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Abstract 

Subjective risks of having contaminated apples elicited via the Exchangeability 

Method (EM) are examined in this study. In particular, as the experimental design 

allows us to investigate the validity of elicited risk measures, we examine the magnitude 

of differences between valid and invalid observations. In addition, using an econometric 

model, we also explore the effect of consumers’ socioeconomic status and attitudes 

toward food safety on subjects’ perceptions of pesticide residues in apples. Results 

suggest first, that consumers do not expect an increase in the number of apples 

containing only one pesticide residue, but, rather, in the number of those apples with 

traces of multiple residues. Second, we find that valid subjective risk measures do not 

significantly diverge from invalid ones, indicative of little effect of internal validity on 

the actual magnitude of subjective risks. Finally, we show that subjective risks depend 

on age, education, a subject’s ties to the apple industry, and consumer association 

membership. 

 

Highlights 

• Subjects think that apples containing multiple residues will increase in the future  

• Valid subjective risks do not statistically diverge from those of invalid ones 

• Subjective risks depend on socioeconomic and attitudinal variables  

 

Keywords: subjective risks, internal validity, pesticide residue, apple.  
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How many bad apples are in a bunch? An experimental investigation of perceived 

pesticide residue risks  

 

1. Introduction 

Despite progress that international and national authorities have made toward 

ensuring food safety (e.g., food-labeling, packaging, inspections), food-related risks still 

get the attention of a substantial proportion of consumers. For example, approximately 

30 percent of all Europeans remain concerned about health consequences of pesticide 

residues in food (European Commission, 2010).  

As both short- and long-term health outcomes induced by food safety are often 

uncertain, people’s own risk estimates become crucial for understanding their choice-

behavior towards food products or policies (Kivi and Shogren, 2010)1. In fact, several 

empirical investigations have shown that subjective risks often dictate consumers’ 

choices far more than science-based risk predictions would, especially when subjective 

estimates differ from science-based ones (e.g., Jakus et al., 2009). There might be two 

general reasons why such a discrepancy exists. First, while science-based risk estimates 

are simple averages based on frequency values for homogenous populations, individual 

subjective risks are heterogeneous, and causes for this heterogeneity can be observed or 

unobserved. For many individuals, their subjective risks might be accurate, and not truly 

equal to the average population risk. Second, some individuals may make mistakes in 

processing risk-related information, and formulate estimates that are higher or lower 

than the science-based predictions. Much of what economists know about subjective 

risks has been borrowed from initial work by psychologists (e.g., Slovic, 1987). 

Although an extensive literature has shown that subjective risks related to 

financial outcomes affect people’s choices in several branches of applied economics 

                                                           
1 Here, risk is intended to mean the probability that a given outcome occurs. 
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(see Manski, 2004 for a review), a relatively small number of studies have investigated 

the influence that subjective risks related to health outcomes have on people’s behavior 

related to their everyday choices. A few studies have primarily coped with estimates of 

health risks related to smoking behavior (e.g., Viscusi, 1990; Gerking and Khaddaria, 

2011) as well as drinking contaminated water (e.g., Jakus et al., 2009; Shaw et al., 

2012). Unfortunately, little has been done to investigate whether subjective health risks 

related to food safety affect people’s economic choices in their everyday life.  A 

relatively small number of studies have shown that consumers’ numerical estimates of 

health risks (i.e., mortality rate) due to the presence of pesticide residues in fresh fruit 

and vegetables drive their preferences for pesticide-free fresh fruit and vegetables in 

hypothetical markets (e.g., Hammit, 1990; van Ravenswaay and Hoehn, 1991; Buzby et 

al., 1998).  

In contrast to other studies, here we mainly examine the risk of having 

contaminated apples. In particular, we investigate consumers’ subjective probabilities 

that given proportions of apples produced in the Province of Trento (Italy) will contain 

pesticide residues in the future. Given that pesticide residues have consequences on 

health, consumers’ expectations about the future presence of pesticide residues in apples 

likely affect their support for an agricultural policy that the Province of Trento is 

planning to incentivize the production of pesticide-free apples. The investigation of 

consumers’ preferences for this policy becomes particularly important because the 

saleable gross production of apple is approximately 23 percent of the entire agricultural 

saleable gross production in the Province of Trento (P.A.T., 2010). 
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The bulk of the literature which has investigated subjective risks related to food 

safety has barely taken into account the fact that elicited risks might not be valid2. An 

exception is the artefactual field experiment conducted by Cerroni et al. (2012) in which 

the validity of subjective risks elicited via the Exchangeability Method (EM) (Baillon, 

2008; Abdellaoui et al., 2011), an innovative elicitation techniques based on the notion 

of exchangeable events (de Finetti, 1937), has been tested. In this study, the validation 

procedure is based on the de Finetti’s notion of coherence under which risk estimates 

are coherent if and only if they obey to all axioms and theorems of Probability Theory 

(de Finetti 1937; 1974a; 1974b).  

Investigating the validity of subjective risks contributes to better understand 

people’s choices under risk and uncertainty. In fact, the inclusion of invalid 

observations in subjective expected utility or other non-expected utility models used to 

predict decision-making processes might generate biased results, especially if invalid 

observations systematically differ from valid ones in terms of magnitude. For example, 

if invalid subjective risks are systematically lower (or greater) then valid ones, 

consumers’ willingness to support agricultural policies might be underestimated (or 

overestimated).  

Given that, in this current paper, by drawing on Cerroni et al.’s (2012) results on 

the validity of subjective risks elicited via the EM, we more carefully analyze the actual 

discrepancy between valid and invalid risk estimates. In other words, we measure the 

differences in terms of magnitude, which goes beyond the previous study. Furthermore, 

we also econometrically identify attitudinal and socio-economic factors that shape 

subject’s perceptions, comparing our results with previous findings. 

                                                           
2 In contrast, one might use observed purchases or transactions as a way of revealing individuals’ sense of 
risk, but identification issues may easily arise in the effort to uncover the risks and sort these out from 
other influences on purchases. 
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 The remainder of the paper is laid out as follows. In the next section, we review 

previous studies dealing with perceptions of pesticide residues and its consequences on 

human health. Next, we define the aims of the current study and provide detailed 

information about the experimental design. Finally, we offer a discussion of our results.  

 

2. Subjective risks and pesticide residues 

Many stated-preference (SP) studies have investigated the role of consumers’ 

perceptions of health outcomes due to pesticide residues in determining food-

purchasing behavior. In general, these studies have shown a negative correlation 

between people’s perceptions of health outcomes due to pesticide residues and 

willingness to purchase products which contain those chemical substances. Many food 

products have been considered, ranging from general unlabeled ones (e.g., Misra, et al., 

1991; Eom, 1994; Rimal, et al. 2008) to specific types of fresh fruit and vegetables (e.g., 

Fu et al., 1999; Boccaletti and Nardella, 2000). 

Most previous studies have not focused on subjective risk estimates expressed in a 

numerical fashion, but on people’s concern about the severity of health consequences 

due to food safety. For example, individuals have been asked to indicate the presence of 

health risks using simple descriptive labels (e.g. high, medium, or low), likert or other 

numerical scales.  

Eom (1994) has elicited subjects’ concern about the presence of pesticides in 

general commercially grown food products by using a likert scale between 0 (no risk) 

and 10 (very serious risk). This study has found that the average concern across 

consumers was quite high, around 6.6. The same approach was taken by Fu et al. 

