and to adjust a tunable

1For simplicity, we assume long programs with limited impact of initial-
ization effects.

2The delay of the relevant path also depends on other conditions, such as the
operand values, state of the forwarding logic (influenced by the instructions
in other stages), as well as the temperature, which are all accounted for by
considering their worst case effects on the path delay.



clock generator (CG) accordingly in each cycle. Such a CG can
for example be realized in form of a tunable ring oscillator with
a muxed clock output [9], [10] or via a multi-PLL clocking
unit such as the one proposed in [11], which is thus beyond the
scope of this paper. We note that the design of an appropriate
CG can have a significant influence on the system power
consumption, and requires special care.

B. Design Flow

The design flow for realizing and evaluating the proposed
cycle-by-cycle adaptive clocking is shown in Fig. 2.

1) Implementation
The first step in the process is the RTL implementation,

optimization, synthesis, and place & route of a suitable mi-
croprocessor. While we keep the objective of achieving a
high clock frequency, as determined by static-timing-analysis,
we also note that this worst-case timing is not the only
objective to obtain a high average clock frequency. Thus, it is
important to not only optimize the critical path of the design,
but also to reduce the number of near-critical paths and to
keep the remaining paths short to minimize maxp∈Ps

I
{D(p)},

s = 1, ..., S for all (or at least all frequent) instructions I .
Unfortunately conventional implementation strategies and well
balanced pipelines tend to produce a so-called timing wall
as shown in Fig. 3(a), since they focus on the critical path
only and allow other paths to become near-critical to recover
area or power [12]. This timing wall typically has no negative
impact on the static timing limit, but on the gains available
from the dynamic clock adjustment proposed in this paper. We
therefore propose to use suitable synthesis and implementation
constraints (and possibly dedicated tools as in [12]) that also
optimize sub-critical paths to keep them short, as illustrated in
Fig. 3(b). While this objective usually involves overhead (in
area, speed, and power), we will later show that this overhead
can be kept small. In addition, to avoid the timing wall in the
synthesis and place & route step, optimizations at the register-
transfer-level can be used to remove long, but functionally
irrelevant paths from Ps

I , for example through shielding.

2) Characterization
The second step in the process is the characterization of

the dynamic timing margins per instruction and per stage.
This information is used for performance evaluation of the
approach and eventually to populate the lookup-table for the
clock period adjustment of the design. To this end, we start
from the final netlist and the standard delay format (SDF) post-
layout timing information of the design and perform gate-level
simulations. We run different test programs, which include
small hand-written kernels as well as semi-random test-cases
that are generated by a code generation tool. The simulation
outputs value change dumps (VCDs) that are used for power
analysis based on the switching activity of the core. Moreover,
the evolution of the program counter is recorded to be able to
generate a program trace L[t] from the disassembled binaries.
The next step is the dynamic timing analysis. In contrast to
conventional static timing analysis, we are interested in the
dynamic behaviour of the path endpoints during execution of
actual programs. Dynamic timing analysis aims to uncover the
unused timing margins of the processor that are available at
run-time, which can not accurately be characterized through
static timing analysis, due to the missing notion of path
activation probabilities. To obtain this information, the gate-

level simulation (at a ”low” clock frequency) also monitors the
inputs (data and clock) of all flip-flops and memory macros
in the design and outputs a corresponding event log. This log
is then provided to a custom dynamic timing analysis tool.
For each sequential element (end-point), this tool identifies
the time of the last event on its data-input pin in each clock
cycle and relates it to the arrival time of the next active clock
edge on the clock input of the same memory element. This
individual comparison is important to also account for clock
skew, which is often even introduced artificially to improve the
post-layout timing. The difference between the clock and data
activity time stamps (minus the setup time) is then recorded as
the available dynamic slack for this particular element for each
clock cycle. The time-average over the worst-case slack among
all end-points in each cycle provides an optimistic lower-bound
on the average clock period T avgCLK of the processor, including
all data and instruction dependencies.

