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Abstract—Recently, gap waveguides have been shown as a
potential alternative to conventional waveguides in the millimeter-
wave band. Until now, Groove Gap Waveguide (GGW) has
been studied through direct correspondence with rectangular
waveguide with the same physical dimensions. However there
have been observed differences in the above cutoff propagation
characteristics between these two waveguide types. Furthermore,
the behavior of GGW below cutoff remains unknown. This work
presents a discussion of both below and above cutoff propagation
characteristics of GGW, and introduces a simple model that
explains the observed GGW behavior and establishes well its
propagation characteristics. Two TRL calibration kits have been
manufactured, and the measurements have good agreement with
the proposed analysis model results.

Index Terms—groove gap waveguide, transmission lines, char-
acteristic impedance, evanescent propagation.

I. INTRODUCTION

The millimeter-wave band [1]-[4] continues to attract the
interest of the research community, as new applications con-
sistently demand the development of suitable components op-
erating in this high frequency range. At millimeter-wave bands,
dielectric materials can have high losses [5]-[6] and coupling
to substrate modes [7]-[8] can be problematical. Recently, as
an attempt to solve these problems, Gap Waveguides (GW)
were proposed [9]-[10]. GW are based on the use of a periodic
structure, usually realized by square metal pins, shown in
Fig. 1. The pin lattice introduces a high impedance condition
at the plane above the pins. Thus, by placing a metal plate at
a distance ha < λ/4 from the top of the pins, no wave can
propagate in this region over a certain frequency range, defined
by the periodic lattice parameters. Groove Gap Waveguide
(GGW) can take two versions, vertical polarization (VP),
Fig. 1(a), and horizontal polarization (HP), Fig. 1(b). Both
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(a) GGW-VP. (b) GGW-HP.

Fig. 1. Groove Gap waveguides.

versions behave in a similar way as a rectangular waveguide,
propagating a quasi-TE mode [9]-[11].

GGWs have shown their potential advantage versus con-
ventional waveguides through prototypes, including couplers,
filters and antennas [12]-[15]. However, at this moment, al-
though the behavior of the periodic lattice is characterized
[16], it seems that more efforts are necessary in the develop-
ment of simple models that explain better GGW propagation
characteristics especially close to, and below, cutoff.

The difficulty in characterizing gap waveguides arises from
the presence of the periodic pin structure, which leads to a
waveguide which is not homogeneous in the transversal direc-
tion, is periodic in the propagation direction, and has many
design parameters. Homogenization of the structure based on
metamaterial analogies has led to analytical models [17]-[19].
However, unlike metamaterials, the periodic structure in GGW
is comparable with the operating wavelength, thus calling into
question their general applicability.

In fact, the propagation characteristics of GGW have not
been analyzed in great detail. Usually, it is assumed that
GGW behaves like a rectangular waveguide with the same
propagation channel dimensions [20]. However, in this paper,
important differences between GGW and rectangular wave-
guide will be shown to exist. To the authors’ knowledge, the
GGW behavior near to, or below, the cutoff frequency has not
been reported up to now. There are many practical applica-
tions using below-cutoff waveguides, since evanescent-mode
components can be very compact, and are very appropriate to
exhibit spurious free response [21]-[24].

Therefore, the main aim of this paper is to address the afore-
mentioned questions. In particular, a simple model that shows
very good agreement with full-wave results, and provides a
simple explanation of how GGW operates, is presented. This
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model is also useful as a tool for extracting the influence of
the different waveguide parameters in the dispersion diagram
through fast parametric analysis, thus avoiding the need for
very time consuming full-wave EM simulations. The remain-
der of this paper will focus on GGW-VP (for simplicity, in
the rest of the text, the term VP will be omitted), which is the
option, to date, chosen to implement high quality resonators
[25] and low insertion loss filters [13], [14].

The paper is organized as follows. In section II the Groove
Gap Waveguide is reminded, and its propagation character-
istics are studied both below and above cutoff. The observed
differences between GGW and classical rectangular waveguide
are discussed. In section III, a simple propagation model is
proposed and the results obtained are shown. In Section IV,
the proposed model is successfully validated by means of
experimental measurements of two GGW prototypes. Finally,
conclusions and overall remarks are given.