(1999), but for fresh fruit and vegetables. In this case, the average level of concern was 

extremely high, exceeding 6, on a scale between 0 and 7. In their experimental auction 

for residue-free foods, Roosen et al. (1998) have used a simple scale of concern (1 to 5) 
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to investigate the influence of subjective perceptions on consumers’ bidding behavior. 

The approach recently used by Rimal et al. (2008) to elicit people’s perceptions of 

pesticide residues in food was even simpler. In fact, individuals were simply asked to 

state whether the problem of pesticides in food was serious, moderate or inexistent, and 

the finding was that more than half the subjects chose the serious option.  

Boccaletti and Nardella (2000) have improved the approach used by Misra et al. 

(1991) implementing a Likert Attitude Scaling Procedure, where individuals are asked 

several questions and, then, an individual-specific score is calculated to measure the 

concern about pesticide residues on fresh fruit and vegetables. The mean score across 

consumers was 78 on the maximum of 100, where the latter value is not a probability 

per se, but simply indicates very high concern.  

Several scholars have questioned whether perceptions measured on some scale, as 

done in some of the studies above, are good indicators of risk (e.g., Viscusi and Hakes, 

2003). At the very least, one would have to make strong assumptions to re-map from a 0 

to 10 discrete response scale to a 0 to 1 unit interval. This could be done for example, to 

get a relevant risk measure, which is of course a continuous variable on the unit interval. 

Simple recoding would of course make it impossible to obtain other risk estimates than 

in 10 percent jumps (10, 20, 30 percent etc.). 

While these simple efforts are appealing, they are lacking in that they do not 

provide the information that would be ideal in actual modelling risky behaviours. In 

fact, measures of concern, or other responses which are not numerical measure cannot 

be directly used in either an expected utility or subjective expected utility framework, 

(Manski, 2004). Hence, many other studies have paid closer attention to the elicitation 

of actual numerical risk measures. In most of these studies the elicitation scheme is 

simple, and people are just asked to state risk estimates. The specific magnitude of the 

outcome that will happen is typically first presented, and individuals are then asked 
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about the probability of this occurring to others (e.g., Viscusi 1990, asked people to 

guess how many smokers out of 100 will get, or die from, lung cancer), or to 

themselves, but many variations in presentation are possible. The techniques which 

directly elicit subjective risks are called direct methods (Spetzler and Von Holstein, 

1975). 

Extensive research, much of which is in the psychology literature, has shown that 

people do not easily understand numerical risks (especially small ones), and, given that, 

has suggested different approaches (i.e., frequencies) for making people willing and 

able to state their best estimates (e.g., Gigerenzer and Hoffrage, 1995; Hammit and 

Graham, 1999; Corso et al., 2001).  

Several studies have shown that mortality risks be couched as deaths per 100,000 

or some other number in the population, avoiding small decimal place numbers that are 

confusing. Buzby et al. (1998) have asked subjects their own subjective probability of 

dying from consuming fresh products containing pesticides in a similar manner, 

specifically, as the annual number of deaths per 1 million individuals. Since this 

probability-estimation task may be difficult for laypeople, subjects in both of these 

studies were provided with risk ladders showing probability of dying from more-

familiar causes of death. The mean probability estimate was roughly 43 deaths per 

million in the population, per year.  

Williams and Hammit (2001) have used this same basic technique to examine the 

annual fatality rate per 1 million in the population of the United States for several 

categories of food hazards, and one of these was also the presence of pesticide residues 

in food. Generally, consumers perceived the probability of dying due to pesticides as 

being greater than that related to either natural toxins or microbial pathogens. In 

particular, to conventional buyers, the annual median fatality rate because of pesticide 
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residues on fresh products was 50 per million, while, to organic food buyers, the rate 

was 200 per million. 

Although direct methods are very easy to design and implement, they have been 

questioned because of the quality or accuracy of the elicited subjective risks. In the 

cognitive psychology literature the ability, or more specifically, the willingness of 

subjects to put efforts in expressing their belief in numerical risk estimates, has been 

extensively debated. The elicitation of numerical risks is of course easy and feasible, but 

reliable results are not guaranteed (Manski, 2004).  

An alternative way of eliciting subjective risks consists of using subjects’ choices, 

most often made over lotteries and gambles. In particular, risk measures are indirectly 

estimated by the researcher at the points for which people show their indifference 

between lotteries or gambles, which can be thought of as games that the subjects play. 

These techniques which indirectly elicit subjective risks are called indirect methods 

(Spetzler and Von Holstein, 1975). Those methods are assumed to be less demanding 

than direct methods from a cognitive point of view as subjects are not asked to directly 

express a numerical risk, but to compare risky outcomes and choose the most likely one 

(Spetzler and Von Holstein, 1975).  

To our knowledge, the first application of an indirect technique in eliciting 

subjective risks of having pesticide residues in food is represented by the Cerroni et al. 

(2012)’s artefactual field experiment (Harrison and List, 2004). In particular, that study 

has elicited numerical subjective probabilities that given proportions of apples will 

contain pesticide residues by using the EM. This technique consists of a set of binary 

questions in which subjects are asked to bet a given amount of money on a given 

outcome rather than on an alternative one. Subjective risks are indirectly inferred at the 

point for which subjects show their indifference for betting on one of the two outcomes.  

The fact that the outcomes derive from a bisection procedure of the whole state space of 
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the random variable under study, make binary questions chained, in the sense that the 

outcomes presented in one questions depend on the outcome that has been chosen in the 

previous question. One innovative aspect of this elicitation technique consists in asking 

subjects to focus on the severity of the outcome under study, rather than on the 

probability of a given outcome to occur. This investigation into outcomes is rare, as 

compared to attention paid by previous studies to subjective probabilities of endpoint 

risks, such as human mortality or morbidity rates (Kuhn and Budescu, 1996). 

The study by Cerroni et al. (2012) also represents the first attempt to investigate 

the influence that incentive compatibility has on the internal validity of elicited 

subjective risks related to food safety outcomes. In fact, when monetary incentive are 

provided to subjects based on their betting behavior, chained elicitation mechanism 

such as the EM are presumed to induce subjects to not state their real beliefs, but to 

strategically behave to get better rewarded.  To test whether internal validity of elicited 

subjective risk estimates depends on incentive compatibility four experimental 

treatments have been designed. More specifically, subjects were provided with 

monetary incentives in two treatments, but they were not in the remaining two. Each of 

these treatments was divided into two other treatment, in one treatment, subjects were 

aware of the chained structure of the EM because questions were sequentially ordered, 

while in the other treatment, subjects were not aware of method as questions were 

randomly ordered. A detailed description of treatment groups will be provided below.  

As noted above, valid estimates have been identified by using a validation 

procedure based on the de Finetti’s notion of coherent subjective probabilities (de 

Finetti, 1937; 1974a; 1974b). In particular, risk measures elicited via the EM are valid if 

and only if the certainty equivalents that subjects are asked to express about specific 

lotteries are equal. These lotteries involve the two risky outcomes that subjects were 

indifferent between during the EM procedure. In the EM framework, this ensures that 
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subjective risks satisfy de Finetti’s notion of coherence. Certainty equivalents were 

elicited by using another experimental game which will be described in more details 

below, the Certainty Equivalent Game (CEG). 

