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Abstract 

Highly-sensitive optical fluorescent extruded plastic films are reported for the detection of 

gaseous and dissolved CO2. The pH-sensitive fluorescent dye used is 8-Hydroxypyrene-1,3,6-

trisulfonic acid trisodium salt (HPTS, PTS
-
) coated on the surface of hydrophilic fumed silica 

and the base is tetrabutylammonium hydroxide (TBAH). The above components are used to 

create an HPTS pigment (i.e. HPTS/SiO2/TBAH) with a high CO2 sensitivity (%CO2(S=1/2) = 

0.16%) and fast 50% response (t50↓) = 2 s and recovery (t50↑) = 5 s times. Highly CO2-

sensitive plastic films are then fabricated, via the extrusion of the HPTS pigment powder in 

low-density polyethylene (LDPE). As with the HPTS-pigment, the luminescence intensity (at 

515 nm) and absorbance (at 475 nm) of the HPTS plastic film decreases as the %CO2 in the 

ambient gas phase increases. The HPTS plastic film exhibits a high CO2 

sensitivity, %CO2(S=1/2), of 0.29%, but a response time ˂ 2 min and recovery time ˂ 40 min, 

which is slower than that of the HPTS pigment. The HPTS plastic film is very stable under 

ambient conditions, (with a shelf life ˃ six month when stored in the dark but under 

otherwise ambient conditions). Moreover, the HPTS-LDPE film is stable in water, salt 

solution and even in acid (pH=2), and in each of these media it can be used to detect 

dissolved CO2.  

1. Introduction 

The continuous and accurate monitoring of carbon dioxide (CO2) levels in both gaseous and 

dissolved forms is of fundamental importance in a wide number of applications, including:  

chemical [1], clinical analysis [2], food industry [3] and environmental monitoring fields [4-5]. 

The two most common devices employed for the detection of CO2 are the infrared (IR) 

detector [6], used almost exclusively for sensing gaseous CO2, and the Severinghaus 

electrode [7], used mainly for sensing dissolved CO2; neither device is inexpensive, nor easy 
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to maintain or use [8-9]. In recent years, there has been a growing interest in the 

development of optical CO2 sensors [10]. Such sensors are usually based on fluorescence 

intensity [11-13], or UV/Vis absorbance, changes [14-16] exhibited by encapsulated pH 

indicators upon exposure to CO2. Interest in such optical sensors is not superising given that 

optical sensors in general have many attractive features including: electrical isolation, low 

noise interference, easily miniaturised, remote sensing, rapid-in-response, and usually low 

cost.  

The principle behind most of the optical CO2 sensors reported to-date [17] is based on the 

acidic nature of dissolved CO2 and the different colours/luminescence intensities exhibited 

by a pH indicator dye when in its deprotonated (D-) or protonated (DH) form. Thus, such pH-

dye-based CO2 indicators exhibit a change in absorbance/luminescence intensity upon 

exposure to a change in the level of CO2. 

In the last decade, solid-state, i.e. apparently dry, optical CO2 sensors have dominated the 

literature and usually utilise a quaternary hydroxide salt, Q
+
OH

-
.	�H2O, (a phase transfer 

agent) to create a solvent-soluble version of D
-
, i.e. Q

+
D

-
.	�H2O, which can be incorporated 

in a solvent-based ink. The dried ink then functions as a CO2-indicator via the following 

equilibrium:  

����	. ��	
 + �
	 ↔	�+��
3
−	. �� − 1��2
	. ��                             (1) 

                                                         Colour A                                        Colour B 

Thus, in the absence of CO2, the indicator exhibits the colour associated with the 

deprotonated form of the pH indicator dye, i.e. colour A for D
-
 in reaction (1), and in the 

presence of CO2 it changes to colour B, due to the formation of DH as indicated in reaction 

(1), which is usually reversible. 

Various groups have reported on such phase-transfer CO2 indicators using a variety of 

different Q
+
D

-
.	�H2O-encapsulating materials, such as: ethyl cellulose [18-19], silicone [20-

22], polystyrene [23], and sol-gel-derived matrices [24–26]. The dynamic operational range 

of these CO2 sensors depends on various factors, including the nature of the encapsulating 

medium and the pKa value of of the pH-indicator [27]. A major drawback exhibited by many 

of these reported (usually solvent-based) CO2 indicators is a very limited shelf life (1-2 days 
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in the open air) probably due to the presence of other acidic gases such as SO2 or NO2 in the 

atmosphere that irreversibly protonate the indicator [28], although ambient humidity and 

film water content appear to also play an important part [29]. 

Table 1: Optical properties of HPTS in water and HPTS –based CO2 indicators. 

 D- DH 

λabs (nm) λem (nm) λabs (nm) λem (nm) 

HPTS aqueous solution 455 510 403 436 

HPTS/TOAH/EC ink film* 467 517 394 440 

HPTS- pigment 470 512 410 436 

HPTS- film 475 515 404 441 

*Accessed from ref [31]. 

A particularly popular pH-sensitive fluorescence dye, for use in CO2 optical sensors work, is 

the 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (also known as pyranine or HPTS 

(see Fig. 1)) which shows distinctly different absorption and emission bands in the visible 

region, for DH and D
-
. For example, in aqueous solution, depending upon the pH, HPTS 

displays absorption bands associated with the protonated or deprotonated forms of the dye 

at wavelength of 403 nm or 455 nm, respectively (see Table 1). The protonated form of 

HPTS emits in the blue region, 436 nm, whereas the deprotonated form emits in the green 

λem = 510 nm. HPTS also has many distinguishing features like low toxicity, an almost ideal 

pKa for making physiological measurements (i.e. pKa = 7.3 – 8.1), a large Stoke’s shift, high 

water solubility, ready commercially availability and low cost [30]. A list of some of the 

reports of CO2 sensors based on HPTS is given in Table 2 [30-41]. 

