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Abstract 12 

Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental 13 

degradation, which can bio-accumulate and have long-range atmospheric transport potential (UNEP 14 

2001). The majority of studies on endocrine disruption have focused on interferences on the sexual 15 

steroid hormones and so have overlooked disruption to glucocorticoid hormones. Here the endocrine 16 

disrupting potential of individual POPs and their mixtures has been investigated in vitro to identify any 17 

disruption to glucocorticoid nuclear receptor transcriptional activity. POP mixtures were screened for 18 

glucocorticoid receptor (GR) translocation using a GR redistribution assay (RA) on a CellInsightTM NXT 19 

High Content Screening (HCS) platform. A mammalian reporter gene assay (RGA) was then used to 20 

assess the individual POPs, and their mixtures, for effects on glucocorticoid nuclear receptor 21 

transactivation. POP mixtures did not induce GR translocation in the GR RA or produce an agonist 22 

response in the GR RGA. However, in the antagonist test, in the presence of cortisol, an individual POP, 23 

p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE), was found to decrease glucocorticoid nuclear 24 

receptor transcriptional activity to 72.5% (in comparison to the positive cortisol control). Enhanced 25 

nuclear transcriptional activity, in the presence of cortisol, was evident for the two lowest 26 

concentrations of perfluorodecanoic acid (PFOS) potassium salt (0.0147 mg/ml and 0.0294 mg/ml), 27 

the two highest concentrations of perfluorodecanoic acid (PFDA) (0.0025 mg/ml and 0.005 mg/ml) 28 

and the highest concentration of  2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) (0.0000858 mg/ml). It 29 

is important to gain a better understanding of how POPs can interact with GRs as the disruption of 30 

glucocorticoid action is thought to contribute to complex diseases.  31 

 32 
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Persistent organic pollutants (POPs) are toxic organic substances that are highly resistant to 37 

environmental degradation, bio-accumulate and have long-range atmospheric transport potential 38 

(UNEP 2001). This group of environmental chemicals have been detected in human adipose tissue, 39 

serum and breast milk samples collected in Asia, Europe, North America and the Arctic (Bi et al. 2006; 40 

Pereg et al. 2003; Sjödin et al. 1999; Sjödin et al. 2008) due to their lipophilic nature and resistance to 41 

degradation (de Wit et al. 2004). The high lipid solubility of POPs enables them to pass through 42 

biological barriers, such as the placental (Beesoon et al. 2011; Inoue et al. 2004; Ode et al. 2013) and 43 

blood–brain barriers. A large number of POPs have been shown to be endocrine disrupting chemicals 44 

(EDCs) in animals and humans which alters hormone-mediated responses (Birnbaum and Staskal 2004; 45 

Boas et al. 2006; Darnerud 2003; Schantz and Widholm 2001; Zoeller 2005). The majority of studies 46 

have focused on endocrine disruption of the sex steroid hormones and so have overlooked the 47 

disruption to glucocorticoid hormones.  48 

Induction of the hypothalamic–pituitary–adrenal (HPA) axis occurs when individuals are faced 49 

with a stressful situation. The hypothalamus will secrete corticotropin-releasing hormone (CRH), 50 

which causes the release of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland in 51 

the brain to stimulate the release of cortisol from the adrenals. The glucocorticoids, cortisol in humans 52 

and corticosterone in rodents, are central to the regulation of many physiological processes including 53 

the control of energy metabolism and the modulation of the immune system (Charmandari et al. 2005; 54 

Sapolsky et al. 2000). The release of glucocorticoids alters the individuals physiological state in 55 

response to environmental conditions (Ricklefs and Wikelski 2002; Wingfield and Sapolsky 2003). 56 

Physiological changes shift energy investment away from reproduction and redirect it towards survival 57 

(Wingfield and Sapolsky 2003). Glucocorticoids are therefore extremely important to survival and have 58 

been strongly associated with fitness traits such as breeding success and individual quality (Angelier 59 

et al. 2009, Angelier et al. 2010; Bókony et al. 2009; Goutte et al. 2011). Glucocorticoids, in addition, 60 

also play important roles in the process of immunomodulation (Jondal et al. 2004). Despite the 61 

importance of glucocorticoids for the regulation of physiological processes, the relationship between 62 

environmental chemicals and potential disruption of the HPA axis has not been extensively studied 63 

(Odermatt et al. 2006).  64 

Glucocorticoids are lipophilic and can cross the blood–brain barrier where they bind to 65 

glucocorticoid receptors (GRs). In humans, the hippocampus and frontal lobes of the brain contain 66 

GRs. These are parts of the brain that are involved in cognitive functions such as memory and 67 

emotional maladjustments including impulsivity. Changes in the function of the HPA-axis may lead to 68 

altered stress responses and changes in cognitive functions. Glucocorticoids are responsible for 69 

maturation of tissues essential for neonatal survival (Langlois et al. 2002), therefore disruption of 70 



3 
 

normal HPA axis activity may have widespread consequences. In humans, elevated cortisol and 71 

aldosterone levels are associated with low birth weight (Martinez-Aguayo et al. 2011). Lanoix and 72 

Plusquellec (2013) suggested that a disruption of the stress system could explain an association 73 

between environmental contaminants and mental health, especially in children and elderly people. 74 

In contrast to the human estrogen and androgen receptors that are mainly expressed in the 75 

gonads, the human GR is expressed in every cell type (Akner et al. 1994). GR disruption has the 76 

potential to affect numerous processes. In stressful situations, when levels of glucocorticoids are high, 77 