Investigating the validity within each treatment group, Cerroni et al. (2012) have 

found that subjects provided with real monetary incentives and random questions more 

likely return valid estimates. Examining the validity of each elicited subjective risk 

estimates, they found that the proportion of valid estimates is 29.72 percent in the 

sample. In particular, they showed that the proportion of valid subjective risks is 39.13 

percent when real monetary incentives and random questions were provided to subjects, 

followed by 29.86 percent when monetary incentives were not provided and questions 

were randomly ordered, 26.26 percent when real monetary incentives were provided, 

but questions were sequentially ordered, and 22.22 percent when monetary incentives 

were not provided and questions were sequentially ordered. This suggests that in each 

treatment group there is a relatively small portion of valid subjective risk estimates, and 

the real compensation with sequential responses out-performs the other treatments.  

In our view, as subjective risks are often incorporated in the standard subjective 

expected utility or other non-standard theories of decision-making under risk and 

uncertainty to model and predict behavior, the identification of valid risk estimates 

becomes crucial to obtain highly predictive models, and thus, reliable findings on 

subjects’ choice behavior. This is particularly true if valid observations systematically 

differ from invalid ones in terms of magnitude. In the latter case, failure to recognize 

valid subjective risks might induce us to over- or underestimate subjects’ true 

expectations, and hence, to wrongly predicts their behavior. 

 

3. Objectives 
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By drawing on Cerroni et al.’s (2012) investigation and using the same dataset 

they have used in their analysis, we first investigate subjective risks of having 

contaminated apples. Second, we examine the potential discrepancy between valid and 

invalid subjective risks to fully understand whether failure to recognize validity implies 

an over- or underestimation of consumers’ true probability estimates. Finally, we 

estimate a behavioral model to identify attitudinal and socio-economic factors that 

affect the subject’s risk estimates of pesticide residues in apples. This information will 

help policy makers to target their risk communication campaigns at given interest 

groups of  the population and, hence, gain public support for the Province of Trento’s 

pesticide risk reduction policy.  

 

4. The empirical application 

4.1. The case study 

The fire blight is a bacterial disease that has damaged and killed apple plants in 

the Province of Trento since 2003 (EMF, 2006). The current infestation rate which is 

the number of days in which the infestation occurs in the blossoming period is less than 

1 percent. The infestation rate depends on climatic parameters such us temperature and 

precipitation. In this region of Italy, farmers currently adopt preventative measures 

based on pesticide usage in the form of copper compounds or Acibenzolar-S-metile to 

control the mild negative consequences that fire blight has on apple production. 

However, the future increase of the infestation rate, which is predicted to reach 17 

percent in 2030, might eventually induce farmers to use new pesticides for preventative 

and curative control of fire blight. One candidate is the antibiotic streptomycin, 

currently forbidden under Italian law, but which has been already used in U.S., 

Germany, Belgium, and The Netherlands to control fire blight (Németh, 2004).  
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4.2. The sample and the dataset 

The pool of sample subjects is the same used by Cerroni et al. (2012) and consists 

of 80 individuals between 18 and 70 years age who live in the Province of Trento. The 

sample is not, strictly speaking, randomly selected because subjects were recruited 

outside food markets, but it is still quite generally representative of people living in this 

Province because most of the people in the region go shopping in those markets at some 

point or another. A show-up fee of €25 was given to each participant as a compensation 

for agreeing to come into the experimental lab of the University of Trento to take part in 

the experiment. 

The dataset consists of 1,200 probability estimates, 400 for each of the three 

random variables under study which are: the number of apples, a, containing at least 

one residue in a sample of 100 apples in 20303, the number of apples, r, containing at 

least two residues (multiple residues) in a sample of 100 apples in 20304, and the 

number of days, g, during which the infestation will occur during the blossoming period 

in 20305. The latter variable g was added because of the potential link between the 

development of fire blight and the presence of pesticide residues in apples. For each 

random variable, five risk estimates have been elicited from each subjects, the lower 

bound (g0, a0, and r0), the 25th percentile (g1/4, a1/4, and r1/4), the 50th percentile (g1/2, a1/2, 

and r1/2), the 75th percentile (g3/4, a3/4, and r3/4), and the upper bound (g1, a1, and r1).  

These variables were selected after having interviewed approximately 20 focus 

group subjects. The year 2030 is chosen because the best available science predicts that 

the heavy development of new phytopathology, as the fire blight, will start 

approximately twenty years from now in the Province of Trento.   

 

                                                           
3 The apple containing residues are those containing at least one residue beyond the level of 0 mg/kg. 
4 The apple containing residues are those containing at least two residues beyond the level of 0 mg/kg. 
5 The blossoming period usually occurs in April in the Province of Trento. 
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4.3. Experimental Treatments 

As noted above, selected sample participants were randomly assigned to four 

treatment groups. Each subsample is presented with a different experimental design: the 

real monetary incentives-sequential questions with 23 subjects (TRS), the real monetary 

incentives-random questions with 22 subjects (TRR), the hypothetical monetary 

incentives-sequential questions with 16 subjects (THS), and the hypothetical monetary 

incentives-random questions with 19 subjects (THR).  

In the hypothetical treatments (THR and THS), subjects are only given the show-

up fee, while in the real incentives treatments (TRR and TRS), each subject has the 

chance to win up to an additional €100 based on their choices during the experimental 

games. More specifically, one randomly selected individual from each group (TRR and 

TRS) can actually earn additional €100 based on her/his choices during the experiment. 

The subject to be paid is randomly selected at the end of the experiment by drawing a 

numbered chip from a bingo cage (Cage 1). All subjects have the same equal chance of 

being the winner because the total number of chips in the bingo cage is equal to the total 

number of participants in each session and subjects are informed of this. One of the 

questions each subject answers during the experiment is also randomly selected to be 

played out for the payoff. In this case, we use another cage (Cage 2) that contains as 

many numbered chips as the number of questions that the respondent answered during 

the experiment. The selected participant wins the additional €100 if and only if the 

event she/he had chosen in the drawn question contains the value of the random variable 

under consideration that the Edmund Mach Foundation (EMF) predicts. Such science-

based predictions of risk have been frequently used by experimental researchers (for 

example, see Fiore et al., 2009). Of course, this specific incentive scheme may have 

induced subjects to guess the science-based estimated instead of expressing their own 

subjective risks. Subjects may have had private information about the science-based risk 
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estimates or some reason for not trusting the Edmund Mach Foundation’ s (EMF’s) 

studies and predictions6. We assume that subjects’ risk estimates have been not distorted  

away from their own beliefs  by our incentive scheme for two main reasons. First, our 

subjects are average consumers and are unlikely to have had any information about the 

science-based risk estimate because the latter had not been disseminated to the public 

when the experiment was conducted. 

In addition, based on our focus group interviews, we believe that the population of 

the Province of Trento highly trusts the EMF, and would have no reason to have a 

strongly different personal prior. In one question of the survey, subjects were asked to 

state their level of trust in the EMF on a scale between 0 (very low) and 4 (very high), 

and their average level of trust was around 2.6. None of the subjects expressed a very 

low level of trust and only 3 subjects out of 80 expressed a low level of trust. Given this 

information we do  not think elicitation to correspond with the EMF prediction is a large 

problem for the study. As noted by Baillon (2008) and echoed in Cerroni and Shaw 

(2012) the simplest strategy for consumers to play the game is just to state their real 

beliefs. In this context, we assume that our incentive scheme has induced subjects to 

state their real beliefs, or at least, to invest more cognitive effort into doing that (Cerroni 

et al., 2012). 

One feature of the sample worth noting is that we do have a few apple producers, 

and these subjects may indeed have more information than others do. However, their 

preferences do not influence average beliefs because there are so few of them (3 out of 

80).  