 

                                 DH                                                                               D
-
 

Fig. 1: Structure of the protonated (DH) and deprotonated (D
-
) forms of the pH-sensitive dye HPTS. 
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Table 2: Details of previous HPTS based luminescent CO2 sensors.  

Type Encapsulation 

medium 

Base (Phase 

Transfer 

Agent) 

%CO2 

(S=1/2) 

Response 

time (s) 

Recovery 

time (s) 

Ea 

(kJ/mol) 

Ref 

Hydrogel Agarose Sodium 

bicarbonate 

14.7 t90↓ = 15  t90↑ = 34  - 31 

Organic 

polymer 

Ethyl cellulose 

(EC) 

TOAH 0.26 t90↓ = 4.3  t90↑ = 7.1  21 30, 

31  

TOAH ca. 0.25 t90↓ < 24  t90↑ = 282 - 33* 

TOAH 1.5 - - - 34 

Silicone 

rubber 

silicone CTMAH 0.25 t90↓ = 42 t90↑ = 120 - 35 

Silicone plus 

cellulose 

derivatives* 

TOAH 10 t100↓ =420 t100↑ = 720 - 36* 

Ormosil Silica sol gel CTMAH 10 t50↓ ˂ 60 t50↑ ˂ 180 21.9 37 

TOAH 9.1 t90↓ ˂ 60 t90↑ ˂ 60 - 38 

TOAH  3.5 t90↓ = 1.7  t90↑ = 38.5  - 39 

Silica sol-gel doped 

with silica particles 

TOAH 3.8 t90↓ = 9.8  t90↑ = 195.4  - 40 

Silica sol-gel plus 

PTFE cover 

CTMAH 5% t90↓ = 420 t90↑ = 720 - 41* 

TOAH: tetraoctylammonium hydroxide; TBAH: tetrabutylammonium hydroxide; CTMAH: cetyltrimethylammonium 

hydroxide; *: used for making dissolved CO2 measurements (all other entries are for gas phase CO2 measurements) 

 

At this point it is useful to define the general parameter, R, based on experimentally 

measured luminescence intensity values, for a fluorescence-based CO2 sensor, made at the 

wavelength of maximum emission for D
-
 alone, i.e. λmax (D-), as a function of different %CO2. 

From reaction (1), it follows: 

    R = (I0 – I)/ (I - I∞) = [HD]/ [D
-
]                                                               (2) 

where [HD] and [D
-
] are the concentrations of the protonated and deprotonated forms of 

the dye, respectively. I0 is the value of intensity of the dye at λmax (D
-
) when %CO2 = 0 (i.e. 
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when all the dye is in its deprotonated form) and I∞ is the luminescence intensity of the film 

when all the dye has been converted into D
-
, i.e. when %CO2 = ∞. Parameter R is a measure 

of the transformation of the dye from the deprotonated to protonated forms and it follows 

from reaction (1), that: 

                                     R = [HD]/ [D
-
] = α × %CO2                                                                                              (3)  

where α is a proportionality constant. Other work shows that the value of α is inversely 

dependent upon the background base concentration, [Q
+
OH

- 
.	�H2O]. 

A useful and quick measure of the sensitivity of a CO2 optical sensor is provided by the value 

of the %CO2, hence referred to as %CO2(S=1/2), at which the normalised optical signal, S, is 

equal to ½, i.e., the point which the concentrations of the protonated and deprotonated 

forms of the dye are the same and R = 1. It is more convenient to use %CO2(S=1/2) values to 

compare the sensitive of different CO2 indicators, than refer to their values of ‘α’ (= 

1/ %CO2(S=1/2)). The examples of CO2-sensitive HPTS indicators, summarised in Table 2, 

illustrates the significant variation in the CO2 sensitivity, i.e. %CO2(S=1/2) value, reported for 

HPTS-based CO2 sensors, that can be achieved by using different encapsulation media, such 

as: hydrogel [32], solvent-soluble organic polymer [30-34], silicone rubber [35,36] and silica 

sol gel/ormosil [37-41]. One of the earliest studies reported in Table 2, used agarose as the 

encapsulation medium [32], but required a gas-permeable membrane to stop the film 

drying out and also to allow its use for making dissolved CO2 measurements. More recently, 

the literature has been dominated by phase-transfer agent sensors, using: an organic 

polymer, such as ethyl cellulose, EC, silica-sol gel or silicone as the encapsulation medium. 

These films usually suffer from poor stability unless used and stored either in water or under 

high humidity conditions [35,37]. 