GR activation is necessary for the HPA feedback regulation (de Kloet et al. 1998). GR deficient mice 78 

have a range of abnormalities including hyper activation of the HPA axis, impaired lung function and 79 

die shortly after birth (Cole et al. 1995). Hyper activation of the HPA axis is expected if GR signalling is 80 

disrupted as the HPA axis is subject to feedback inhibition from circulating glucocorticoids which act 81 

through GRs (Keller-Wood and Dallman 1984). Hyper activation of the HPA axis is associated with 82 

psychiatric disorders including anorexia nervosa, obsessive-compulsive disorder and anxiety. 83 

Furthermore, glucocorticoid-mediated feedback inhibition is impaired in people who suffer from 84 

depression (Juruena et al. 2003). Hyperactivation of the HPA axis has also been associated with 85 

hyperthyroidism (Tsigos and Chrousos 2002). Patients with excessive levels of corticosteroids are at a 86 

higher risk of developing cardiovascular disease (Pimenta et al. 2012). Disruption of glucocorticoid 87 

signalling could also have implications for obesity, as this system is central to adipocyte differentiation. 88 

EDCs have been found to promote adipogenesis in the 3T3-L1 cell line through the activation of the 89 

GR, thus leading to obesity (Sargis et al. 2009).  90 

POPs have been linked to GR disruption. Methylsulfonyl metabolites from PCBs have been 91 

found to act as GR antagonists (Johansson et al. 1998). POPs can also disrupt regulation of adrenal 92 

hormone secretion and function at different levels of the HPA axis. The human H295R adrenal cell 93 

model highlighted that the adrenal cortex is a potential target for perfluorononanoic acid (PFNA) 94 

(Kraugerud et al. 2011), polychlorinated biphenyls (PCBs) (Li & Wang 2005; Xu et al. 2006) and 95 

polybrominated diphenyl ethers (PBDEs) (Song et al. 2008). POPs can also decrease adrenal hormone 96 

production; as has been observed for the organohalogen pesticide γ-HCH (Lindane) (Oskarsson et al. 97 

2006; Ullerås et al. 2008). Methylsulfonyl metabolites of dichlorodiphenyldichloroethylene (DDE) 98 

caused a decrease in H295R cell viability (Asp et al. 2010). Furthermore reduced plasma corticosterone 99 

levels were recorded in vivo in suckling mice following administration of these DDE metabolites to 100 

their lactating mothers (Jönsson et al. 1993). In arctic birds, high baseline corticosterone 101 

concentrations and a reduced stress response have been associated with high concentrations of 102 

organochlorines, PBDEs and their metabolites in blood plasma (Verboven et al. 2010). Reduced 103 
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responsiveness of the HPA axis has been demonstrated in amphibians (Gendron et al. 1997) and birds 104 

(Mayne et al. 2004) and this has been associated with exposure to POPs.  105 

This study aimed to assess the interaction of individual POPs and their mixtures at the GR level 106 

and to see if they disrupted this nuclear receptor’s transcriptional activity. Two in vitro bioassays were 107 

used; a high content GR redistribution assay (RA) and a GR reporter gene assay (RGA). The GR RA was 108 

used as a screening method for the POP mixtures as it measures GR translocation and would therefore 109 

presumably detect any GR activity, agonism or antagonism. The GR RGA uses a human mammary gland 110 

cell line, with natural steroid hormone receptors for glucocorticoids and progestogens, which has been 111 

transformed with a luciferase gene (Willemsen et al. 2004), thereby allowing endocrine disruption at 112 

the level of nuclear receptor transcriptional activity to be identified. Disruption of GR activity is 113 

important and can have significant implications on health however the interaction of individual POPs 114 

and their mixtures with GRs has not been extensively studied. 115 

 116 

2. Materials and methods  117 

 118 

2.1. Chemicals 119 

All PBDEs, PCBs and other organochlorines were originally purchased from Chiron As (Trondheim, 120 

Norway) and all perfluorinated compounds (PFCs) were obtained from Sigma-Aldrich, St. Louis, MO, 121 

USA except perfluorohexanesulfonic acid (PFHxS) which was obtained from Santa Cruz (Dallas, US). 122 

Hexabromocyclododecane (HBCD), phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO), 123 

thiazolyl blue tetrazolium bromide (MTT) and the steroid hormone cortisol were obtained from 124 

Sigma–Aldrich (Dorset, UK). Hoechst nuclear stain was purchased from Perbio (Northumberland, 125 

England). Cell culture reagents were supplied by Life Technologies (Paisley, UK) unless otherwise 126 

stated. All other reagents were standard laboratory grade.  127 

 128 

2.2. Mixtures 129 

Mixtures of the test POPs were designed and premade by the Norwegian University of Life Sciences, 130 

Oslo. Seven mixtures were used in the assays: (1) total mixture, containing all the test compounds, (2) 131 

perfluorinated mixture (PFC), (3) brominated mixture (Br), (4) chlorinated mixture (Cl), (5) 132 

perfluorinated and brominated mixture (PFC + Br), (6) perfluorinated and chlorinated mixture (PFC + 133 