The only difference between the random (THR and TRR) and sequential 

treatments (THS and TRS) is the order of the questions. In fact, in sequential treatments 

subjects are presented with sequentially ordered questions, and, hence, they are aware of 

                                                           
6 We thank an anonymous reviewer for suggesting this possibility. 
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the chained structure of the EM, while, in the random treatments, subjects face 

randomly ordered questions which hide the presence of chained questions. More 

precisely, in the sequential treatments, the order in which percentiles of each subject’s 

CDF are elicited is the following: g1/2, g1/4, g3/4, a1/2, a1/4, a3/4, r1/2, r1/4, and r3/4. In the 

random treatments, the order in which the percentiles of each subject’s CDF are elicited 

is the following: g1/2, a1/2, r1/2, g1/4, a1/4, r1/4, g3/4, a3/4, and  r3/4. 

 

5. Methods 

5.1. The elicitation of subjective risks: the Exchangeability Method 

In this section, we briefly describe the EM, the technique used by Cerroni et al. 

(2012) to elicit subjective risks. The EM consists of multiple binary questions where 

subjects are only asked to bet a certain amount of money on one of the two disjoint 

subspaces in which the whole state space of the variable under study has been 

previously divided based on their choices. When subjects become indifferent to bet on 

one disjoint subspace rather than on the other, they are assumed to perceive those 

subspaces as equally likely (Spetzler and Von Holstein, 1975). This method allows 

eliciting several point estimates of the individual cumulative distribution function 

(CDF) of the random variable under study for each experimental subject. Interested 

readers may find additional details about the EM in Abdellaoui et al. (2011), Baillon 

(2008), and Cerroni and Shaw (2012).  

The EM is applied to elicit risks of three random variables, a, r, and g. As the EM 

is formally described in Cerroni et al. (2012), for brevity’s sake, here, we only describe 

the application of the EM that concerns the number of apples containing at least one 

residue in a sample of 100 apples in 2030 (variable a). At the beginning of the game, 

subjects are asked to express the lower (a0) and upper bounds (a1) of the event space A. 
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In this way, the individual-specific range outside of which subjects are essentially 

certain that the outcome cannot happen at all is identified. Assume that subject i states 

that a0 is equal to 60 apples and a1 is equal to 76. This means that she/he believes that 

the probability that the portion of apples containing at least one pesticide residue in 

2030 will be outside these bounds (i.e. less than 60 and greater than 76) is equal to zero.  

The second step involves asking a series of questions to establish the value of 

a1/2 that corresponds with the 50th percentile of the subjective CDF, the median 

estimate. The first binary question is generated by splitting the event space in two 

prospects by using the following algorithm, 60 + [(76 - 60)/2] = 68. It follows that the 

first binary question implies a choice between prospects A1={60<x<68} and A2={68≤x< 

76} (Figure 1). Following the first choice, the exercise is repeated using a bisection of 

the chosen prospect. For example, if subject i has chosen prospect A1={60<x<68}, the 

second binary question asks subjects to choose between prospects A3={60<x<64} and 

A4={64≤x<68}. The bisectioning process goes on until the subjects become indifferent 

between the two prospects; at this point, the median point a1/2 of each subject’s CDF is 

estimated. This estimate indicates that there is a 50 percent chance that the number of 

apples that will contain at least one pesticide residue in 2030 will be equal to or less 

than a1/2. A similar process can be followed to determine as many other points for the 

individual’s subjective CDF as is desired, depending on limitations of the subjects’ 

attention spans. Here, the 25th percentile (a1/4) and the 75th percentile (a3/4) are also 

elicited. Before asking our subjects to play the EM, they were provided with a 

description of the relevant scenario, as well as precise information about the values that 

the random variables under study had in the last ten years (from 2000 to 2009),  

 

5.2. The validity of subjective risks: the Certainty Equivalent Game  
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In this section, we briefly describe an additional experimental game that was 

implemented by Cerroni et al. (2012) to facilitate the identification of valid risk 

measures, the Certainty Equivalent Game (CEG)7. In the CEG, subjects are presented 

with two choice tasks, say CT1 and CT2, both containing six binary questions, each 

asking subjects to choose between a gamble and a certain amount of money (Figure 2).  

Next, we provide an example of the CEG that concerns the number of apples 

containing at least one residue in a sample of 100 apples in 2030 (variable a). Assume 

that subject i provides us with an estimate of a1/2 that is equal to 66 apples, in CT1 

she/he has to choose between options A (place a bet of  € x  on the fact that a is lower 

than 66) or B (take the certain amount of money z = 0, 25, 49, 51, 75, and €100). For the 

second choice task CT2, she/he has to choose between options A (a bet of € x on the 

fact that a is greater than or equal to 66) or B (take the amount of money z = 0, 25, 49, 

51, 75, and €100). The certainty equivalent for the lottery described in option A is 

determined by looking at the first question of the six in the choice task in which the 

subject switches from choosing option A to choose option B (the amount of money). 

The CEG is played for the 25th percentile (g1/4, a1/4, and r1/4), the 50th percentile (g1/2, 

a1/2, and r1/2), and the 75th percentile (g3/4, a3/4, and r3/4). The CEG allows identification 

of valid risk estimates at both the sample and individual level. In the former case, the 

sample provides valid risks if and only if CE estimates related to CT1 and CT2 does not 

statistically differ from each other. At the individual level, each specific risk estimate is 

valid if and only if the CE estimates related to CT1 and CT2 are equal.  

 

6. Results 

6.1. The analysis of subjective risks 

                                                           
7 Cerroni et al. (2012) tested also the reliability of elicited risk estimates via the EM by implementing the 
Repeated Exchangeability Game. However, here, we only focus on the validity and, hence, the CEG is 
taken into account. 
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On average, estimated bounds of variable a suggest that the subjects believe the 

number of contaminated apples out of 100 will be between 56 and 75. Using 

information from the estimated 25th percentile, we argue that subjects believe there is 

only a 25 percent chance that the number of apples containing pesticides will be lower 

than or equal to 66. Using average values for the 50th and the 75th percentiles it appears 

that the subjects attach a 50 percent chance to the fact that the number of bad apples will 

be lower than or equal to 69, and 75 percent chance to the fact that this number will be 

lower than or equal to 71 apples (see the basic statistics in Table 1 and Figure 3). 

Taking into account that the number of apples with at least one pesticide residue at 

present (in 2009) is 63 out of 100 (Italian Ministry of Health, 2010), we conclude that 

subjects do not in fact perceive an increase in the number of apples containing at least 

one pesticide residue by the year 2030 to be particularly substantial and, very likely.  

Following the same general approach, we interpret percentile estimates related of 

the r variable, which is the number of apples containing multiple residues in a sample of 

100 apples in 2030. In this case, we found that the lower bound (r0) is about 31, the 25th 

percentile (r1/4) is 42, the 50th percentile (r1/2) is 45, the 75th percentile (r3/4) is 48, and 

the upper bound (r1) is 52 (again, see Table 1 and Figure 3). As might be expected, the 

average percentile estimates of r are always smaller than those of variable a (Figure 3) 

because the number of apples with multiple residues should always be lower than the 

number of apples with at least one residue. However, given that 31 apples, out of the 63 

containing at least one residue, have multiple residues in 2009 (Italian Ministry of 

Health, 2010), we deduce that subjects perceive an increase in the number of apples 

with multiple residues to be quite significant and likely. For example, they think that 

there is 75 percent chance that the number of apples with multiple residues will be 48 at 

the worst. 
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To summarize, although subjects believe that the number of apples containing one 

residue or more will not significantly increase by the year 2030, they predict that the 

number of apples containing multiple residues (more than one) will significantly 

increase. This means that the number of apples containing only one pesticide residue 

will decrease, but the number of apples with multiple residues will significantly grow 

by the year 2030.  