In a recent paper [28] we reported on a colourimetric-based CO2 sensor (where D = meta-

cresol purple) in which the dye and base (tetrabutyl ammoinium hydroxide, TBAH, in 

methanol) were first coated onto hydrophobic silica to create a CO2-sensitive pigment, and 

then extruded with low density polyethylene (LDPE) to create a CO2-sensitive, colour-based 

extruded plastic film (α = 0.185 ± 0.02 %
-1

. i.e. %CO2(S=1/2) = 5.4%). Here we extend this 

work to the fluorescence dye HPTS and, by improving on the pigment preparation method, 

create both a colour and (mainly) fluorescence–based CO2 indicator that is remarkably 

stable and sensitive for mainly gas phase (but also dissolved) CO2 measurements, even 

when used in aqueous, acidic solution.  
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2. Experimental 

2.1 Material and instrumentation 

The 8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS, was purchased from Sigma-

Aldrich (97%, H1529-1G) and used as received.  In this work hydrophilic (not hydrophobic) 

silica was used to create the HTPS-pigment for subsequent extrusion in LDPE. Previous work 

carried out by this group [42] reported that water-based CO2 indicators (comprising a pH 

dye encapsulated in hydroxyethyl cellulose with a water-based base, TBAH) were much 

more stable, when stored under ambient conditions, than their solvent-based counterparts 

(i.e. dye encapsulated in EC, with methanol-based TBAH).  Thus, in this work hydrophilic (not 

hydrophobic) silica, and water-based TBAH (not MeOH-based TBAH) were used to create 

the HTPS-pigment for subsequent extrusion in LDPE. The hydrophilic silica was more 

compatible with the aqueous base (Q
+
OH

-
.	�H2O) and produced brighter, more reproducible 

and much more stable film sensors.  The hygroscopic nature of hydrophilic SiO2 also 

probably plays an important role in increasing film storage stability, since it will help ensure 

the surface-adsorbed dye-base ion pair layer remains hydrated and, as noted by others 

[35,37], CO2-indicators appear much more stable when stored under humid conditions, or in 

water.   

The SiO2 (Aerosil 130 hydrophilic fumed silica) was a gift from Evonik (BET surface area = 130 

± 25 m
2
/g). The aqueous base, tetrabutylammonium hydroxide solution (40% in water), 

TBAH, (86854-100ML) was purchased from Sigma-Aldrich. The low-density polyethylene, 

LDPE, powder (melt flow index, MFI, 20) was supplied by PW Hall UK and the LDPE pellets 

(MFI = 4) were provided by Ultrapolymers UK. Microscope slides were purchased from 

Academy Science (clear glass, 76×26 mm, thickness 1.0-1.2 mm).  

All gases used were high purity CO2 and Argon. 5% CO2-air mixture and 1% CO2-air mixture 

were purchased from BOC gases. Gas steams with other loadings of CO2 percentages were 

generated using a Cole Parmer gas blender using Ar as the inert carrier gas. All fluorescence 

work was carried out using a PerkinElmer LS45 Fluorescence Spectrometer. All UV/Vis 

absorbance measurements were made using CARY 300 UV-vis spectrometer. Diffuse 

reflectance spectra were measured using a KONICA MINOLTA Spectrophotometer (CM-

2500d). The pigmented polymer film was extruded using a Rondol Microlab Twin Screw 

Extruder. 
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2.2 Preparation of the HPTS-pigment  

0.2 g HPTS acid trisodium salt were fully dissolved in the mixture of 3.1 ml of a 40% TBAH 

aqeous solution and 100 ml of ethanol. 2 g hydrophilic silica were then added, and the 

mixture stirred for 2.5 h, after which the solvent was evaporated under reduced pressure 

using a rotary evaporator. The final, dry yellow pigment powder was scraped out and then 

ground into a fine powder using a mortar and pestle. The HPTS-TBAH-SiO2 pigment (i.e. 

‘HPTS-pigment’) appeared bright yellow in the absence of CO2, and pale yellow/colourless in 

the presence of CO2, as illustrated by the photographs of the two different forms in Fig. 2. 

The wavelengths of the absorption and emission maxima of the D
-
 and DH forms of the 

HPTS-pigment are given in Table 1. 

 

Fig. 2: Photographs of HPTS- pigment (from left to right) in the absence and presence of CO2. 

2.3 Preparation of the HPTS-LDPE film 

The CO2-sensitive plastic films were fabricated via the extrusion of a mixture of the HPTS-

pigment powder in low-density polyethylene (LDPE), with a final pigment loading of 5 wt.%, 

using a Rondol Microlab 10 mm twin screw extruder (barrel L/D 25/1). LDPE was primarily 

chosen as the encapsulation matrix because it can be extruded at low enough temperatures, 

ca. 140
o
C here, so as avoid the thermal degradation of the dye, which occurs at 

temperatures > 180
o
C.  Thus, other work carried out using the higher molecular weight 

polyolefin, polypropylene, which requires a much higher, > 200
o
C, extrusion temperature, 

only yielded films in which the dye was thermally degraded.  LDPE, is attractive as an 

encapsulation medium for other reasons, such as its reasonable permeability towards CO2, 

namely: 9.8x10
-13

 cm
3
.(273 K; 10

5
 Pa). cm/(cm

2
.s.Pa), although this is ca. 10x's less than ethyl 

cellulose [43].  More importantly, LDPE has a water vapour permeability (68x10
-13

 cm
3
.(273 

K; 10
5
 Pa). cm/(cm

2
.s.Pa)) that is 100 times less than that of EC [43] and so encourages much 

greater water retention (by the silica particles), which leads to a much greater stability 

under ambient storage conditions, when compared to an EC-based CO2 indicator film [30-
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35].  In addition, LDPE is much less (ca. 10x's) permeable towards acid gases, such as SO2, 

than EC [43,44] and this also helps improves the film's stability, since ambient levels of the 

latter, typically ca. 100 ppb in many towns and cities, have been suggested [1,45] as a likely 

additional cause of the reported poor stability exhibited by most solvent-based CO2 

indicators.  In support of this, no change in colour or response characteristics were observed 

when an HPTS-LDPE film was exposed to either ca. 100 ppb NO2 or SO2 for 20 min, whereas, 

in both cases, the solvent-based, HPTS-EC film was bleached. 