Cl) and (7) brominated and chlorinated mixture (Br + Cl). The chemicals included in the mixtures and 134 

their respective concentrations in the stock solution are shown in Table 1 (Berntsen et al. 2015). The 135 

concentration of the working stocks for the individual POPs is also shown in Table 1; individual 136 

intermediate stocks were prepared of each POP (1/2, 1/10 and 1/20 dilutions of the working stocks). 137 
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The POP mixtures used in this study were based on concentrations of relevant POPs as measured in 138 

human blood and breast milk, according to recent studies of the Scandinavian population (Haug et al. 139 

2010, Knutsen et al. 2008; Polder et al. 2008; Polder et al. 2009; Van Oostdam et al. 2004) as described 140 

in Berntsen et al. (2015). The compounds were mixed in concentration ratios relevant to human 141 

exposure. The stocks of the total mixture, Cl mixture and the Cl sub-mixtures were ten times more 142 

diluted compared to the PFC and the Br mixtures, and the combined PFC and Br mixture.  143 

  144 
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Table 1. The composition and concentrations of original stocks supplied by the Norwegian University 145 
of Life Sciences, Oslo. Mixtures: the estimated concentration of POPs in Total, Cl, PFC + Cl and Br + Cl 146 
stock solutions is 1000000 times estimated concentration in human serum. In comparison to PFC, Br 147 
and PFC + Br estimated concentration of POPs is 10000000 times estimated concentration in human 148 
serum. For the individual POPs the concentration of each working stock is shown. Intermediate stocks 149 
were prepared from the working stocks (1/2, 1/10 and 1/20 dilutions). The final concentrations that 150 
the cells were exposed to (0.2% DMSO in media) was 1/1000, 1/2000, 1/10000 and 1/20000 of the 151 
original working stocks. For the individual compounds the cells were exposed to 500, 1000, 5000 and 152 
10000 times serum level). 153 
 154 

Compound Mixture Stock Concentration (mg/ml) Individual 
Stock 

Concentration 
(mg/ml) Perfluorinated compounds (PFCs) Total PFC Br Cl PFC+Br PFC+Cl Br+Cl 

PFOA 4.523 45.225     45.225 4.523   45.225 

PFOS  29.425 294.250     294.250 29.425   294.250 

PFDA 0.495 4.950     4.950 0.495   4.950 

PFNA 0.800 8.000     8.000 0.800   8.000 

PFHxS  3.450 34.500     34.500 3.450   34.500 

PFUnDA  0.560 5.600     5.600 0.560   5.600 

Polybrominated diphenyl ethers (PBDEs)               

BDE-209  0.011   0.108   0.108   0.011 0.108 

BDE-47 0.009   0.086   0.086   0.009 0.086 

BDE-99 0.004   0.035   0.035   0.004 0.035 

BDE-100 0.002   0.022   0.022   0.002 0.022 

BDE-153 0.001   0.010   0.010   0.001 0.010 

BDE-154 0.002   0.018   0.018   0.002 0.018 

HBCD 0.025   0.246   0.246   0.025 0.246 

Polychlorinated biphenyls (PCBs)                 

PCB 138 0.222     0.222   0.222 0.222 2.220 

PCB 153 0.362     0.362   0.362 0.362 3.620 

PCB 101 0.008     0.008   0.008 0.008 0.078 

PCB 180 0.194     0.194   0.194 0.194 1.940 

PCB 52  0.010     0.010   0.010 0.010 0.096 

PCB 28  0.013     0.013   0.013 0.013 0.128 

PCB 118 0.064     0.064   0.064 0.064 0.640 

Other organochlorines                 

p,p'-DDE 0.502     0.502   0.502 0.502 5.020 

HCB 0.117     0.117   0.117 0.117 1.170 

α - chlordane 0.011     0.011   0.011 0.011 0.108 

oxy - chlordane 0.022     0.022   0.022 0.022 0.222 

trans-nonachlor 0.041     0.041   0.041 0.041 0.408 

α-HCH 0.006     0.006   0.006 0.006 0.060 

β-HCH 0.053     0.053   0.053 0.053 0.526 

γ-HCH (Lindane) 0.006     0.006   0.006 0.006 0.060 

Dieldrin 0.024     0.024   0.024 0.024 0.240 

 155 

2.3. GR RA cell culture and method 156 
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Recombinant U2OS cells stably expressing the human GR (U2OS-GR) were routinely cultured in a 157 

humidified atmosphere of 5% CO2 at 37 °C. Cells were grown in 75 cm2 flasks in Dulbecco’s modified 158 

eagle medium (DMEM) media supplemented with 10% foetal bovine serum (FBS), 2mM L-Glutamine, 159 

1% penicillin-streptomycin and 0.5 mg/ml G418. TrypLETM Express trypsin was used to disperse the 160 

cells from the flasks, while cell counting and viability checks prior to seeding plates were achieved by 161 

trypan blue staining and using a Countess® automated cell counter.  162 

 Cells were seeded (using DMEM supplemented with 2mM L-Glutamine, 1% Penicillin-163 

Streptomycin, 0.5 mg/ml G418 and 10% hormone depleted FBS) at a concentration of 6 x 104 cells per 164 

well in 100 µl of media into black walled 96 well plates with clear flat bottoms (Grenier, Germany). 165 

The cells were incubated for 1 h at room temperature (RT) (20-25°C) to ensure that they attached 166 

evenly within each well. The cells were then incubated for 24 h at 37 °C, and subsequently exposed in 167 

assay media (DMEM supplemented with 2mM L-Glutamine and 1% Penicillin-Streptomycin) to 1/1000, 168 