Considering the infestation rate which is the number of days in which the 

infestation will occur during the blossoming period in 2030, we found that the lower 

bound (g0) is 6, the 25th percentile (g1/4) is 8, the 50th percentile (g1/2) is 9, the 75th 

percentile (g3/4) is 10, and the upper bound (g1) is 12 (see Table 1 and Figure 4). Given 

the fact that the number of days in which the infestation actually occurred in 2000, 

2005, and 2010 was very close to zero, we conclude that subjects perceive the 

infestation rate in 2030 as being quite high and likely. 

 

6.2. The difference between valid and invalid subjective risks 

Using results on validity obtained by Cerroni et al. (2012) via the Certainty 

Equivalent Game, for each random variable, we compare the magnitudes of valid and 

invalid estimates at both the sample and individual levels. At the sample level, we found 

here that the valid estimates are lower than invalid ones for each percentile (the 25th, the 

50th, and the 75th) of each variable (a, r, and g) (Table 2). However, by using the 

Kolmogorov-Smirnov (KS) and Mann-Whitney U (MWU) tests, we found that the 

discrepancy between the magnitudes of valid and invalid estimates is not statistically 

significant for all variables, a, g, and r (Table 3). Hence, even if our results suggest that 

failure to recognize validity might induce researchers to overestimate subjects’ true risk 

estimates, this finding is not statistically supported.  
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Next, the valid and invalid estimates are compared at the individual level. For the 

random variables a and r, we found the same pattern as before, the 25th, the 50th, and the 

75th percentiles are lower in valid estimates as compared to invalid ones (Table 2). 

Using the KS and MWU tests, we found that such a discrepancy between valid and 

invalid estimates is not statistically supported for variable a, while it is for variable r. In 

particular, valid estimates of 25th percentile (r1/4) are statistically lower than the 

corresponding invalid ones (Table 4).  

We found a different pattern for the variable g; valid estimates of the 25th and 75th 

percentiles (g1/4 and g3/4) are greater than the corresponding invalid estimates, while 

valid estimates of the 50th percentile (g1/2) are lower than invalid ones (see columns 3 

and 4 in Table 2). However, these results are not statistically supported by the KS and 

MWU tests (Table 4).   

In general, the valid estimates are smaller than the invalid ones in variable a and r, 

but greater in variable g. However, we note that such discrepancies are statistically 

supported only for variable r, but not for a and g. For what concern r, mistakes appear 

here to result in upward bias, and thus, failure to recognize validity results in an 

overestimation of subjects’ average probabilistic expectations. 

 

6.3. Factors shaping subjective risks 

To further analyze the factors that explain subjects’ probabilistic expectations of 

both the number of apples containing pesticide residues and the fire blight’s infestation 

rate, we estimate three empirical models (see Table 5 for the definition of the 

explanatory variables used in the econometric model).  

Given that our dependent variables are all essentially fractions, we do not estimate 

our models (Model 1, 2, and 3) by using a simple OLS estimator, although many apply 

the linear probability model to such data. Here, we use the Generalized Linear Model 
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(GLM) along with robust standard errors (Papke and Woolridge, 1996). Observations in 

80 groups are clustered because each subject provides three different percentile 

estimates (25th, 50th, and 75th percentile) for each random variable under study (g, a, and 

r), and these may be correlated.  

The general empirical specification common to the three models is: 
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In Model 1, the dependent variable (y) is each subject’s estimates of the number 

of days in which the infestation will occur during the blossoming period in 2030 (g), in 

Model 2, each subject’s estimates of the number of apples containing at least one 

residue in a sample of 100 apples in 2030 (a), and in Model 3, each subject’s estimates 

of the number of apples containing multiple residues in a sample of 100 apples in 2030 

(r). 

In all models, we examine whether 25th, 50th, and 75th percentile estimates differ 

from each other by using the set of dummy variables PERCENTILE which consists of 

variable 25thPERC, 50thPERC, and 75thPERC . As we expected, the 50th and 75th 

percentile estimates (50thPERC and 75th PERC, respectively) are statistically greater 

than the 25th percentile estimates (25th PERC) at the 1 percent significance level (see 

Table 6).  

In addition, we investigate the difference between valid and invalid estimates in 

terms of magnitude by creating another variable, called VALIDITY, defined below. 

Cerroni et al. (2012) demonstrated that subjects were more likely express valid risk 

estimates when they were provided with monetary incentives and randomly ordered 

questions, but we actually compare the magnitude of risk measures elicited from 
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subjects who belong to the “real incentives-random questions” treatment (TRR) with 

risk estimates elicited from subjects who belong to the other treatments (TRS, THR, and 

THS). To accomplish this, the  VALIDITY variable is comprised of four dummy 

variables (TRS, TRR, THS, and THR), each taking a value equal to 1 if and only if the 

subjects belong to the experimental treatment that the variable represents, and equal to 

zero otherwise. 

Consider Model 2 (a) and 3 (r) in Table 6. The positive signs of variables TRS, 

THR, and THS’s coefficients are consistent with result from non-parametric testing 

which show that average invalid estimates are greater than valid ones. However, 

estimated coefficients are not statistically supported in either Model 2 (a) or Model 3 (r) 

(Table 6). In Model 1, we found that TRS’ coefficient has the expected positive sign, 

while THR and THS’s coefficients  are negative, meaning that invalid observation are 

lower than valid ones. However, none of the coefficients are statistically significant 

(Table 6).  

The composition of the vector ATTITUDE used to explain the random variable g 

strongly differs from that used to explain the other variables, a and r. For what concerns 

Model 1 (g), ATTITUDE captures subjects’ trust in the IPCC’s predictions about climate 

change (IPCC_AV, IPCC_HIGH, and IPCC_VHIGH) and their beliefs about the human 

and/or natural determinants of this phenomenon (CC_HN, CC_H, and CC_HH). In the 

former case, the subjects were informed about the positive correlation between the fire 

blight’s infestation rate and climatic conditions during the presentation of the 

experimental instructions, and we predict that subjects who highly trust the IPCC’ 

predictions (IPCC_HIGH and IPCC_VHIGH) will provide higher estimates of the 

number of days in which the infestation will occur during the blossoming period in 

2030 (g) than those who partially trust IPCC’ predictions (IPCC_AV). The coefficient of 

the variables IPCC_HIGH and IPCC_VHIGH have the positive and statistically 
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significant expected signs (Table 6). Our results also indicate that the subjects who 

believe that climate change is only due to human activities (CC_HH) perceive the 

infestation to be more likely than subjects who blame the climate change on both 

natural and human processes (CC_HN) (Table 6). The results, which are statistically 

significant at the 1 percent level, are consistent with some of the psychology literature 

about perceptions of risk, which has shown that people commonly perceive technology-

induced risks to be higher than nature-induced ones (e.g., Slovic, 1987). 

In Model 2 (a) and Model 3 (r), the variables relating to ATTITUDE captures 

subjects’ beliefs about the future usage of pesticides to control apple disease (PEST_AV, 

PEST_HIGH,  and PEST_VHIGH) and subjects’ trust in Edmund Mach Foundation’s 

predictions about the fire blight’s infestation rate (EMF _AV, EMF_HIGH, and 

EMF_VHIGH). As we expected, subjects who agree on the fact that farmers will mainly 

use pesticides in the future (PEST_HIGH and PEST_VHIGH) provide higher estimates 

of the number of apples that will contain residues than subjects who do not agree with 

that (PEST_LOW). However these results are not statistically significant in either Model 

3 (r) or Model 2 (a) (Table 6). 