The extrusion process is summarised as follows: 2 g HPTS-pigment and 18 g LDPE powder 

(melt flow index, MFI, 20) were mixed to produce 10 wt.% pigmented powder. The extruder 

was then used to create 10 wt.% of HPTS pigmented LDPE ‘master-batch’ pellets using a 

processing temperature that increased gradually from 90°C at the feed zone, to 140°C at the 

die, using a feed hopper rate of 41 rpm, extruder screw speed of 80 rpm and a pelletizer 

speed of 0.5 m min
-1

. These pellets were then ‘diluted’ to 50% w/w using virgin LDPE pellets 

(MFI 4), to produce the final 5wt.% pigment loading required for the extruded HPTS-LDPE 

film product. The thermal processing conditions for producing the (HPTS/TBAH/SiO2) 

pigmented LDPE extruded film, i.e. the ‘HPTS-LDPE film’, were: 90°C (at the feed zone), 

increasing to 110–125–135°C (across the barrel) and finally 140°C (at the die zone). The feed 

hopper rate was 20 rpm, extruder screw speed was 80 rpm, and take-off speed was 1.7 m 

min
-1

. The final product, a 5 wt.% pigmented HPTS-LDPE film (central thickness 55-60 μm) 

appeared pale yellow under daylight, as the dye is in its deprotonated, D
-
, form, and emitted 

a bright green luminescence, due to D
-
, under UV irradiation as illustrated by the 

photographs in Fig. 3.  

The level of pigment chosen, 5 wt%, was an optimised value, in as much that a much higher 

level (> 20%) leads to a significant loss in the performance characteristics of the polymer, 

such as elasticity and tear resistance, whereas a pigment level of << 5%, produces a film that 

is insufficiently coloured to allow the necessary absorbance and luminescence spectral 

characteristics to be recorded for this work.  In polymer extrusion in general, a 5 wt% 

pigment loading is not unusual.   

The specific surface area of the hydrophilic silica is 150 m
2
 g

-1
, which suggests a fundamental 

particle size of ca. 15 nm, which is beyond optical resolution and difficult to see even using 
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SEM.  However, EDX analysis for Si of a typical image of the edge of a HTPS-LDPE film reveals 

a fine, and uniform dispersion of particles, for example: see image in supplementary 

information, S1, suggesting the HPTS-coated silica particles are uniformly distributed 

throughout the extruded film.   

Upon exposure to CO2 the film became colourless, as the dye was in its protonated, DH, 

form, and emitted a bright blue turquoise luminescence, due to DH. The wavelengths of the 

absorption and emission maxima exhibited by the HPTS-LDPE film in its D
-
 and DH forms are 

given in Table 1. 

 

Fig. 3: 5 wt.% HPTS- film (upper row, from left to right) under daylight with or without pure CO2 exposure, 

(lower row, from left to right) under UV irradiation with or without CO2 exposure.   

2.4 Fluorescence measurements 

In making luminescence intensity measurements, the HPTS-pigment or HPTS-LDPE film, was 

mounted on a microscope slide using double-sided tape. The width of the slide was cut to fit 

the diagonal of a typical 1 cm quartz fluorescence cell (i.e. width ca. 1.4 cm). In order to 

maximise the measured luminescence intensity from the sample, the slide was placed in a 

fluorescence cuvette, and positioned so that the edge of the slide was directly in line with 

the emission detector of the fluorimeter and so square on, with respect to the excitation 

beam.  Positioning the film in this way, allowed the luminescence from the sample, which 

was mostly gathered by the glass substrate, via total internal reflection, to exit from the 

edges of the microscope slide and so be easily detected and measured. The emission 

spectrum of any sample (pigment or film) on the microscope slide was typically recorded 

after 5 min purging with the CO2/Ar gas blend under test. In this work with the wavelength 
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of excitation, λex, was always set at 470 nm. The desired argon and CO2 mixtures were 

generated using a Cole-Parmer gas blender.  

2.5 Variation in relative humidity (RH) 

A 100% relative humidity (T = 21°C) humid gas, which was either: 5% CO2 in Ar, or just Ar, 

was generated by purging the gas under test through two Dreschel bottle half filled with 

water connected in series; the relative humidity (RH) of the gas was measured using a hair-

hygrometer.  

2.6 Variation in temperature 

Most experiments were conducted under an ambient condition with T = 21°C. However, in 

one set of experiments the effect of temperature on the sensitivity of the HPTS- film was 

probed over the range 21-36°C. In this work HPTS-LDPE film was attached to a microscope 

slide and placed on a thermostatically controlled electric heater block. The HPTS-LDPE film 

was then covered with a cuvette, with one of its faces removed, so as to allow different 

CO2/Ar gas mixtures to be purged through the cuvette and so pass over the HPTS-LDPE film 

surface. This set-up allowed the luminescence spectra of the HPTS-LDPE film to be recorded 

as a function of %CO2 in the gas phase, whilst the HPTS-LDPE film was maintained at a fixed, 

known temperature. 