1/2000, 1/10000 and 1/20000 dilutions (0.2% DMSO in media) of the original stocks, which 169 

corresponded to 10000, 5000, 1000 and 500 times the levels in serum for the PFC, Br and PFC + Br 170 

mixtures. For the remaining mixtures (total, Cl, PFC + Cl and Br + Cl) the exposures corresponded to 171 

1000, 500, 100 and 50 times the levels in serum. Assay media was used to dilute the stock solutions. 172 

The cortisol standard curve used covered the range of 0.02-22.7 ng/ml. A solvent control 0.2% v:v 173 

DMSO in media was also added to each plate. The cells were incubated for 48 h after which the media 174 

was discarded and the cells fixed by adding 150 μl fixing solution (10% formalin, neutral-buffered 175 

solution) per well. The plate was incubated at RT for 20 min. The fixing solution was then removed 176 

and cells washed four times with 200 μl PBS. After the last wash was removed and 100 μl of 1 μM 177 

Hoechst Staining Solution (1 μM Hoechst in PBS containing 0.5% Triton X-100) was added to each well 178 

before the plate was sealed with a black plate sealer and left at least 30 min before imaging. 179 

 180 

2.4. High content analysis (HCA) 181 

The GR RA was imaged using a CellInsightTM NXT High Content Screening (HCS) platform (Thermo 182 

Fisher Scientific, UK). This instrument analyses epifluorescence of individual cell events using an 183 

automated micro-plate reader analyser interfaced with a PC (Dell precision 136 T5600 workstation). 184 

Hoechst dye was used to measure nuclear morphology: cell number (CN), nuclear intensity (NI) and 185 

nuclear area (NA). Data was captured for each plate at 10x objective magnification in the selected 186 

excitation and emission wavelengths for Hoechst dye (Ex/Em 350/461 nm) and enhanced Green 187 

Fluorescent Protein (GFP) (488/509 nm). Briefly, the U2OS-GR cell line is a recombinant cell line which 188 

stably expresses the human GR fused to an enhanced GFP. The expression of the EGFP-GR is controlled 189 

by a promoter and continuous expression is maintained by the addition of G418 to the culture media. 190 
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The primary output in the GR RA is the translocation from cytoplasm to nucleus of enhanced GFP-GR. 191 

The output used was MEAN_CircRingAvgIntenDiffCh2 (difference in average fluorescence intensities 192 

of nucleus and cytoplasm). 193 

 194 

2.5. GR reporter gene assay (RGA) 195 

The TGRM-Luc cell line for the detection of glucocorticoids and progestogens previously developed by 196 

Willemsen et al. (2004) was used. This transformed cell line was cultured in DMEM and 10% FBS, and 197 

grown in 75cm2 tissue culture flasks (Nunc, Roskilde, Denmark) at 37 °C with 5% CO2 and 95% humidity. 198 

TrypLE™ Express trypsin was used to disperse the cells from the flasks, while cell counting and viability 199 

checks prior to seeding plates were achieved by trypan blue staining and using a Countess® automated 200 

cell counter. The RGA was carried out in assay media (DMEM supplemented with 10% hormone 201 

depleted serum). 202 

 Cells were seeded at a concentration of 4 × 105 cells/ml in 100 μl media into white walled 96 203 

well plates with clear flat bottoms (Greiner Bio-One, Germany). The cells were incubated for 24 h and 204 

then exposed to four dilutions of each individual compound and mixture for the agonist test (cells 205 

were exposed as in section 2.3). For the individual compounds the four dilutions represent 500, 1000, 206 

5000 and 10000 times serum levels. The cortisol standard curve covered the range of 4.5-181.2 ng/ml. 207 

A solvent control 0.2% v:v DMSO in media was also added to each plate. Antagonist tests were carried 208 

out by incubating the four dilutions of each individual compound and mixture with the positive control 209 

(90.6 ng/ml cortisol). The cells were incubated for 48 h, after which the media was discarded and the 210 

cells were washed twice with PBS. The cells were lysed with 30 μl cell culture lysis buffer (Promega, 211 

Southampton, UK) 100 μl luciferase substrate (Promega, Southampton, UK) was injected into each 212 

well and the response measured using the Mithras Multimode Reader (Berthold, Other, Germany). 213 

The response of the cell line to the various compounds was measured and compared with the solvent 214 

and positive controls.  215 

 216 

2.6. Cell viability assay 217 

As well as visual inspection of the U2OS-GR and TGRM-Luc cells under the microscope to evaluate cell 218 

morphology and attachment, the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) 219 

cell viability assay was performed. 220 

The cells were exposed exactly as for the GR RGA (section 2.5) after which the percentage of 221 

viable cells was determined using the MTT assay. The cells were washed once with PBS before MTT 222 

solution (50 µl of 2 mg/ml stock in PBS diluted 1:2.5 in assay media) was added to each well and the 223 

cells incubated for 3 h. Viable cells convert the soluble yellow MTT to insoluble purple formazan by 224 
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the action of mitochondrial succinate dehydrogenase. The supernatant was removed and 200 µl of 225 

DMSO was added to dissolve the formazan crystals. The plate was incubated at 37 °C with agitation 226 

for 10 min before absorbance was measured at 570 nm with a reference filter at 630 nm using a 227 

microtitre plate reader (TECAN, Switzerland). Viability was calculated as the percentage absorbance 228 

of the sample when compared with the absorbance of the solvent control. 229 

 230 

2.7. Statistical analysis  231 

 Exposures were carried out in triplicate wells and experiments were repeated at least twice. 232 