II. THE GROOVE GAP WAVEGUIDE

The Groove Gap Waveguide was firstly proposed in [9].
Fig. 2 shows the transverse view of this type of waveguide,
its main geometrical parameters and the field distribution of its
fundamental propagating mode. The periodic structure inhibits
propagation in lateral directions, and imposes a propagation
mode similar to the TE10 mode of standard rectangular wave-
guide.

Although the lateral periodic structures should be of in-
finite extension ideally, in practice they can be significantly
truncated without significant loss of performance. Three rows
of pins have been shown to be enough in order to achieve the
desired effect of forbidden propagation in the lateral regions
[13], [25].

A. Operation above cutoff

To analyse the dispersion diagram of the structure, the
dimensions used in [13] are taken as a reference. These
dimensions are hp = 2.4 mm w = 0.3 mm, p = 0.9 mm,
ha = 0.375 mm and a = 4.7 mm. The full-wave simulations
are carried out using CSTr. The simulated model includes
three rows of pins at each lateral side, following the conclu-
sions of [13] and [25], and PEC is placed as lateral boundary
condition at a distance s = p−w from the third row on each
side. The authors have checked that, although no difference is
obtained between using a PEC wall or leaving the structure
open (the field is noticeably attenuated after the third row
of pins), the employed model is more suitable in terms of
computation time.

Fig. 3 shows the propagation constant of the first modes for
this structure. The dashed curve is the propagation constant
of a plane wave, solid curves correspond to unwanted modes
and the curve with square marks is the desired mode. The
propagation constant of a rectangular waveguide with same
dimensions of the propagation channel of the GGW (i.e.,
aRW = 4.72 mm, bRW = 2.775 mm) is displayed for
comparison (solid line with crosses). It can be seen that the
band [28.1 GHz - 52.9 GHz] represents the stopband of the

Fig. 2. GGW cross-section and E-field distribution of its fundamental mode.
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Fig. 3. GGW dispersion diagram. Three lateral rows of pins are used.

periodic structure, so that in such frequency range only the
desired mode is propagating in the GGW.

In previous works, [13], [14], [20], it has been assumed that
the equivalent of a GGW is a rectangular waveguide having
the same propagation channel dimensions (i.e. aRW = aGGW ,
bRW = ha,GGW + hp,GGW ). However, when comparing the
curves of the GGW with those of the rectangular waveguide
(see Fig. 3) it can be seen that in the upper half of the stopband
both curves are similar, but that this is not true near cutoff.
In fact, both waveguides present a different cutoff frequency,
and even for frequencies where they are similar, a greater
dispersive behavior is observed for the GGW structure.

To further characterize the propagation properties of GGW,
the width of the propagation channel a is parameterized. To
cover the possible cases of having cutoff going from near
the minimum frequency of the stopband to the maximum
frequency of the stopband, six values of a equally distributed
between a = 2.8 mm and a = 6 mm are considered. The
standard waveguide configuration is represented by the curve
a = 4.72 mm [13].

The results of this parameterization are shown in Fig. 4.
Here, in most cases, the GGW presents a higher cutoff fre-
quency than its rectangular waveguide counterpart, especially
as a increases. This means that GGW is effectively smaller in
terms of propagating aperture than the equivalent rectangular
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Fig. 4. Propagation constant of the GGW and of the rectangular waveguide
for different values of a. Solid lines correspond to the rectangular waveguide
and dashed lines correspond to the GGW.

waveguide assumed for each case (same physical aperture).
The contrary could be expected since in GGW the fields are
not strictly transmitted in the channel, but spread evanescently
through the lateral pin regions. As a decreases, this difference
becomes smaller and, if a is small enough (a = 2.8 mm)
the GGW has lower cutoff frequency than the rectangular
waveguide, and becomes effectively larger than the equivalent
rectangular waveguide.

In general, simulation reveals GGW to exhibit a greater
dispersive behavior when compared with the equivalent rect-
angular waveguide. For the cases of larger a values, the GGW
curve grows faster with frequency and reaches the rectangular
waveguide curve, and, although βGGW surpasses βrect, both
curves are quite similar from that point. For the cases of
smaller a values, this difference is greater and both curves
diverge having only a very narrow band of coincidence, or
even no coincidence (e.g., at a = 2.8 mm where a very
dispersive curve is observed). This behavior will be understood
through the analysis of section III.