Next, we hypothesize that subjects who trust the Edmund Mach Foundation’s 

predictions which show that the fire blight’s infestation rate will increase from the 1 

percent of 2010 to the 17 percent of 2030 (EMF_HIGH and EMF_VHIGH), have higher 

percentile estimates of the number of apples containing pesticide residues in 2030 than 

subjects who do not trust EMF’s predictions (EMF_LOW). This hypothesis is supported 

by some of the results, i.e., the positive and significant coefficients of the variables 

EMF_HIGH and EMF_VHIGH in Model 2 (a) at the 10 percent significance level, 

while it is not statistically supported in Model 3 (r) (Table 6). 

The APPLE_LINK variable vector, which consists of four diverse dummy 

variables, APP_PROD, APP_IND, CONSUMER, and CONS_ASS, is present in all 
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models. In Model 1 (g), subjects who produce apples (APP_PROD) provide lower 

estimates of the number of days in which the fire blight’s infestation will occur during 

the blossoming period in 2030 than the others (at the 5 percent significance level). This 

finding is not surprising because farmers have a better knowledge of the actual low 

infestation rate in the Province of Trento. As might be expected, farmers (APP_PROD) 

self-protect their own profession,  expressing lower estimates of the number of apples 

that will contain residues in 2030 than others, however, the negative coefficient of the 

variable APP_PROD is statistically significant in Model 3 (r), but not in Model 2 (a) 

(Table 6). 

In contrast to farmers, some subjects who work in apple processing and marketing 

(APP_IND) have generally higher estimates of pesticide residues in apples than others, 

and the positive coefficient is statistically significant in Model 2 and 3 at the 1 percent 

level (Table 6). This is likely due to the fact that people who are involved in the apple 

industry have better knowledge that chemicals are commonly used to control apple 

diseases than laypersons, but, unlike farmers, they do not appear to be interested in 

promoting a healthy brand image. 

While the fact that the number of apples consumed weekly (CONSUMER) does 

not affect estimates regarding the fire blight’s infestation rate (g) is perhaps not 

surprising, it is striking that this variable only partially influences the consumers’ 

perceptions of pesticide residues in apples (a and r). The variable CONSUMER is 

negative and statistically significant in Model 2 (a) at the 1 percentlevel, but it is not 

significant in Model 3 (r) (Table 6). The negative sign of this variable in Model 2 might 

be due to the fact that subjects who consume apples perceive the risk of contamination 

as low.  In contrast, we found that members of consumer associations (CONS_ASS) who 

are assumed to be very concerned about pesticide residues have higher estimates of both 
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a and r than the others (Table 6). The coefficient of this variable is positive and 

statistically significant at the 1 percent level in both Model 2 and Model 3.  

We have used the same set of socioeconomic variables in all our models. 

Although we found that women (FEMALE) have higher risk estimates, as frequently 

found in the literature about risk perceptions (e.g., Flynn et al., 1994; Krewski et al., 

1994; Lin, 1995; Hamilton, 1985; 1995), the coefficients are not statistically significant 

in all of our models.  

We found contrasting results for the age of subjects (AGE). A person’s age may 

serve as a proxy for experience with one or more types of risk. Related to the variable g 

(Model 1), we found that elderly subjects have higher estimates of the infestation rate 

than the others (at the 10 percent significance level). This result is consistent with the 

previous literature on age and health risks (e.g., Krewski et al., 1994; Williams and 

Hammit, 2001). In contrast however, we found that the number of apples containing 

pesticide residues decreases with age in Model 2 (a) and 3 (r) (5 and 1 percent 

significance level, respectively) (Table 6). This result may be due to the fact that 

younger consumers are expected to be more sensitive to food-safety issues than older 

ones because they are considering a longer period of life left  in front of them, but it is 

somewhat surprising because older consumers might be viewed to be more vulnerable 

to health risks than younger ones8.  

We also found some contrasting results about the effect of education on risk 

perception. Education is likely related to cognitive ability to process risk information, 

but might also relate to experience and general knowledge about health risks. Results 

based on Model 1 (g), support the hypothesis that more educated subjects 

(UNIVERSITY) have lower estimates of the infestation rate than the others 
                                                           
8 As one anonymous referee argued, elderly subjects are more sensitive to food safety issues than younger 
ones because they more likely suffer chronic complications that put them at risk from food safety hazards. 
However, we note that as 2030 is quite far in the future, elderly subjects might not care much about these 
chronic complications.  
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(SEC_SCHOOL). This is consistent with what some others have found: see Dosman et 

al. (2001) and Williams and Hammit (2001). However, in Model 2 (a) and 3 (r), we 

found that people with a master degree have higher estimates of apples containing 

pesticides than people with lower education levels (5 and 1 percent significance level, 

respectively) (Table 6). Again, this divergence may be due to the fact that highly 

educated subjects (those with graduate degrees) may be more sensitive to food-safety 

issues than moderately educated subjects. 

Subjects with higher annual net income (INCOME) perceive the number of apples 

containing pesticides to be higher than the others with lower annual income. However, 

the positive sign of the income variable is statistically significant only in Model 2 (a).  

Among all of the estimated models explaining the perceptions of pesticides, 

Model 2, which pertains to the number of apples with one or more residues (a), is more 

predictive than Model 3, which pertains to the number of apples with multiple residues 

(r) (Table 6). There are various hypotheses that may explain the lower explanatory 

power of Model 3. First, this may be related to the discrepancy between valid and 

invalid probability estimates detected at the individual level for variable r, second, 

boredom and fatigue may have mattered, given that half of the sample assessed the 

variable r at the end of the experiment, while in the other half the order of questions has 

been randomized. 

In summary, the results of our econometric analysis support many of the 

predictions we had about the potential factors shaping people’s perceptions of the fire 

blight’s infestation rate and the presence of pesticide residues in apples, especially those 

related to being a farmer, having consumer association membership, having ties with 

apple industry, and the roles of the demographic variables age, and education. Even 

using our innovative risk elicitation approach here, we have several results that are quite 

consistent with previous studies that investigated the same issues with different 
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techniques. Where our results differ from the literature we believe there are plausible 

explanations of those discrepancies.  

 

7. Conclusion 

Elicited subjective risks are important because they often explain behavior under 

risk and uncertainty better than science-based risks do. These subjective estimates can 

be used in risk-oriented behavioral models that incorporate them, such as the subjective 

expected utility model, or non-expected utility models. In general, empirical results in 

previous studies have indicated that consumers have a high level of anxiety about such 

contaminants in food. Using data elicited via an indirect technique such as the 

Exchangeability Method, which we apply in an artefactual field experiment, we have 

shown that subjects are in fact not very concerned about a general increase of pesticide 

residues in apples at a key policy-related future date, but they are more concerned about 

the presence of multiple residues in apples.  

The main contribution of this paper consists of investigating the discrepancy 

between valid and invalid subjective probabilities. Our results suggest that  valid 

estimates are smaller than the invalid estimates of  the number of contaminated apples 

(variables a and r in the paper), but risk estimates are larger for the number of days in 

which the fire blight’s infestation will occur in the blossoming period (g). We note that 

such discrepancies are statistically supported only for variable r , indicating that number 

of apples that will contain multiple residues. This highlights the fact that as researchers 

and policy makers, our failure to recognize valid subjective risks might not actually 

imply an over- or underestimation of consumers’ true probability estimates, and, hence, 

affect their choice behavior. 