3 Result and discussion 

3.1 HPTS-pigment 

The diffuse reflectance spectra of a sample of the HPTS-TBAH coated on hydrophilic silica 

particles (i.e. the ‘HPTS-pigment’) under an argon (i.e. 0% CO2) and 100% CO2 were 

measured using a Minolta spectrometer. In order to make these measurements, 3 g of the 

HPTS-pigment were placed in a 14 ml glass vial sealed with a plastic cap, and the gases 

under test, i.e. either pure argon or CO2, were then sequentially purged through the vial for 

2 min before recording the diffuse reflectance spectra of the pigment. The results of this 

work are illustrated in Fig. 4 and reveal that the HPTS-pigment has UV/Vis absorption peaks 

at: (i) 410 and 470 nm in the absence of CO2 (i.e. due to its yellow D
-
 form- the blue line in 

figure) and (ii) at 410 nm in the presence of CO2 (due to its colourless DH form, the red line 

in Fig. 4).   
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Fig. 4: Kubelka Munk plots of the HPTS- pigment under 0% (blue line) and 100% (red line) of CO2. 

These results are consistence with the known UV/Vis absorption spectra of the D
-
 and DH 

forms of HPTS (see Table 1) and show clearly that the presence of CO2 promotes the 

protonation of HPTS (initially in its deprotonated, D
-
, yellow form)

 
to its largely colourless, 

DH form, as indicated by reaction (1). 

In terms of luminescence, the spectra of the HPTS-pigment was first recorded in the 

absence of CO2 and revealed a wavelength for the maximum in the emission spectrum, λem 

of 512 nm, as illustrated in Figure. 5. The changes in this luminescence spectrum, upon 

exposure to a series of different levels of CO2, were then recorded and the results are also 

illustrated in Fig. 5. 
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Fig. 5: Emission spectra of the HPTS-pigment upon exposure to (from top to bottom): 0, 0.17, 0.21, 0.28, 0.43, 

0.58, 1, 5 and 100 %CO2, as a series of different Ar/CO2 gas mixtures.  

 

Fig. 6: Plot of the relative fluorescence intensity from the HPTS-pigment (taken from Fig. 5) as a function of 

the %CO2.  Insert data reveals an α value of 6.4 ± 0.3%
-1

. (R
2
 = 0.9924), where (I0-I)/ (I-I ∞) = R = α%CO2. 
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The results of this work showed that the initial high level of emission exhibited by the 

deprotonated form of the HPTS-pigment, D
-
, (λ = 512 nm) decreased with increasing %CO2 in 

the purging gas, as D
-
 is converted to DH, via reaction (1). A plot of the intensity of emission 

at 512 nm as a function of %CO2, gleaned from the spectra illustrated in Fig. 5, is shown in 

Fig. 6, along with a R vs %CO2 plot of the data, as the insert diagram. The latter reveals 

a %CO2(S=1/2) = (1/α) value of 0.16%, which suggests that the HPTS-pigment is extremely 

sensitive to CO2, and more sensitive than most of the other HPTS CO2 sensors reported to-

date, as indicated by the examples listed in Table 2. 

Finally, the response and recovery times for the HPTS-pigment were measured via the 

observed variation in the luminescence intensity of the HPTS-pigment as a function of time, 

produced upon exposure to an alternating stream of 0% (i.e. Ar) and 5% CO2. The results of 

which are illustrated in Fig. 7. 

 

Fig. 7: Variation in the measured luminescence intensity exhibited by the HPTS pigment upon exposure to 

alternating streams of 5% CO
2
 and Ar.  

From the data illustrated in Fig. 7, a 50% response time (t50↓) = 2 s, and a 50% recovery time 

(t50↑) = 5 s, were calculated, and reveal that the HPTS-pigment has a quick response time 

and recovery time, as is likely due to the high surface area of the HPTS-pigment, and the 

large diffusion coefficient, D, for CO2 in the air (D(CO2) = 0.14 cm
2
s

-1
) [46]. 
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3.2 The HPTS-LDPE film CO2 indicator 

Upon extrusion of the HPTS-pigment in LDPE, the absorbance and luminescence properties 

of the polymer film (i.e. the ‘HPTS-LDPE film’) were studied and the results are summarised 

in Table 1. The luminescence intensity at 515 nm exhibited by the HPTS-LDPE film was 

measured as a function of different known levels of CO2 (0% to 100%) in the ambient gas 

and the results are illustrated in Fig. 8. These results show that, as with the HPTS-pigment, 

the luminescence intensity of the HPTS-LDPE film decreased with increasing %CO2.  A R 

vs %CO2 plot of the data revealed a %CO2(S=1/2) value of 0.29 %, which is slightly less than 

that exhibited by the HPTS-pigment (see Table 3), but still represents a very sensitive CO2 

sensor film, when compared to many of the other reported HPTS-based CO2 sensors, such as 

those listed in Table 2. It is interesting to note that HPTS-LDPE film has a very similar 

sensitivity as that of a HPTS-TOAH solvent based EC ink film [31], which has %CO2(S=1/2) of 

0.26% (see Table 2). Additional work suggests that this is a general feature of such films, i.e. 

dye-coated pigment-loaded LDPE plastic films exhibit a similar CO2 sensitivity as their 

solvent-based EC ink CO2 sensor counterparts.  