Data was analysed using Microsoft Excel 2013 and Graphpad PRISM software version 5.01 (San Diego, 233 

CA). All values shown are expressed as mean ± standard error of the mean (SEM) of the independent 234 

exposures. Differences between groups were analysed by one-way ANOVA followed by Dunnett’s 235 

procedure for multiple comparisons. Significant effects are represented by p ≤ 0.05 (*), p ≤ 0.01 (**) 236 

and p ≤ 0.001 (***). 237 

 238 

3. Results and discussion 239 

 240 

3.1. Cell viability of TGRM-Luc cell line after exposure to individual POPs 241 

 242 

The MTT assay evaluates cytotoxicity by measurement of mitochondrial metabolic activity. As the 243 

individual POPs were tested for GR activity using the RGA only, their toxicity was evaluated on the 244 

TGRM-Luc cell line only using the MTT assay (statistically significant results are shown in Figure 1).  245 

 PFCs are widely reported to be cytotoxic, particularly PFOS which has been shown to affect 246 

the viability of numerous cell culture systems including: human hepatocarcinoma cells (HepG2) 247 

(Florentin et al. 2011; Shabalina et al. 1999), human placental syncytiotrophoblasts (Zhang et al. 2015), 248 

neonatal Sertoli cells/gonocytes (Zhang et al. 2013) and neural stem cells (Wan Ibrahim et al. 2013). 249 

These studies support the finding that PFOS in the present study (at the two highest concentrations; 250 

0.147 mg/ml and 0.294 mg/ml corresponding to 5000 and 10000 times serum level respectively) 251 

significantly decreased TGRM-Luc cell viability to 42.8% and 3.8% (p ≤ 0.001) (Figure 1A). Conversely, 252 

other studies have found that PFOS has no effect on cell viability in MCF-7 (Maras et al. 2006) and 253 

human adrenocortical H295R cells (Kraugerud et al. 2011). As both Maras et al. (2006) and Kraugerud 254 

et al. (2011)  used similar concentrations of PFOS to the present study the differences observed may 255 

show that PFOS is more cytotoxic to particular cell lines. 256 

 Perfluorooctanoic acid (PFOA) and PFOS use has been regulated worldwide. 257 

Perfluoroundecanoic acid (PFUnDA), a PFOA homologue, is sometimes used as an alternative to PFOA 258 
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(EPA 2013). PFUnDA has been less extensively studied than PFOS or PFOA, however as PFCs with 259 

longer carbon chains tend to be more persistent (Hirata-Koizumi et al. 2012) the toxicological potential 260 

of PFUnDA could be of concern. In the current study, viability of TGRM-Luc cells significantly increased 261 

after exposure to the highest concentration (0.0056mg/ml; 10000 times serum level) of PFUnDA to 262 

117.9% (p ≤ 0.01) (Figure 1B). The MTT assay relies on mitochondrial dehydrogenases of living cells to 263 

cause a conversion of the coloured formazan salt (Slater et al. 1963). Actively proliferating cells 264 

increase their metabolic activity while cells exposed to toxins may have decreased activity. 265 

Alternatively, the apparent stimulatory effect seen in the MTT assay for some of the POPs, could be 266 

as a consequence of cell protection or adaptive response to toxin exposure (Ruiz et al. 2006) 267 

 From the PCB group, no significant effects on cell viability were evident apart from PCB 153 268 

(at the highest concentration; 0.0036 mg/ml), which significantly increased TGRM-Luc cell viability to 269 

123.1% (p ≤ 0.05) (Figure 1C). PCB-153 has previously been seen to induce cell proliferation in in vivo 270 

experiments on rats (Lu et al. 2003). A commercial PCB mixture, Aroclor 1260, has been shown to 271 

induce hepatocyte proliferation in rodents (Whysner and Wang 2001). In contrast, PCB-153 272 

significantly induced loss of cell viability in human liver and kidney cell cultures in a concentration and 273 

time-dependent manner in a study by Ghosh et al. (2010). Furthermore, PCB 153 has been found to 274 

lower cell viability in neonatal Sertoli cell/gonocytes (Zhang et al. 2013). The reason for the observed 275 

differences between these studies and the present study could be because Ghosh et al. (2010) tested 276 

PCB 153 at a higher concentration (0.025 mg/ml) in comparison to the present study (the highest 277 

concentration tested was 0.0036 mg/ml). Zhang et al. (2013) found significant decreases in cell 278 

viability when using the same concentration as the present study (0.0036 mg/ml) however the cell 279 

culture systems used were different. 280 

The toxicity of PBDEs has been widely reported in several cell culture systems, such as rat 281 

cerebellar granule cells (Reistad et al. 2006), human astrocytoma cells (Madia et al. 2004), 282 

hippocampal neurons, human neuroblastoma cells, human foetal liver hematopoietic cells (He et al. 283 

2008, He et al. 2009; Shao et al. 2008) and HepG2 cells (Hu et al. 2007). In the present study only one 284 

PBDE, BDE-153, decreased cell viability. Exposure to BDE-153 at 0.0000098 mg/ml (the highest 285 

concentration; 10000 times serum level); reduced viability to 93.3% (p ≤ 0.05) (Figure 1D). Importantly, 286 

these studies tested the PBDEs at much higher concentrations than the TGRM-Luc cell line was 287 

exposed to. Schreiber et al. (2010) tested concentrations of BDE-47 and BDE-99 that were comparable 288 

to the present study (0.1–10 μM; BDE-47 range 48.5 – 4857.9 ng/ml; BDE-99 range 56.5 – 5646.9 289 

ng/ml) in human neural progenitor cells and found no cytotoxicity. This is supported by the present 290 

study which found no significant cytotoxicity for either BDE-47 or BDE-99 at any concentration tested 291 