From the above study, it can be concluded that the standard
assumption of equivalence between rectangular waveguide and
GGW is only valid in certain bandwidth, which are determined
by specific range values of a.

B. Operation below cutoff

In a below cutoff rectangular waveguide the lateral condi-
tions are electric walls, and evanescent energy is delivered
along the axial direction only. In the GGW, the condition
of forbidden propagation into the pins regions also permits
exponential decay as a lateral condition [17]. Consider the
following example; the electric field is simulated for the case
of a GGW with a = 4.72 mm, which implies a cutoff of
fc = 34.68 GHz. Since the stopband of the GGW structure
starts at f = 28.1 GHz, three frequencies are analyzed,
f = 28 GHz (outside the stopband, mode below cutoff),
f = 29 GHz (inside the stopband, mode below cutoff), and
f = 40 GHz (inside the stopband, mode under usual operation
above cutoff). The results of this comparison are shown in

Fig. 5. As can be seen, outside the stopband, the field spreads
into the pin structure, whereas inside the stopband energy is
delivered along the axial direction in a similar manner to the
rectangular waveguide in both cases, below and above cutoff.
It is observed, however, that the field spreads more in the
lateral directions when the mode is below cutoff.

In Fig. 6 the Ey component is plotted as a function
of x on two transverse planes: z = z1 (transversal plane
cutting the pins at the middle) and z = z2 (transversal plane
located between two rows of pins) for different heights. The
frequencies considered are f = 29 GHz (far below cutoff),
f = 34 GHz (near below cutoff), f = 40 GHz (above, but
near, cutoff), and f = 52 GHz (far above cutoff). These graphs
allow to quantify better the propagation differences in terms
of the operating frequency. It is seen that the field is better
confined in the propagation channel as frequency increases.
As it is well-known, under below cutoff operation, the axial
attenuation is higher when the operating frequency is further
from the cutoff (lower frequencies). At those frequencies,
relative to the axial attenuation, the lateral attenuation imposed
by the pins becomes comparable (i.e., the mode is not clearly
forced to follow the axial direction as it occurs in other cases
where the axial attenuation is lower). This explains why the
field spreads more laterally.

Above cutoff lower interaction with the GGW lateral walls
occur, since the mode is not longer evanescent. The higher
the frequency, the lower the interaction with the lateral walls
imposed by the pins is, what can be explained if one thinks in
the usual two plane wave decomposition of the fundamental
mode of a rectangular waveguide: the closer β to k0, the
lower the angle of incidence on the walls is. It is worth to
mention that in most of the structure (from y = 0 to y = hp)
the field correspond approximately to the solid curve with
square marks. These results suggest that GGW can operate
below cutoff in an analogous manner to rectangular waveguide.
However the differences between both waveguides types are
accentuated and local effects near or above the first row of pins
must be taken into account. In fact, the influence of the pins
is clearly appreciated in Fig. 6, comparing the two positions
in z considered. Concentration of the Ey is observed near the
pins, specially for lower frequencies. This should be taken
into account if elements such as irises or radiating slots are
disposed close to the pins.

We now study the dispersion diagram of the structure
under below cutoff operation. Above cutoff, it is sufficient to
calculate the propagation constant of the GGW fundamental
mode as indicated in [26], i.e., solving the corresponding
eigen-value problem. Below cutoff we must simulate the whole
structure, the one shown in Fig. 5(a). Rectangular waveguide
ports with the dimensions of the GGW propagation channel are
employed as suggested in [20]. Once the structure is solved,
the following expression is evaluated:

α(Np/m) =

ln

(
Ey(z1)

Ey(z2)

)
z1 − z2

(1)

here z1 > z2 and Ey(zi) is the amplitude of the Ey field
component in the center of the waveguide (x = a/2) at the
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(a) Structure. (b) f = 28 GHz.

(c) f = 29 GHz. (d) f = 40 GHz.

Fig. 5. Ey field inside a GGW with a = 4.72 mm for different cases of
propagation.

(a) Considered heights in y. (b) Considered positions in z.
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(h) f = 40 GHz, z = z2.