Our econometric analysis explores factors shaping perceptions of pesticide 

residues in apples and provides other useful information that simple ANOVA-style 
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experimental tests do not provide. For example, we found that the average apple 

consumer in our subject pool is not particularly concerned about pesticide risks; in fact 

their expectations about the presence of pesticide residues do not statistically differ 

between apple consumers and non-consumers. In contrast, members of consumers 

associations and subjects who actually work in the apple industry (excluding farmers) 

are very sensitive to the problem, as they show higher risk estimates than the others. We 

also found that young and highly educated can be expected to be more sensitive to food-

safety issues.  

Such results have quite important food safety policy implications, given the fact 

that consumers’ subjective probabilities of pesticide residues in apples might affect their 

financial support for policies which the Province of Trento is planning to promote the 

production of pesticide-free apples. For example, based on our results policy makers 

should communicate and promote their policies by highlighting the fact that these 

reduce the risk of having apples containing multiple pesticide residues if they want 

public support. In addition, food policy specialists should focus their risk 

communication campaigns towards average consumers and less educated people in the 

population.  

As a final caveat, we note that our subjects were asked to answer questions about 

risky outcomes pertaining to a future policy period, in the year 2030. It is possible that 

some subjects discount the future differently than others do, and discount rates and 

subjective risks could well be related to one another, which could affect each subject’s 

risk estimates. For example, some individuals might use higher discount rates to reflect 

their sense that the distant future is quite risky. To the extent that all subjects do this in 

our subject pool, this may not present a significant problem, but if this tendency is 

mixed among individuals, it may. In future studies, researchers should try to 

simultaneously estimate discount rates and subjective risks within the context of the EM 
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approach that we have implemented here. To our knowledge, thus far no one has 

considered the elicitation of both simultaneously within the context of the EM. 
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Table 1. Summary statistics of percentile estimates  

Variable Obs. Mean Median St.Dev.   Min    Max 

g0
a,d 80 6.176  5.000 4.677 1.000 29.000 

g1/4
a,e 80 7.912  6.750 5.879 0.205 29.250 

g1/2
a,f 80 9.175  7.500 6.320 0.500 29.500 

g3/4
a,g 80 10.250 9.000 6.228 0.750 29.750 

g1
a,h 80 11.925 10.500 6.072 1.000 30.000 

a0
b,d 80 56.354 60.000 20.455 4.000 90.000 

a1/4
b,e 80 65.637 68.000 21.879 5.000 96.000 

a1/2
b,f 80 69.200 72.000 21.907 6.000 98.000 

a3/4
b,g 80 71.187 74.500 21.896 8.000 99.000 

a1
b,h 80 75.450 80.000 21.706 10.000 100.000 

r0
c,d 80 31.392 32.000 16.381 4.000 82.000 

r1/4
c,e 80 42.387 38.000 19.066 5.000 90.000 

r1/2
c,f 80 44.875 41.000 18.941 6.000 92.000 

r3/4
c,g 80 47.700 43.000 19.334 8.000 93.000 

r1
c,h 80 51.825 47.000 19.241 12.000 100.000 

a the number of days during which the infestation will occur during the blossoming period in 2030. 
b the number of apples containing at least one residue in a sample of 100 apples in 2030 
c the number of apples containing at least two residues in a sample of 100 apples in 2030. 
d the lower bound. 
e the 25th percentile. 
f the 50th percentile. 
g the 75th percentile. 
h the upper bound. 
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Table 2. Average valid and invalid percentile estimates  

Variable Valid at the 
sample level 

Invalid at the 
sample level 

Valid at the 
individual level 

Invalid at the 
individual level 

 Obs. Mean Obs. Mean Obs. Mean Obs. Mean 

g1/4
a,d 23 7.326 53 8.149 19 9.421 34 8.500 

g1/2
a,e 23 8.434 53 9.473 35 8.228 43 9.674 

g3/4
a,f 23 9.583 53 10.512 14 10.071 32 9.031 

Tot. 69 - 171 - 68 - 109 - 

a1/4
b,d 23 62.691 53 66.823 23 64.260 44 69.431 

a1/2
b,e 23 67.304 53 69.964 27 61.629 53 73.056 

a3/4
b,f 23 69.652 53 71.807 21 68.619 32 68.625 

Tot. 69 - 171 - 71 - 129 - 

r1/4
c,d 23 38.782 53 43.842 23 37.913 41 48.293 

r1/2
c,e 23 41.826 53 46.105 29  39.103 51 48.156 

r3/4
c,f 23 45.608 53 48.543 22 41.409 35 45.485 

Tot. 69 - 171 - 74 - 127 - 
a the number of days during which the infestation will occur during the blossoming period in 2030. 
b the number of apples containing at least one residue in a sample of 100 apples in 2030. 
c the number of apples containing at least two residues in a sample of 100 apples in 2030. 
d the 25th percentile. 
e the 50th percentile. 
f the 75th percentile. 
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Table 3.  Comparison of valid and invalid percentile estimates at the sample level 

Null Hypothesis Mann-Whitney U  
Test 

Kolmogorov-Smirnov  
Test 

H0 z D 

gvalid = ginvalid
a .819 .197 

g1/4, valid = g1/4, invalid
a,d .818 .197 

g1/2, valid = g1/2, invalid
a,e .820 .161 

g3/4, valid = g3/4, invalid
a,f .729 .197 

avalid = ainvalid
b 1.069 .180 

a1/4, valid = a1/4, invalid
b,d 1.069 .180 

a1/2, valid = a1/2, invalid
b,e .607 .167 

a3/4, valid = a3/4, invalid
b,f .340 .184 

rvalid = rinvalid
c 1.053 .197 

r1/4, valid = r1/4, invalid
c,d 1.058 .197 

r1/2, valid = r1/2, invalid
c,e .777 .141 

r3/4, valid = r3/4, invalid
c,f .670 .127 

a the number of days during which the infestation will occur during the blossoming period in 2030. 
b the number of apples containing at least one residue in a sample of 100 apples in 2030. 
c the number of apples containing at least two residues in a sample of 100 apples in 2030. 
d the 25th percentile. 
e the 50th percentile. 
f the 75th percentile. 
* p < .01 
** p < .05 
*** p < .10  
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Table 4.  Comparison of valid and invalid percentile estimates at the individual level 

Null Hypothesis Mann-Whitney U  
Test 

Kolmogorov-Smirnov  
Test 

H0 z D 

gvalid = ginvalid
a -.002 .069 

g1/4, valid = g1/4, invalid
a,d -.828 .278 

g1/2, valid = g1/2, invalid
a,e .962 .166 

g3/4, valid = g3/4, invalid
a,f -.910 .236 

avalid = ainvalid
b 1.485 .116 

a1/4, valid = a1/4, invalid
b,d .893 .182 

a1/2, valid = a1/2, invalid
b,e 1.632 .236 

a3/4, valid = a3/4, invalid
b,f .027 .122 

rvalid = rinvalid
c .732 .113 

r1/4, valid = r1/4, invalid
c,d 2.017** .348** 

r1/2, valid = r1/2, invalid
c,e 1.865*** .236 

r3/4, valid = r3/4, invalid
c,f .443 .181 

a the number of days during which the infestation will occur during the blossoming period in 2030. 
b the number of apples containing at least one residue in a sample of 100 apples in 2030. 
c the number of apples containing at least two residues in a sample of 100 apples in 2030. 
d the 25th percentile. 
e the 50th percentile. 
f the 75th percentile. 
* p < .01 
** p < .05 
*** p < .10  
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Table 5. Description of variables presented in Model 1, 2, and 3 