 

Fig. 8: Diagram of a typical plot of the relative fluorescence intensity from the HPTS-LDPE film as a function of 

the %CO2.  Insert data reveals an α value of 3.48 ± 0.14%
-1

. (R
2
 = 0.9898), where (I0-I)/ (I-I∞) = R = α%CO2.  
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A study of the variation in luminescence intensity of the HPTS-LDPE film upon switching the 

ambient gas phase composition alternatively from 0% to 5% CO2 and back again was carried 

out and the results are illustrated in Fig. 9.  

 

 

Fig. 9: Repeat response and recovery of HPTS-LDPE film was tested by purging alternative streams of 5% CO2 

and pure Ar.  

An analysis of the data in Fig. 9 revealed a 50% response time (t50↓) of 120 s and 50% 

recovery time (t50↑) of 2340 s. As noted earlier, a film thickness, ℓ, of ca. 55-60 µm, 

combined with a pigment level of 5 wt%, allowed the necessary absorbance and 

luminescence spectral characteristics to be recorded for this work.  However, a necessary 

consequence of this high film thickness is the long response and (particularly) recovery 

times exhibited the HPTS-LDPE film, see table 3.  These values are much greater than those 

exhibited by most other reported HPTS-based CO2 indicator ink films, see table 2, which are 

also generally much thinner, typically 1-8 µm [39,34].  The asymmetric nature of the 

response and recovery times are a direct consequence of the hyperbolic nature of the 

response of this, and all other pH-indicator-based CO2 indicators, where the observed 

change in fluoresence intensity, or absorbance, is inversely proportional to the partial 

pressure of CO2, P(CO2), which in turn is proportional to the %CO2.  In most cases, these 

response and recovery times depend, respectively, directly upon the rate of diffusion of the 

CO2 into and out of the indicator film, with a proportionality constant that is inversely 

proportional to ℓ
2
 [47].  Thus, it follows, by using a narrower film die in the extruder, it will 
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be possible to create a thinner HPTS-LDPE film, than that reported here, and that such a film 

will be necessarily faster to respond and recover.  It also follows that, as the indicator is 

fluorescence-based, there would be no need to increase the pigment loading in a thinner 

film, above that of the current value, 5 wt%.  As it is possible to extrude an LDPE film that is 

ca. 12.5 µm [48], i.e. the thickness of most commercial plastic wrap film, then it can be 

calculated that such an HPTS-LDPE film would exhibit approximate response and recovery 

times of 5 and 102 s, respectively – which are in line with those reported by others [34,39] 

for films of a similar thickness.  A summary of the main properties of the CO2-sensitive HPTS 

sensor films studied here, including the associated limits of detection (LOD), is given in Table 

3. 

Table 3: HPTS based luminescent CO2 sensor properties. 

CO2 sensor 
α %CO2 

(S=1/2) 
r

2
 

Response time 

(s) 

Recovery time 

(s) 

LOD 

(%
-1

) % 

HPTS-pigment 6.4 ± 0.3 0.16 0.9924 t50↓ = 2 t50↑ = 5 0.007 

HPTS-LDPE 

film 
3.48 ± 0.14 0.29 0.9898 t50↓ = 120 t50↑ = 2340 0.01 

HPTS-ink* 3.2 ± 0.1 0.26 0.9983 t90↓ = 4.3 t90↑ = 7.1 0.009 

*From [30] and [31]; all response and recovery times were recorded purging alternatively 0% and 5% CO2. The 

correlation coefficients (r
2
) were derived from the straight line plots of the R vs %CO2 data for the different 

sensors studied. 

 

3.3 Effect of temperature 

As might be supposed, considering the nature of reaction (1), all pH indicator based CO2 

optical sensors are temperature sensitive, and decrease in CO2 sensitivity with increasing 

temperature.  The HPTS-LDPE film is no different, as revealed by the results of a series of 

calibration curves (i.e. luminescence intensity vs %CO2) curves recorded at a series of 

different temperatures, spanning the range 21- 36
o
C.  The latter data were then used to 

generate appropriate R vs %CO2 plots for the different temperatures studied and the results 

are illustrated in Fig. 10.  The value of the gradient for each of these plots is α(T) i.e. the 

values of α at the associated temperature, and an Arrhenius plot of ln(α(T)) vs 1/T, reveals a 

value for the activation energy for reaction (1) of 38 ± 2 kJ mol
-1

. This value is not too 
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dissimilar to the value of 21 kJ mol
-1

 reported [31] by this group for an HPTS-CO2 sensitive 

solvent-based ink (polymer: ethyl cellulose, plasticizer: tributyl phosphate; base/phase-

transfer agent: TOAH) and by another group using HPTS encapsulated in an organically-

modified silica glass (ormosil) [33] (see Table 2).  

 

Fig. 10: R versus %CO2 plot of HPTS-TBAH pigmented LDPE film at various temperature (from top to bottom 

21 °C, 26 °C, 31 °C, and 36 °C) where (I0-I)/(I-I∞)= R = α %CO2.  