(range covered was 4.2 – 85.7 ng/ml for BDE-47 and 1.7 – 35.2 ng/ml for BDE-99). 292 
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 From the group of other organochlorines, two compounds significantly impacted cell viability. 293 

Alpha-chlordane (α-chlordane), at the highest concentration (0.000108 mg/ml), increased TGRM-Luc 294 

cell viability to 121.8% (p ≤ 0.05) (Figure 1E). This compound has been found to cause increased cell 295 

proliferation in the thyroid gland and promote liver tumours in mice (Barrass et al. 1993). Conversely, 296 

suppression of lymphocyte proliferation after α-chlordane exposure has been recorded (Chuang et al. 297 

1992). The second compound that significantly affected TGRM-Luc cell viability in the present study 298 

was γ-HCH. Exposure to the highest concentration of γ-HCH (0.00006 mg/ml) decreased cell viability 299 

to 92.2% (p ≤ 0.05) (Figure 1F). γ-HCH has similar effects on the viability of MCF-7 cells (Joseph and 300 

D’Auvergne 2012) with exposure to 0.06 mg/ml significantly decreasing cell viability. 301 
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Figure 1: Viability of the TGRM-Luc cell line following exposure to individual POPs: (A) PFOS,(B) 302 
PFUNDA, (C) PCB 153, (D) BDE-153, (E) Alpha-Chlor and (F) γ-HCH; measured using the MTT Assay. 303 
Values are mean ± SEM n = 2 p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***) represent significant 304 
cytotoxic effects. Only compounds which have significant results are shown. The concentrations 305 
shown are equivalent to 500, 1000, 5000 and 10000 times serum level). 306 
 307 

3.2. Cell viability of TGRM-Luc and U2OS-GR cell lines after exposure to POP mixtures 308 

 309 
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The MTT assay was also used to determine the viability of TGRM-Luc cells (used in the RGA) and the 310 

U2OS-GR cells (used in the HCA assay) following exposure to different concentrations of test mixtures 311 

(Figure 2).  312 

The PFC mixture (at 5000 and 10000 times serum levels) decreased cell viability to 19.5% and 313 

12.4% respectively (U2OS-GR cell line) and 14.6% and 4.3% respectively (TGRM-Luc cell line) (Figure 314 

2B); implying that this mixture is more toxic to the TGRM-Luc cells. The toxicity in the PFC mixture is 315 

likely to be from PFOS as none of the other compounds in the PFC mixture were cytotoxic to the TGRM-316 

Luc cell line (section 3.1). The PFC + Br mixture (at 5000 and 10000 times serum levels) also decreased 317 

cell viability to 11.2% and 9.4% respectively (U2OS-GR) and 28.4% and 6.7% respectively (TGRM-Luc) 318 

(Figure 2E). In the PFC + Br mixture the toxicity to the TGRM-Luc cell line is again likely to be from PFOS 319 

(section 3.1). No significant cytotoxicity was evident for the total, Br, Cl, PFC + Cl or Br + Cl mixtures at 320 

any concentration in either cell line (Figure 2A, C, D, F and G). However, exposure to the Cl mixture 321 

produced small, but statistically significant increases in cell viability of 109.4% and 108.0%, at 100 and 322 

500 times serum level respectively, in the U2OS-GR cell line (p ≤ 0.05 for both) (Figure 2D). 323 
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 324 

Figure 2: Viability of the TGRM-Luc and U2OS-GR cell lines following exposure to different mixtures of 325 
POPs; measured using the MTT Assay. Values are mean ± SEM n = 2 p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 326 
0.001 (***) represent significant cytotoxic effects. 327 
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The HCA GR RA allows CN, NA and NI to be measured and these can be used as indicators of 328 

cytotoxicity. Significant effects were evident for CN, NA and NI which indicated cytotoxicity (Figure 3). 329 

CN for the second highest concentration (5000 times serum level) of the PFC mixture was significantly 330 

decreased to 16.7% (p ≤ 0.01) For the highest concentration of PFC mixture (10000 times serum level), 331 

cell viability decreased to 61.9% however it was not deemed statistically significant (p ≥ 0.05). The two 332 

highest concentrations of the PFC + Br mixture (5000 and 10000 times serum level) decreased CN to 333 

37.0% and 18.4% respectively (p ≤ 0.001) (Figure 3A). NA was significantly decreased in U2OS-GR cells 334 

after exposure to the highest concentration of the Cl mixture (92.0%, p ≤ 0.01; Figure 3B). Similarly, 335 

NA was decreased after exposure to the Br + Cl mixture at 100 and 500 times serum level (93.4% and 336 

91.7% respectively, p ≤ 0.05; Figure 3B). Nuclear shrinkage is a hallmark of apoptosis. However as 337 

there were no significant decreases in CN for either the Cl or Br + Cl mixtures the decrease in NA did 338 

not result in significant cell death. NI was decreased after exposure to the highest concentrations 339 