Variable Definition Mean St.Dev. Min Max 

G_GLM Percentage of days in which the 
infestation will occur during the 
blossoming period in 2030 

.287 .453 0 1 

A_GLM Percentage of apples containing at least 
one residue in a sample of 100 apples in 
2030 

.375 .485 0 1 

R_GLM Percentage of apples containing more 
than one residue in a sample of 100 
apples in 2030 

.325 .469 0 1 

25th PERC Observations related to the 25th 
percentile of g, a, and r 

.333 .471 0 1 

50th PERC Observations related to the 50th 
percentile of g, a, and r 

.334 .471 0 1 

75th PERC Observations related to the 75th 
percentile of g, a, and r 

.333 .471 0 1 

TRS = 1 if the subject belongs to the “Real 
Incentives-Sequential Questions” 
treatment, 
= 0 otherwise 

.275 .446 0 1 

TRR = 1 if the subject belongs to the “Real 
Incentives-Random Questions” 
treatment, 
= 0 otherwise 

.287 .452 0 1 

THS = 1 if the subject belongs to the 
“Hypothetical Incentives-Sequential 
Questions” treatment, 
= 0 otherwise 

.237 .425 0 1 

THR = 1 if the subject belongs to the 
“Hypothetical Incentives-Random 
Questions” treatment, 
= 0 otherwise 

.200 .400 0 1 

IPCC_MED 
 

= 1 if the subject trusts in IPCC’s 
predictions of temperature and 
precipitation,a 

= 0 otherwise 

.012 .111 0 1 

IPCC_HIGH 
 

= 1 if the subject highly trusts in IPCC’s 
predictions of temperature and 
precipitation,a 

= 0 otherwise 

.238 .426 0 1 

IPCC_VHIGH 
 

= 1 if the subject very highly trusts in 
IPCC’s predictions of temperature and 
precipitation,a 

= 0 otherwise 

.750 .433 0 1 

CC_H&N = 1 if the subject believes that the 
climate change is due to both human 
activities and natural processes,b 

= 0 otherwise 

.600 .490 0 1 

CC_H = 1 if the subject believes that the .337 .473 0 1 



41 

 

climate change is mostly due to human 
activities,b 

= 0 otherwise 

CC_HH = 1 if the subject believes that the 
climate change is only due to human 
activities,b 

= 0 otherwise 

.062 .242 0 1 

PEST_LOW = 1 if the subject believe that farmers 
will unlikely use pesticides in the future,c 

= 0 otherwise 

.050 .218 0 1 

PEST_MED = 1 if the subject believe that farmers 
will maybe use pesticides in the future,c 

= 0 otherwise 

.200 .400 0 1 

PEST_HIGH = 1 if the subject believe that farmers 
will likely use pesticides in the future,c 

= 0 otherwise 

.537 .499 0 1 

PEST_VHIGH = 1 if the subject believe that farmers 
will very likely use pesticides in the 
future,c 

= 0 otherwise 

.213 .409 0 1 

EMF_LOW =1 if subjects little trusts EMF’s 
predictions of  fire blight’s infestation 
risk in the future,d 

= 0 otherwise 

.038 .190 0 1 

EMF_MED =1 if subjects trusts EMF’s predictions of  
fire blight’s infestation risk in the future,d 

= 0 otherwise 

.412 .493 0 1 

EMF_HIGH =1 if subjects highly trusts EMF’s 
predictions of  fire blight’s infestation 
risk in the future,d 

= 0 otherwise 

.475 .500 0 1 

EMF_VHIGH =1 if subjects very highly trusts EMF’s 
predictions of  fire blight’s infestation 
risk in the future,d 

= 0 otherwise 

.075 .263 0 1 

CONSUMER The number of apples consumed by the 
subject in a week 

3.700 5.160 0 20 

CONS_ASS = 1 if the subject is a member of a  
consumer association, 
= 0 otherwise 

.062 .242 0 1 

APP_PROD = 1 if the subject is an apple producer, 
= 0 otherwise 

.037 .190 0 1 

APP_IND = 1 if the subject is tied to apple 
processing and marketing, 
= 0 otherwise 

.187 .391 0 1 

AGE Age in years 33.625 13.213 19 68 

FEMALE = 1 if the subject is female,  
= 0 otherwise 

.436 .499 0 1 

SEC_SCHOOL = 1 if the subject has this education 
level,e 

= 0 otherwise 

.183 .389 0 1 

HIGH_SCHOOL = 1 if the subject has this education .512 .503 0 1 
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level,e 

= 0 otherwise 

UNIVERSITY = 1 if the subject has this education 
level,e 

= 0 otherwise 

.300 .465 0 1 

INCOME The yearly net income in 2010 in 
thousand € 

.189 .195 .075 .115 

a We ask subjects whether IPCC’s predictions will happen  surely, very likely,  maybe,  not likely, or 
never.     
b We ask subjects if they believe that climate change is due to, only human activity, mostly human 
activity, human activities and natural processes, mostly natural processes, and only natural processes. 
c We ask people if they agree with the statement saying that farmers mostly use chemical control 
against apple diseases, 0=strongly disagree, 1=disagree, 2=do not know, 3=agree, 4=strongly agree.  
d We ask subjects whether FEM’s predictions about fire blight will happen  surely, very likely,  
maybe,  not likely, or never. 
e  We ask subjects their education level, elementary school, secondary school, high school, university. 
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Table 6. Generalized Linear Model Estimation 

Variable Model 1 
(G_GLM) 

Model 2 
(A_GLM) 

Model 3 
(R_GLM) 

50th PERC .220*** .179*** .108*** 

75th PERC .395*** .283*** .231*** 

TRS .206 .369 .276 

THR -.245 .131 .051 

THS -.116 .071 .246 

IPCC_HIGH 1.261** - - 

IPCC_VHIGH 1.416*** - - 

CC_H -.181 - - 

CC_HH .860*** - - 

EMF_MED - .823 -.271 

EMF_HIGH - 1.141*** .403 

EMF_VHIGH - 2.790*** .530 

PEST_MED - .326 .472 

PEST_HIGH - .113 .336 

PEST_VHIGH - .210 .405 

APP_PROD -1.057** -.069 -1.112*** 

APP_IND .411 .848*** .902*** 

CONSUMER -.007 -.058*** -.015 

CONS_ASS -1.235*** 1.196*** 1.004*** 

FEMALE .085 .181 .054 

AGE .015* -.026** -.012* 

HIGH_SCHOOL -.809** .249 .291 

UNIVERSITY -1.373*** 0.796** .675*** 

INCOME .001 .001*** .001 

CONSTANT -2.138*** -.572 -.942 

LOG P.L.§ -99.855 -98.318 -107.073 

* p < .01, ** p < .05, *** p < .10  
§ Log Pseudo-Likelihood  
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Figure 1: An example of the binary question of the Exchangeability Method for the variable a. 

 

 

Figure 2: An example of the Certainty Equivalent Game for the variable a. 
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Figure 3: The average number of days in which the infestation will occur during the blossoming period in 
2030. 

 

 

 

Figure 4: The average number of apples containing residues in a sample of 100 apples in 2030. 

 

 

 