In a next step, the analysis tool partitions path end-
points into path-groups Ps according to a provided pipeline
specification of the processor and determines the longest
delay per pipeline stage and per cycle maxp∈Ps

L[t]
{D(p)[t]},

s = 1, ..., S, where D(p)[t] is the dynamic delay observed
on path p as measured in cycle t. The corresponding dy-
namic timing limits at pipeline stage granularity are then
combined with the program trace to produce the dynamic
slack distributions and the minimum cycle times ds[t] =
maxp∈Ps

L[t]
{D(p)[t+ s− 1]}, s = 1, ..., S for all executed

instructions L[t] in the program trace. The maximum delays
per instruction and pipeline stage are then extracted by taking
the maximum across all occurrences of that instruction in
the program trace as dsI = maxt:L[t]=I {ds[t]} and are then
exported and are used to fill-up the delay prediction LUT
(cf. Fig. 1), characterizing the instruction-dependent clock
adjustment potential.

Fig. 3. Timing profile in a conventional processor vs the proposed

III.CASE STUDY AND EVALUATION ENVIRONMENT

The proposed approach is applied to a general purpose
open-source processing core, the OpenRISC [13]. This section
discusses the microarchitectural modifications, as well as the
applied constraints for reducing the impact of a timing wall
and making the core suitable for our technique. Additionally,
we discuss the performance evaluation environment, based on
a custom instruction set simulator.

A. OpenRISC Microarchitecture

The mor1kx cappuccino microarchitecture implementation
of the OR1000 OpenRISC architecture, which is an in-order
32-bit RISC pipeline consisting of six stages, is used as our
case study. The schematic of the adapted core is shown in
Fig. 4. The fetch unit and load and store units, as well as
parts of the arithmetic and logic unit (e.g., the multiplier)
have been optimized to achieve close to one instruction per
cycle execution throughput. The ALU is comprised of an adder
and a single-cycle multiplier (with 32-bit output), along with a



synthesis
(Design Compiler)

place & route
(Encounter)

netlist

gate-level simulation
(Modelsim)

netlist
+ SDF

VCD

power analysis
(Encounter)

dynamic timing 
analysis

(Perl)

event log
(TSSI)

PC trace

benchmark execution w/ 
dynamic timings (PD ISS)

power + performance
evaluation

28 nm FDSOI 
CMOS libraries
(0.6V, 0.7V, …)

incl. SRAM macros

instruction timing 
extraction + stats

(Matlab)

pipeline
specification compilation

(GCC)

delay
LUT

cycle-by-cycle 
stage timings

+ instruction trace

OpenRISC
LISA model

(cycle-accurate)

program
binaries (.elf)

directed semi-
random test
generation 

(Python)
compilation (GCC)

program binaries (.vmem)

characterization
kernels (.asm)

program
disassembly (.das)

BEEBS (.c)

custom OpenRISC
verilog model (.v)

opt. constraints for
dynamic clocking

scheme (.sdc)

CoreMark (.c)

implementation characterization

source (.asm)

Fig. 2. Proposed design flow including dynamic timing analysis, instruction timing extraction and evaluation

Address Fetch Decode Execute Mem/Control Writeback

Instr. Mem.

pc

addr

Data Mem.

Reg. File

+4 instr

decoded
activations

operand
addresses
+ imm.

pc read port a
addr

instr

read port b
addr

data
port b

data
port a

pc

alu result

CTRL

read data

wb data

wb addr

pc

addr data +en

LSU
align 
+ ext.

ALU

adder res.

b

a

branch
target

pc LSU

microarchitecture
modifications

Fig. 4. Customized mor1kx microarchitecture of OpenRISC

shifter. A single 32-entry register file with two read ports and
one write port is used. Furthermore, to make the core suitable
for integration in an increasingly popular low-power many-
core accelerator [14], the microarchitecture of the pipeline has
been modified in order to support a tightly coupled memory
interface, for the instruction as well as the data memory.
Since both memories are implemented as fast SRAMs, access
latency for instructions and data are both single-cycle. Other
modifications include also the integration of the data memory
requests and parts of the load store unit in the execute stage.

To increase the opportunities for shorter clock cycles, the
multiplier has been shielded from the inputs of the other
units of the ALU by separate, parallel registers that are only
loaded for multiplications. This measure avoids unnecessary
”parasitic” activity for operations other than multiplications,
which not only reduces power but also avoids excitation of
the long paths through the multiplier during other operations.

To reduce the issue of a timing wall and increase the
number of short paths as described in Sec. II-B, we utilized
the ”critical-range” optimization feature of Synopsys Design
Compiler along with path over-constraining during synthesis.

