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Lemma 1; Let F be the set of real monk  polynomials of degree 
e. Define 

Then 

provided U .  b > -112. real. 

of Jacobi polynomials (see, e.g., [ l o ] )  
Proof: Let f be an optimal polynomial. Expand f in the series 

The leading coefficient of Pjn ”(s) is 2-J ( ‘r+’+2’ ), and so 

2‘ 
q c  = 

( 2 n  + 2h + 2 4  . 
On the Accuracy of the Binomial Approximation \ . I  

The orthogonality relation for Jacobi polynomials is given by 
to the Distance Distribution of Codes 
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2“+j+1r(J + + i ) r (J+ + 1) 
0,1 - 

- (2] + + 3 + i)r(J + im+ 0 + j + 1) Abstract-The binomial distribution is a well-known approximation to 
the distance spectra of many classes of codes. We derive a lower estimate 
for the deviation from the binomial approximation. where 15,l is the Kronecker delta. 

Index Terms-Spectra of codes, Krawtchouk polynomials. Now we get 

zE[ -1  I ]  
niax (1 - . r ) “ ( ~  - .r)’(f(.r))’ 

I. INTRODUCTION 
The binomial distribution is a well-known approximation to the 

distance spectra of many classes of codes. For example, it is known 
to be tight for the weights of BCH codes (see, e.g. [7, sec. 9.101). 
Several upper bounds for the error term of such approximation have 
been derived in [ I ] ,  [2], [4], [8], [9]. These estimates show that, 
provided the dual distance is large enough, the spectrum of the code 
rapidly converges to the binomial distribution. How close can the real 
distribution be to the binomial one? In this correspondence we give 
a lower estimate for the deviation from the binomial approximation 
thus showing that it cannot be too sharp. We also establish an identity 
relating the error terms to the dual spectrum of a code. 

11. RESULTS 
We start with the following auxiliary lemma [3]. The proof is 

presented for self-completeness. 

’ P y a  L b ) ( , r . j  n.r 

2 -qP gr< ( 2 n .  2 b )  
1 
2 

and we are done. U 
The binary Krawtchouk polynomial PT(.r) (of degree k in .r) is 

defined by the following generating function: 

- p : ( . r ) . k  = ( l - r ) ” ( l + . ) ” - ” .  (1) 
h =O 

When it does not lead to confusion n is omitted, i.e., Pk(.r) = P t  (s). 
The following values are of importance for us: 
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Let the distance distribution of a code c be B = (Bo.. . . . B7% 1, and 
- B’ = (BA.. . . . D:? ) stand for the the dual spectrum, that is, B‘ is 
determined by the ~ ~ ~ ~ i l l i ~ ~ ~  transform of 3 

(2) 
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. B ~ , ( - l j J ( l - , l . ) ' - ~ ~ ( l + . r ) ~ ~ - '  
~ J = " ,  b1 

The inverse is given by 

, 

(3) 

Hence 
71 - 1 

B! = !wl+ 2 (-1)";) + D L P , ( k j .  
L = l  

Quite often the first term turns out to be dominating. Note also that 
DiL E [o. I] .  

Define 

r ,  = B,  - __ ICl('l) (1 + (-1 ). 2" 
This is evidently the deviation of the rth spectrum element from the 
"expected" value given by the binomial distribution. 

Theorem 1. Let 13: = 0, for i E [l. d; - 11 U [d: + 1.11 - 11. Then 

Proofi Let / = a, 9 E [0,7r/2], and put .r = cos+.  Denote 
also 

0 1  = [ ( d ;  + 1)/2] ,  bi = [d;/2], 0 2  = [d:/2], bz = [ ( d ;  - 1)/2] .  

From the definition of r ,  and (3) 

Denote by E,'" and E,''' the sums over all even (odd) j E [d ; .  d ; ] .  
Using (1) with t = p2'Iq, we  get 

1473 

and applying Lemma 1 with (/ = rr 1. b = i / / 2  - 61. c = bl - n I ,  to 
thetirsttermof(4),andwithcr = r r 2 + 1 / 2 ,  b =  (n -1 ) /2 -b2 .  c = 

0 
For wide classes of codes, d: = 71 - d ; .  For example, it is the 

case when the code contains only even weight vectors. For even n 
and (1: the estimate gets the form 

b2 - 0 2 .  to the second one, we get the result. 

Consider BCH codes of distance d = 2t + 1 < 6. Upper estimates 
for the distance of the code, obtained by extending the code dual to 
the BCH code, may be deduced from the lower bound on exponential 
sums (see, e.g. [ 5 ] )  

(1: 5 11/2 - c 1 f i  

for some constant c1. Then 

For constant f this estimate turns out to be asymptotically tight. This 
follows from results of [ I ] ,  [4] where it was shown that 

where H is the binary entropy function. 
In what follows we will derive an identity relating the deviations 

to the dual distance distribution. This is achieved by refining some 
arguments due to Gashkov and Sidelnikov [I] .  

We need (see, e.g., [6]) the following properties of Krawtchouk 
polinomials (for integer i ,  j .  1, k E [O. ~ i ] ) :  
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Lemmci 2: 
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Proof: Just follows from the evident 
d ; 

B: 5 2"/lCl - 1. 

A similar bound was obtained in [ l ]  by more complicated argu- 
ments. 

Theorem 2: 

Proof: Using (2) observe that 

r ,  = 0. 
, = ( I  

and 

Hence 

0 

By the previous lemma this is also 

and we are done. 0 
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