 

3.4 Effect of humidity 

Many reported CO2 optical sensors exhibit a sensitivity (as measured by the measured value 

for α) which is humidity dependent, and this appears especially so when an organically-

modified silica glass (ormosil) is used as the encapsulation medium [34]. This effect is usually 

reversible, enabling the use of the sensor to be used as a CO2 sensor at any RH value, 

provided the latter quantity is fixed [34].  Since the HPTS-LDPE film CO2 reported here uses 

hydrophilic silica, which is hygroscopic, as the inorganic core of the HPTS-pigment, vide 

supra, it is not too surprising that the HPTS-LDPE film sensor is also humidity dependent, 

and loses sensitivity with increasing RH.  Thus, at 21
o
C, the value for α was found to 

decrease by a factor of ca. 4.0 as the RH was increased from 0 to 100%, i.e. from dry to wet 
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CO2, see Table 4.  As noted by others [33], working on ormosil-based CO2 indicators, which 

exhibit a similar sensitivity, this suggests that such, humidity-sensitive, sensors need to be 

used in an environment where the ambient RH, and temperature also for that matter, are 

largely invariant. One such possible area of application would be the monitoring of the CO2 

level in modified atmosphere packed, high water content, foodstuffs, such as fish and meat, 

since they are usually chilled at ca. 5
o
C, so that any CO2 indicator would be operating at a 

fixed T, and inside the pack the RH would be constant and ca. 100%. 

Table 4: Summary of the characteristics of an HPTS-LDPE film as a quantitative CO2 indicator 

in different media 

Medium αααα (%
-1

) %CO2(S=½) r
2 

Dry gas (RH=0) 3.4 0.29 0.9898 

Humid gas(RH =0) 0.85 1.2 0.9923 

water 0.084 12 0.9847 

1M NaCl aqueous solution 0.11 9.1 0.9997 

0.01M HCl aqueous solution 0.091 11 0.9786 

*: for all dissolved CO2 measurements the HPTS-LDPE film was soaked overnight in water 

prior to testing and the associated error is ± 10% 

3.5 Dark stability  

One of the most striking feature of the HPTS-LDPE film CO2 sensors is its stability.  For 

example, when stored under ambient atmospheric conditions, in the dark, the film is stable 

for > 6 months, showing no loss in sensitivity or fluorescence intensity/colour.  In contrast, a 

typical HPTS-CO2 sensitive ink will last ca. 5-7 days under the same conditions, before losing 

all its (yellow) colour and sensitivity towards CO2.  Silicone and ormosil encapsulated HPTS 

CO2 sensors exhibit the same poor stability when stored under ambient atmospheric 

conditions. In most cases this lack of stability is usually attributed [33] to loss of water (if 

kept in a dry atmosphere) and possible permanent reaction with common, albeit low level, 

acidic pollutants, such as SO2 and NO2 [28].  Others [35] have noted that the stability of the 

latter films can be improved markedly by storing them either in water, or in a very humid 

(usually RH ≥ ca. 80%) atmosphere, although such storage conditions then limits their 

commercial potential.  In contrast, HPTS-LDPE film sensors appear very stable when stored 

under ambient, dark conditions, which renders them much more viable commercially.   
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3.6 Photostability  

The photostability of HPTS is known to be poor, especially when compared to other dyes, 

such as the diketo-pyrrolo-pyrrole (ddp) dyes, reported recently by Schutting et al [34], 

which was used to create a number of different, sensitive EC-based, CO2 indicators.  Using 

similar conditions as reported by these workers [34] to test the indictors photostability, in 

particular illumination with a high intensity 458 nm LED (Manufacturer: OSLON; 2W LED; 

458 nm irradiance: 27 mW cm
-2

), the luminescence of both a HPTS-EC ink film and HPTS-

LDPE film were found to decrease by ca 40% after 4 h continuous illumination.  Obviously, 

despite this clear weakness, the employment of a ratiometric method [41] would help 

extend the useful lifetime of the HPTS-LDPE films, as would the use of a pulsed light source.  

In regard of the latter, Schutting et al [34] note that a 100 ms excitation light pulse is 

sufficient to access the fluorescence intensity information of such indicators and that this 

needs only to be carried out every few seconds in order to provide a useful real-time 

measurement of ambient CO2. 

3.7 Detection of dissolved CO2  

Another striking advantage of the HPTS-LDPE film CO2 sensor, over that of most other 

optical CO2 sensors, is its marked high stability in aqueous solution, even when the solution 

is highly acidic (pH ≤ 2) or very salty ([NaCl] = 1 M).  Most other optical CO2 sensors exhibit 

only a limited stability in water, due to dye leaching, ion exchange and proton permeation. 

Thus, for such sensors, this limited stability is usually compromised by exposure to 

increasing levels of electrolyte and especially by increasing levels of acidity. An aqueous 

solution with a pH < 3, is usually acidic enough to protonate and deactivate most CO2 optical 

sensors reported to date.  In contrast, the HPTS-LDPE film sensor reported here shows no 

loss of function, or dye, when stored in water, or 1 M NaCl for long periods of time (> 24 h), 

and is stable and unaffected for at least 12 h when placed in CO2-free, 0.01 M HCl aqueous 

solution. In addition, under such conditions; including in 0.01 M HCl, it is still able to 

function as a CO2 sensor.  A rather nice demonstration of the ability of the HPTS film to 

function as a CO2 sensor in aqueous solution, regardless of pH, is provided by the series of 

photographic images some of which are given in Fig. 11.  These show, from left to right, that 

in CO2-free (i.e. 'still') water the HPTS film retains its original yellow colour (due to the D
-
 

form of the dye), but upon dipping into sparkling, i.e. carbonated, water this colour is totally 

lost (within 20 s) but, is restored upon its removal from the sparkling water (within 45 mins). 
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If placed in 0.01 M HCl the film remains exactly as if in still water, unless CO2 is bubbled 

through, whereupon it will decolourise, irreversibly, as shown in Fig. 11 by the film in 

carbonated water. 

 

Fig. 11: Photographs of (from left to right) HPTS-LDPE film partly immersed in stilled water, sparkling water, 

removed from the sparkling water, and left in the air till recovered. 