Clearly, this optimization does not come for free in terms
of area and power, however a comparison to a core without the
critical-range optimization shows that area and power penalties
can be limited to 5-13% in a 28 nm fully depleted silicon
on insulator (FDSOI) CMOS technology, depending on the
target library and operating voltage. The positive effects of
the applied design step for our dynamic clocking technique are
shown in Table I, which reports the factors for the dynamic
maximum instruction delays, when applying the critical-range

TABLE I. EFFECTS OF CRITICAL RANGE OPTIMIZATION ON DYNAMIC

INSTRUCTION DELAY WORST-CASES

Instruction Max. delay factor

l.add(i) 0.92
l.bf 0.78
l.j 0.74
l.lwz 0.85
l.mul 1.10
l.nop 0.78
l.sw 0.85
... ...

optimization, compared to a standard implementation of the
same design. Interestingly, the overall minimum clock period
derived from static timing analysis increases by 9% with the
critical-range constraints, due to unwanted side effects of the
synthesis tool. However, the worst case delay excited by most
instructions reduces significantly compared to the conventional
design, and the slight increase in delay is only visible for the
multiplication instruction.

B. Performance Evaluation Environment

We evaluate the performance gains with the help of a cycle-
accurate instruction set simulator of the processing core, which
is enhanced to be aware of the dynamic clock adjustment
technique. While still operating on a cycle-by-cycle basis, it
accounts for varying real-time instruction delays according
to the delay table generated by our dynamic timing analysis
tool flow. We base our instruction set simulator on a custom
developed LISA3 model of our OpenRISC core, and employ
the Synopsys Processor Designer tool suite to generate the
custom simulator from this model. Performance benchmarks
are then run using the popular embedded benchmark suites
CoreMark [15] and BEEBS [16]. Their C sources are compiled
with the standard OpenRISC GNU toolchain (GCC). The
execution time and speedup results of the simulator are finally
combined with the extracted power consumption values to
evaluate the energy efficiency gains from voltage-frequency
scaling4 for constant execution time.

3Language for Instruction Set Architectures
4Voltage-frequency scaling is based on fully characterized cell libraries for

different operating points.



0 500 1000 1500 2000
0

500

1000

1500

2000

2500

delay [ps]

cy
cl

es
maxmean

Fig. 5. Histogram of dynamic maximum delays per cycle over all pipeline
stages of the OpenRISC core

IV.RESULTS

We present the results of our proposed design method in
two parts. The first part focuses on the characterization of the
dynamic timing margins per instruction and per stage for the
OpenRISC core by applying the developed flow as described
in Section II. The second part leverages these margins and
presents the achievable performance and power gains, when
executing popular benchmark suites on our enhanced core with
instruction-based clock adjustment.

A. Dynamic Timing Analysis of OpenRISC

Before characterizing the core timing on an instruction
level, we study an upper-bound on speed improvements from
dynamic clocking with a genie-aided clock adjustment. To this
end, we perform dynamic timing analysis, but initially we do
not enforce a worst-case clock period for all occurrences of the
same instruction. Instead, we assume that the duration of each
cycle can be adjusted according to the a-posteriori measured
dynamic timing slack. Figure 5 shows that considering all
endpoints of the core (including the SRAMs), on average
we only require a delay of 1334 ps for the correct program
execution, in contrast to the conservative limit of 2026 ps
given by static timing analysis. With correct program execution
we mean that all timing requirements of all excited paths in
any given cycle are always met. The histogram shows the
distribution of the dynamic slack available in the full core on
a cycle-by-cycle basis. Exploiting these dynamic slacks, the
theoretical average speedup is 50%.

When introducing endpoint groupings according to the
pipeline stages, our analysis shows that the execution stage
is the dominating stage, regarding worst-case dynamic paths
(cf. Figure 6). In particular, for 93% of the cycles the overall
maximum delay, defining the length of a cycle in Figure 5 is
due to an endpoint that is located between the execute and
control stage, which can be a pipeline register or the data
memory SRAM macro cell. In 7% of the cases endpoints
attributed to the address stage are the limiting factor, which
corresponds to the instruction memory endpoints. Rarely the
fetch or decode stage can also be the limiting stage, however
these cases appear in less than 1% of cycles, and the limiting
delays are in these cases very short.