(5000 and 10000 times serum level) of the PFC mixture (66.4% and 17.5% respectively p ≤ 0.01 for 340 

both) and the PFC + Br mixture (10000 times serum level), 28.3% (p ≤ 0.001) (Figure 3C).  The swelling 341 

of nuclei is linked to compound induced necrosis and NI correlates to nuclear size with large nuclei 342 

showing lower intensities (Mirochnitchenko et al. 1999); as NI and CN were significantly decreased for 343 

both the PFC and PFC + Br mixtures it is likely that these mixtures caused the U2OS-GR cells to undergo 344 

necrosis. Additionally, NI was also decreased for all concentrations of the Br + Cl mixture (apart from 345 

the most concentrated), 92.0%, 91.3% and 89.5% (p ≤ 0.05, 0.05, 0.01 respectively; Figure 3D). The Br 346 

+ Cl mixture may be causing the U2OS-GR cells to start to undergo necrosis however there was no 347 

significant change in CN.  348 

 In summary, there was reasonable agreement between the MTT assay results and the CN HCA 349 

parameter (Table 2) with the two highest concentrations of both the PFC and PFC + Br mixtures being 350 

highlighted as decreased in both; all were statistically significant apart from CN for the PFC mixture at 351 

10000 times serum level. However the MTT assay also highlighted decreased cell viability after 352 

exposure to the PFC mixture (1000 times serum level), increased cell viability after exposure to the Cl 353 

mixture (100 and 500 times serum levels), increased cell viability for the PFC + Br mixture (500 times 354 

serum level) and decreased exposure at 1000 times serum level for the same mixture; these changes 355 

were not detected in any HCA parameter. In contrast, the HCA parameters NA and NI highlighted 356 

subtle changes after exposure to the Br + Cl mixture; this mixture was not deemed cytotoxic by the 357 

MTT assay. In addition the NA parameter was significantly decreased after exposure to the Cl mixture 358 

(1000 times serum level); this was not highlighted by the MTT assay.  359 

 360 



16 
 

 361 

Figure 3: Nuclear changes in U2OS-GR cells measured using HCA parameters CN, NA and NI with 362 
Hoechst staining. (A) Cell viability as measured by CN for the PFC and PFC + Br mixtures. (B) Nuclear 363 
area for the Cl and Br + Cl mixtures. (C) Nuclear intensity for the PFC and PFC + Br mixtures. (D) Nuclear 364 
intensity for Br + Cl mixture. Note: only mixtures which had at least one statistically significant effect 365 
are shown. Values are mean ± SEM n = 2 p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***) represent 366 
significant cytotoxic effects. 367 
 368 

Table 2: Comparison of MTT and HCA nuclear parameter results for U2OS-GR cells. The grey shading 369 
indicates that no significant effects were found. The total, Br and PFC + Cl mixtures are not shown as 370 
toxic effects were not evident in the MTT assay or in HCA parameters. ↑ indicates increased effect 371 
e.g. for the MTT assay it shows increased cell viability. ↓ indicates decreased effect e.g. for the NA 372 
parameter it shows a decrease in nuclear size. Numbers 1-4 in the first column represent the 373 
concentration of the mixture; for PFC and PFC + Br it represents 500, 1000, 5000 and 10000 times 374 
serum levels. For the Cl and Br + Cl mixtures it represents 50, 100, 500 and 1000. Statistical significance 375 
is also indicated: p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***) represent significant cytotoxic effects. 376 

 377 

3.3. GR HCA Redistribution Assay 378 

 379 

The GR RA was used to screen the POP mixtures for GR translocation. Glucocorticoids exert their 380 

activity through binding to GR which results in either activation or repression of a large set of 381 

  PFC PFC + Br Cl Br + Cl 

MTT CN NA NI MTT CN NA NI MTT CN NA NI MTT CN NA NI 

1          ↑**                     ↓* 

2 ↓*       ↓**       ↑*           ↓* ↓* 

3 ↓*** ↓**     ↓*** ↓***     ↑*           ↓* ↓** 

4  ↓*** ↓ns   ↓** ↓*** ↓***   ↓***     ↓**           
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glucocorticoid responsive genes. In the inactive state, the GR is located in the cytoplasm (Figure 4A) 382 

bound to various heat-shock proteins in a large multi-protein complex (Pratt and Toft 1997). When 383 

activated by ligand binding, the GR detaches from the complex, translocates to the nucleus (Figure 384 

4B) where it interacts with GR regulatory elements (GREs) to stimulate transcription and act as a 385 

transcription factor to regulate the expression of its target genes (John et al. 2008). In the GR RA, the 386 

translocation of a GFP-GR fusion protein from the cytoplasm to the nucleus is measured; both GR 387 

agonists and antagonists induce nuclear translocation (Rosenfeld and Glass 2001).  No significant GR 388 

translocation effects were found for any of the POP mixtures at any concentration.  389 

 390 

Figure 4: Example of GR RA images: (A) negative control - DMSO (B) positive control – 11.4 ng/ml 391 
cortisol. In the inactive state, the GR (images show this receptor tagged with enhanced GFP) is found 392 
in the cytoplasm in complex with heat shock proteins. Upon ligand binding, the GR translocates to the 393 
nucleus, dimerizes, and acts as a transcription factor to regulate the expression of its target genes. 394 
(Blue stain is Hoechst nuclear stain). 395 
 396 