It is common practice when using CO2 optical indicators for the measurement of dissolved 

CO2 to protect the dye in the indicator film from protonation through the use of top-coat, 

thin layer of a gas (i.e. CO2 in this case) -permeable, ion (i.e. proton and salt in this case)-

impermeable layer, such as Teflon [17] or a hydrophobic silicone layer [1].  This layer allows 

the CO2 indicator to monitor, without interference from ions in the solution under test, the 

partial pressure of CO2 in an aqueous solution over a range of pH values, typically pH 4-8.  

Obviously, in this work the LDPE layer provides the same function as the hydrophobic 

silicone or Teflon layer used previously by others [1,17], i.e. it acts as a gas-permeable, ion-

impermeable layer.  However, unlike the latter it also acts as the sensor encapsulation 

medium, thus making the sensor a much simpler construction.  As a consequence of its ion-

impermeable nature, the LDPE CO2-based indicator reported here is highly resistant to dye 

leaching, which, in other CO2 indicators, can take place via an ion exchange mechanism 

when placed in concentrated solutions of electrolyte.  It is also very stable at pH's as low as 

pH 2, which is due not only to its low ion permeability but also its low permeability towards 

water vapour [43], which is much less (> 500 x's) that of silicone rubber [49] and probably 

even lower for the more polar, slightly acidified vapour generated by the most acidic 

aqueous solutions, like that of HCl used here, which have a negative azeotrope [50].  As a 

consequence, the LDPE provides an excellent barrier to the permeation of HCl, or any acid, 
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dissolved in the water under test and allows the film to operate as a dissolved CO2 indicator 

in 0.01 M HCl, for at least 12 h. 

In aqueous solution, be it with, or without, salt or acid, the sensitivity (i.e. the value of α) of 

the HPTS-LDPE film towards CO2 was found to be approximately the same but greatly 

reduced, (typically by a factor of ca. 37), compared to that for gaseous CO2 measurements 

(RH = 0), so that the %CO2(S=1/2) values increased from ca. 0.29% to ca. 10.7%, see table 4; 

although, in all cases the film exhibited a reversible response towards CO2 and so recovered 

its initial luminescence and colour in the absence of CO2, as indicated by the photographs in 

figure 11.  Although the exact cause for the marked decrease in CO2 sensitivity of the HPTS-

LDPE film in aqueous solution is not clear, it is likely to be associated with the significant 

change in the microenvironment surrounding the encapsulated HPTS-silica pigment particles 

due, in turn, to an increased water content of the film.  Evidence for this is provided by the 

observation that the absorbance λmax for the film shifts from the usual value of 475 nm for a 

dry film, to 455 nm for the HPTS-LDPE film in water, coupled to the fact that the absorbance 

λmax for HPTS dissolved in water is also 455 nm (see table 1).  The effects produced by an 

increase in polarity of the microenvironment, signified by the negative shift in the λmax of 

HPTS and brought about by the immersion of the film in water, are likely to include: (i) a 

decrease in the pKa of HPTS [18] (for example the pKa of acetic acid is 15.5 in (non-polar) 

dichloroethane, but 4.8 in water) [51] and (ii) a decrease in the solubility of CO2 (for example 

the solubility of CO2 is 17 times higher in trichloromethane than it is in water [52]).  Both of 

these effects are likely to produce a measurable decrease in the CO2 sensitivity, exhibited by 

the HPTS-LDPE film, when the film is highly hydrated as opposed to dry.  It is also worth 

noting that this overall loss of sensitivity, when in water, is readily reversed by returning the 

film to a dry atmosphere. 

4 Conclusions 

The highly CO2 sensitive fluorescence HPTS-pigment (%CO2(S=1/2) = 0.16) and extruded 

plastic HPTS-LDPE film (%CO2(S=1/2) = 0.29) presented here exhibit a sensitive and 

reversible response to CO2 over a wide range of concentration. The HPTS CO2 sensitive 

plastic film can be used in water and acid solution (pH = 2) to detect dissolved CO2 without 

the dye leaching out from the plastic. Such properties make the HPTS plastic film a 
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promising CO2 sensor for detecting and measuring both gaseous and dissolved CO2 levels. 

The HPTS plastic film has a shelf life over six months when stored in the dark and ambient 

atmospheric conditions, but, like many CO2 optical sensors, it is sensitive to changes in 

humidity and temperature. This suggests that the HPTS-LDPE film optical sensor is best used 

in areas where no significant changes in RH and T are expected, and the measurement of 

the ambient level of CO2 is important, such as in modified atmosphere food packaging [53]. 

A well-noted drawback of an intensity (rather than lifetime) based indicators, such as the 

HPTS-LDPE CO2 indicator described here, is that they are susceptible to drift and 

instabilities, due to, amongst other things,: source fluctuations, detector drift and dye 

leaching [41].  Many of these issues can be overcome through the use of ratiometric 

detection, where the luminescence of both the protonated and deprotonated forms of the 

dye are measured and ratioed, and the ratio measured as a function of %CO2.  A striking 

demonstration of this has been reported by Wencel et al. for an HPTS/silica sol gel film, 

using two low cost LEDs (λmax(emission) = 405 and 450 nm, respectively) to effect dual 

excitation ratiometric detection [41].  Thus, it should be possible to employ this approach 

when using the HPTS-LDPE film reported here and so avoid many of the problems 

associated with non-referenced intensity-based indicators. 
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