These results indicate that clock adjustment can be per-
formed in the case of our OpenRISC core by considering only
the delay of an instruction in the execute stage, as long as

ADR
7%

FE
0%

DC
0%

EX
93%

CTRL
0%
WB
0%

Fig. 6. Percentage of a pipeline stage containing the limiting path, which
determines the minimum cycle time when employing dynamic clocking

TABLE II. DYNAMIC INSTRUCTION DELAY WORST-CASES

Instruction Max. delay [ps] Stage

l.add(i) 1467 EX
l.and(i) 1482 EX
l.bf 1470 EX
l.j 1172 ADR
l.lwz 1391 EX
l.mul 1899 EX
l.sll(i) 1270 EX
l.xor 1514 EX
... ... ...

it is guaranteed that the instruction memory address timings
(address stage) are always respected (as well as the few cases
where other stages are limiting, which however have a short
delay in general for these cases). This fact can significantly
simplify the clock adjustment control module, since its pipeline
monitoring can be simplified.

Table II presents a selective overview of extracted maxi-
mum instruction timings based on a characterization bench-
mark with a gate-level simulation of 14 k cycles. Such a
table (with 6 stage-entries per instruction) is employed in our
instruction set simulator to accurately model the instruction
delays. Instructions where no accurate maximum delay char-
acterization could be performed (due to limited number of
occurrences in the benchmark) are represented in the table
with the worst-case clock period timings from static timing
analysis.

In Figure 7 we illustrate the dynamic-timing distributions
for the 6 pipeline stages in the core for the l.mul instruction
(unsigned 32-bit multiplication), as derived from our dynamic
timing analysis tool. It can be observed that while the delay
of the instruction in the execute stage is in general high (and
close to the static maximum), delays for the other stages
are significantly lower, which can be exploited when other,
faster instructions are currently in the execution stage. The
distribution of delays with a spread of about 300 ps for
the execute stage stems from the varying data dependent
activations of worst case paths. This data dependent timing
variation could be further leveraged by approximate computing
techniques [17], which would introduce the notion of using
shorter clock periods to enhance performance or save energy,
while actually allowing a violation of the timing requirements
of certain paths in the design. These violations would then
produce approximate results, for example for the output of our
multiplication instruction, due to paths in the execution stage
of the multiplier circuit being violated under certain conditions
(e.g. critical operands exciting the worst paths).



l.mul

0 1000 2000
0

500

1000

1500
adr

delay [ps]

cy
cl

es

0 1000 2000
0

500

1000

1500
fe

delay [ps]

cy
cl

es

0 1000 2000
0

500

1000

1500
dc

delay [ps]

cy
cl

es

0 1000 2000
0

500

1000

1500
ex

delay [ps]

cy
cl

es

0 1000 2000
0

500

1000

1500
ctrl

delay [ps]

cy
cl

es

0 1000 2000
0

500

1000

1500
wb

delay [ps]

cy
cl

es
Fig. 7. Histograms of dynamic maximum delays per pipeline stage, for the
l.mul instruction (multiplication)

B. Performance and Power

We evaluate the performance gains of the presented dy-
namic clock adjustment method by executing the popular
CoreMark and BEEBS embedded benchmark suites [15], [16]
on our custom instruction set simulator with integrated delay
tables. The benchmark-dependent speedups are reported in
Figure 8. On average the effective clock frequency can be
increased by 38%, from 494 MHz (static timing limit) to
680 MHz at a fixed supply voltage of 0.70 V. We focus our
evaluation in 28 nm FDSOI CMOS on a low supply voltage
for reasons of higher energy efficiency.

These numbers show that in terms of clock speed on
average we only give up 12% by performing clock adjustment
based on the instruction types alone. This is compared to the
theoretically achievable speedup of 50%, when adjusting the
clock period perfectly each cycle, i.e. when considering all data
and instruction dependencies, to fully consume all available
dynamic timing margins.

The increase in performance can also be traded for reduced
power consumption through voltage scaling of the core. The
available speedup allows on average to operate the core with a
supply voltage that is 70 mV lower, which translates into an im-
provement in energy efficiency by 24%. Under scaled voltage,
but with dynamic clock adjustment, the core consumes only
11.0μW/MHz while providing the same throughput, compared
to 13.7μW/MHz for the conventional clocking scheme.