−30

−25

−20

−15

−10

−5

0

E
y
(d
B
)

y1
y2
y3

(i) f = 52 GHz, z = z1.
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Fig. 6. Ey(x) GGW with a = 4.72 mm on a transversal plane at three
different heights yi and at two different positions in z. Solid line with square
marks is y1 = hp/2, solid line is y2 = hp, and dashed line is y3 = hp+ha.
Left column of graphs correspond to position z = z1 (transversal plane cutting
the pins at the middle) and the right column of graphs correspond to position
z = z2 (transversal plane located between two rows of pins). Vertical dashed
lines are included to indicate the position of the pins in x for clarity purposes.

corresponding z-position.
The results of this study are shown in Fig. 7, which displays
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Fig. 7. Propagation and attenuation constant for a rectangular waveguide
and a GGW of a = 4.72 mm.

waveguide (analytical) and a GGW (eigenvalue computation,
and field computation of the full structure) for the case of
a = 4.72 mm.

Fig. 7 indicates that the difference between curves for both
waveguide types continue increasing when the frequency goes
below cutoff. It is seen that as the frequency decreases, the
attenuation in the GGW grows faster than in the rectangular
waveguide. Furthermore GGW exhibits growth as the stopband
limit approaches instead of the expected slope decrease (as it
happens with the rectangular waveguide). Similar results have
been observed for other values of a, indicating that rectangular
waveguide and GGW behave noticeably different below cutoff.

III. PROPOSED MODEL

From the previous study, it is clear that the assumption of
an equivalent behavior in a GGW and a rectangular waveguide
with identical width a implies errors, unless fc is near to the
low stopband limit and the operation frequency is far enough
from cutoff. Moreover, modelling this behavior is not possible
by scaling the rectangular waveguide by a constant factor
depending on the geometry (as it occurs with the Substrate
Integrated Waveguide -SIW- [27]), since both waveguides
posses different dispersion characteristics. The shape of the
obtained curves indicates that a mechanism is occurring within
the structure, which involves the presence of a reactance due to
the periodic lateral lattice. This reactance modifies the effective
width of the GGW with the frequency.

A. Proposed Method

Consider GGW, but now with regard to propagation in the
lateral direction x̂. The most interesting parameter in this
configuration is the impedance Zl that is seen when looking
into the first row of pins (as shown in Fig. 8), where Zl is the
impedance of the waves incident on the side wall.

The reference plane is placed on the first pin with the rest of
the arrangement terminated with a perfect electric conductor
(PEC), located at a distance of value (p − w) with regard to
the third pin. Periodicity is considered and only one period
is analyzed, using PMC at the laterals (i.e., at z = z0 and
z = z0 + p). It has not been appreciated difference in the
results when using more pins or adding more space after the
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Fig. 8. Schematic of the proposed method.

Fig. 9. Schematic of the structure solved with CST to obtain Zl.

30 35 40 45 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Frequency (GHz)

N
or
m
al
iz
ed

Im
p
ed

an
ce

Z
ln

Real part
Imaginary part

Fig. 10. Lateral impedance viewed at the first pin row plane.

third pin, and only a slight difference when using one pin less.
Again, in terms of accuracy and time three rows seems to be
the optimum choice.

Referred to this port the normalized input impedance of the
structure is

Zln =
1 + S11

1− S11
(2)

In order to obtain the required S11 parameter, the structure
depicted in Fig. 9 has been simulated. In this figure it can be
seen the PMC planes at the lateral sides of the structure, which
provide periodicity by means of image theory, the unique port
of the structure, and the reference plane. The S11 parameter
is easily obtained at the reference plane by de-embedding,
and using (2), the normalized impedance Zln is calculated.
For canonical shapes further reductions in computing time are
possible using the methods proposed in [28]-[29].

With the model of Fig. 9 only a lateral row of three
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Fig. 11. Distance l at which a PEC wall would produce the same impedance
as the one of the periodic structure.

pins and the vacuum volume of the auxiliar feeding parallel-
plate lp × p × (hp + ha) are discretized and solved to
determine its scattering parameters. Note that lp can be made
as small as desired and the discretizing cost of the auxiliar
waveguide is negligible. The resulting normalized impedance
obtained with this approach is shown in Fig. 10. We can see
that the periodic structure presents a reactance that exhibits
capacitive behavior at the beginning of the stopband, changing
to inductive behavior at the end of the stopband and crossing
zero at f = 47, 94 GHz.