3.4. GR reporter gene assay 397 

 398 

RGAs utilise the ability of steroid hormones to bind their specific receptor and to induce (or, for 399 

antagonists, repress) a bioluminescent cellular signal; in this assay the cell line has been transformed 400 

with the luciferase gene. The GR RGA is described in detail in Willemsen et al. (2004). Briefly the 401 

glucocorticoid responsive TGRM-Luc cell line contains the MMTV-Luc luciferase reporter plasmid and 402 

the RS-hGRα expression vector which codes for the human GR. The luciferase acts as a signalling 403 

protein which is under the control of a highly regulated glucocorticoid inducible promoter resulting in 404 

transcriptional activation. Therefore the RGA is useful as a measurement of transcriptional activation 405 

due to the binding of a steroid hormone to its relevant receptor.  406 
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The mixtures and individual POPs tested in this study did not exhibit an agonistic response in 407 

the TGRM-Luc cell line; the agonist activity for all compounds was below 0.13% (relative to a cortisol 408 

positive control). Results from the antagonistic test appeared to indicate adverse effects on the TGRM-409 

Luc nuclear receptor transcriptional activity for the two highest concentrations of PFC and PFC + Br 410 

mixtures (p ≤ 0.001; Figure 5A and B). However, it is reasonable to suggest that the reduction in the 411 

TGRM-Luc nuclear receptor transcriptional activity observed is solely as a result of the significant 412 

cytotoxic effects of both mixtures on this cell line (Figure 2B and E). The same explanation could be 413 

suggested for the antagonistic effects of PFOS (Figure 5C) observed at the two highest concentrations 414 

as they were also cytotoxic. However for the two lowest concentrations of PFOS (0.0147 and 0.0294 415 

mg/ml; 500 and 1000 times serum level), significant effects on the TGRM-Luc nuclear receptor 416 

transcriptional activity were found with no significant cytotoxicity. For these concentrations, 417 

transcriptional activity in the presence of cortisol increased to 114.4% and 120.7% (p ≤ 0.05 and ≤ 418 

0.01) respectively. A similar effect was observed after incubation with the two highest concentrations 419 

of PFDA (0.0025 and 0.005 mg/ml; 5000 and 10000 times serum level), producing a response of 420 

119.6% and 121.6% (p ≤ 0.05 both; Figure 5D) in comparison the positive control. In the PBDE group, 421 

BDE 47 at the highest concentration of 0.000086 mg/ml (10000 times serum level) also produced an 422 

increased response, 130.8% (p ≤ 0.05; Figure 5E). Although not elucidated in this study upregulation 423 

of the GR expression by PFOS, PFDA and BDE-47 is a possibility for the observed result, where the 424 

increased levels of the receptor would provide cortisol with more of its relevant receptor target 425 

resulting in the increased response seen in the RGA. High PFOS levels have been associated with higher 426 

gene expression of the estrogen receptors α and β (ER α/β), the androgen receptor (AR) and the 427 

pregnane X receptor (PXR) (La Rocca et al. 2012). 428 

 The primary metabolite of dichlorodiphenyltrichloroethane (DDT), p,p’-DDE exhibited an 429 

antagonistic effect on the TGRM-Luc nuclear receptor transcriptional activity (Figure 5F). When cells 430 

were exposed to the highest concentration of p,p’-DDE (0.005 mg/ml), transcriptional activity was 431 

reduced to 72.5% compared to the positive control. This finding is supported by Zhao et al. (2004) who 432 

found that DDE significantly depressed GR-transactivation to 60% at a concentration of 0.0032 mg/ml, 433 

which is similar to the concentration where significant GR antagonism was found in the present study 434 

(0.005 mg/ml). DDE is also known to be a potent AR antagonist (Kelce et al. 1995). In the present study, 435 

p,p’-DDE led to significant antagonistic activity in the TGRM-Luc cell line however there was no 436 

evidence that any of the mixtures containing p,p’-DDE (total, Cl, PFC + Cl or Br + Cl) caused GR 437 

translocation in the GR RA. This could suggest that p,p’-DDE behaves differently in the presence of 438 

other compounds in mixtures.  439 
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 440 

Figure 5: Antagonistic testing of mixtures and individual POPs using TGRM-Luc RGA. Positive control is 441 
90.6 ng/ml cortisol. Response is expressed as the percentage response ± SEM for the two separate 442 
experiments (n = 2) p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***) represent significant antagonist 443 
effects. Only compounds which had significant results are shown. 444 
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 445 

4. Conclusions 446 

This study was designed to investigate mixtures and individual POPs for their potential to disrupt GR 447 

transcriptional activity. POP mixtures did not induce GR translocation in the HCA GR RA or produce an 448 

agonist response in the GR RGA. However, an individual POP, p,p’-DDE (0.005 mg/ml), was found to 449 

decrease the transcriptional activity of the glucocorticoid responsive TGRM-Luc cell line. Significant 450 

increases in the TGRM-Luc nuclear receptor transcriptional activity, in the presence of cortisol, was 451 

evident for the two lowest concentrations of PFOS (0.0147 and 0.0294 mg/ml), the two highest 452 

concentrations of PFDA (0.0025 and 0.005 mg/ml) and the highest concentration of BDE-47 (0.000086 453 

mg/ml). Upregulation of the GR expression by PFOS, PFDA and BDE-47 is a possibility for the observed 454 

result, where the increased levels of the receptor would provide cortisol with more of its relevant 455 

receptor target resulting in the increased response seen in the RGA however this is outside the scope 456 

of this study. As the disruption of glucocorticoid synthesis and action is expected to contribute to 457 

complex diseases (Odermatt and Gumy 2008) it is important to gain a better understanding of how 458 

POPs may interact and affect this.  459 

 460 
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