V. CONCLUSION

In this paper, we presented a fine grained dynamic-clock
adjustment technique to trim dynamic timing margins by
exploiting the different timing requirements of individual in-
structions in a microprocessor. The proposed approach does
not require any error detection and recovery mechanisms to
exploit dynamic timing margins, thus eliminating the associ-
ated power and performance overheads, while also limiting
the increase in design complexity and the associated risks. To
ensure considerable performance gains, the proposed approach
starts with the design of the processor with a suitable timing
profile, characterized by many short paths. The developed
integrated design and dynamic timing analysis flow used
to characterize the improved timing upper bounds of each
instruction illustrates the steps that should be followed for the
application of our approach to any other design. The applica-
tion of the proposed approach to a RISC processor (6-stage

0

100

200

300

400

500

600

700

800

Ef
f. 

Cl
oc

k 
Fr

eq
ue

nc
y 

[M
Hz

] @
 0

.7
0V

Conventional Clocking Dynamic Clock Adjustment

Fig. 8. Performance gains with dynamic clock adjustment for the CoreMark
and BEEBS benchmark suites

OpenRISC) demonstrates for popular embedded benchmarks
that on average the speed of the design can be increased
by 38%, which can be translated to power savings of 24%.
The proposed approach is orthogonal to existing timing error
detection and recovery mechanisms, and could be effective in
accounting for other static and dynamic timing variations, for
example due to process, temperature and voltage fluctuations,
by (online-)updating of the used delay prediction table.

REFERENCES

[1] J. Spars et al., Principles Asynchronous Circuit Design. Springer, 2002.

[2] J. Woods et al., “AMULET1: an asynchronous ARM microprocessor,”
Computers, IEEE Trans. on, vol. 46, no. 4, pp. 385–398, Apr 1997.

[3] D. Ernst et al., “Razor: a low-power pipeline based on circuit-level
timing speculation,” in IEEE/ACM MICRO, Dec 2003, pp. 7–18.

[4] S. Das et al., “RazorII: In situ error detection and correction for PVT
and SER tolerance,” IEEE JSCC, vol. 44, no. 1, pp. 32 –48, jan. 2009.

[5] K. Bowman et al., “A 45 nm resilient microprocessor core for dynamic
variation tolerance,” IEEE JSCC, pp. 194 –208, jan. 2011.

[6] S. Ghosh et al., “CRISTA: A new paradigm for low-power, variation-
tolerant, and adaptive circuit synthesis using critical path isolation,”
IEEE TCAD, vol. 26, no. 11, pp. 1947–1956, Nov 2007.

[7] K. Chae et al., “A dynamic timing error prevention technique in
pipelines with time borrowing and clock stretching,” IEEE TCAS I,
vol. 61, no. 1, pp. 74–83, Jan 2014.

[8] A. Rahimi et al., “Application-adaptive guardbanding to mitigate static
and dynamic variability,” Computers, IEEE Trans. on, vol. 63, no. 9,
pp. 2160–2173, Sept 2014.

[9] J.-H. Kim et al., “A 120-MHz-1.8-GHz CMOS DLL-based clock
generator for dynamic frequency scaling,” IEEE JSSC, vol. 41, no. 9,
pp. 2077–2082, Sept 2006.

[10] J. Tierno et al., “A DPLL-based per core variable frequency clock
generator for an eight-core POWER7 microprocessor,” in IEEE VLSIC,
June 2010, pp. 85–86.

[11] Tschanz et al., “Adaptive frequency and biasing techniques for tolerance
to dynamic temperature-voltage variations and aging,” in IEEE ISSCC,
Feb 2007, pp. 292–604.

[12] A. Kahng et al., “Slack redistribution for graceful degradation under
voltage overscaling,” in IEEE ASP-DAC, Jan 2010, pp. 825–831.

[13] OpenRISC Community, “OpenRISC 1000 architecture manual.”

[14] L. Benini et al., “P2012: Building an ecosystem for a scalable, modular
and high-efficiency embedded computing accelerator,” in IEEE DATE,
March 2012, pp. 983–987.

[15] The Embedded Microprocessor Benchmark Consortium (EEMBC),
“CoreMark,” http://www.eembc.org/coremark/.

[16] J. Pallister et al., “BEEBS: open benchmarks for energy measurements
on embedded platforms,” CoRR, vol. abs/1308.5174, 2013.

[17] V. Chippa et al., “Approximate computing: An integrated hardware
approach,” in IEEE Asilomar, Nov 2013, pp. 111–117.