Let us now consider the normalized input impedance of
transmission line of characteristic impedance Z0 loaded with
an impedance ZL. If the transmission line is terminated with
a short-circuit (ZL = 0), the input impedance becomes

Zln = j tan(βpl) (3)

hence

l = − 1

βp
tan−1(jZln) (4)

were βp is the propagation constant of the lateral parallel plate
waveguide feeding the structure with three pins. Thus, the
GGW is equivalent to a rectangular waveguide having lateral
walls positioned at a distance which depends on Zln (and
therefore on the frequency value). We have therefore a virtual
rectangular waveguide with a′ = a+ 2l (see Fig. 8).

Since for small arguments the function tan−1(x) is almost
linear and the βp variation with frequency is small compared
Zl frequency variation, the behaviour of both Zl and l is
quite similar. Depending on the sign of l, the GGW will be
equivalent to a smaller (l < 0) or a larger (l > 0) rectangular
waveguide, as shown in the inset of Fig. 11.

B. Results

The cutoff frequency of the fundamental mode in a rectan-
gular waveguide is:

fc =
c

2a
(5)

Since in the proposed model for the GGW the equivalent
width a′ depends on the frequency, the term fc will also have
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this dependence. For a given frequency f0, one has a′(f0)
and from (5), fc(f0). In order to obtain the cutoff frequency
for the GGW, a zero-finding routine is applied to y(f) =
fc(f)−f . Fig. 12 shows the cutoff frequency fc as a function
of a for both rectangular waveguide and GGW, comparing
the solutions obtained with the eigenvalue method and the
proposed model for the GGW. The CPU effort spent in the
zero-finding routine is negligible.

The propagation or attenuation constant of the GGW can
now be obtained through the standard rectangular waveguide
formulas:

β =

√
k2 −

( π
a′

)2
f ≥ fc (6)

α =

√( π
a′

)2
− k2 f < fc (7)

In Fig. 13, it can be observed how the presented method
shows good agreement with the other techniques based on
intensive full-wave simulations (i.e., the one based on eigen-
values and the one using field evaluation).

Above cutoff, as a′ grows with frequency (6) implies
for GGW that β grows with the frequency faster than for
the rectangular waveguide case. When the term k2 is large
compared with (π/a′)2 the variation of a′ is less significant,
and the propagation behavior is similar to that of a standard
rectangular waveguide. This occurs for large values of a and
high frequencies.

Below cutoff, as frequency is reduced, the term k2 becomes
small compared with (π/a′)2. Thus, with regard to (7), α
exhibits growth with the decrease of a′ with the frequency.
This effect explains why the α curve of the GGW does not
exhibit a reduction of its slope, as occurs with the rectan-
gular waveguide when the frequency decreases. Therefore,
below cutoff, the assumption of the rectangular waveguide
as an equivalent GGW with the same propagation channel
dimensions implies a considerable error. Finally, it is worth
to note that, due to the Foster Reactance Theorem [30], the
lateral reactance will always monotonically increase with the
frequency. This, translated through (4) and (6) gives that
GGW will always exhibit greater or equal dispersion than the
equivalent rectangular waveguide.

TABLE I
COMPARISON OF CPU TIMES.

Computation Recalculation for
time different a

Field (full structure) 1380 s YES
Eigenvalue (only β) 4230 s YES
Proposed Method 24 s NO

The proposed method has shown good accuracy for the
several cases of a considered. However, it is desirable to
check its performance for different geometries of the periodic
structure. The authors have check several geometries, obtain-
ing good results. In this paper, two extreme cases, whose
dispersion curves are plotted in Fig. 14, are presented. The
case A (w = 0.1 mm, p = 1.3 mm, hp = 2 mm, and
ha = 1.8 mm) implies a narrow stopband going from 34 GHz
to 39.4 GHz and the GGW becomes very dispersive under
this condition. As can be observed, the rectangular waveguide
becomes a quite poor approximation for the GGW in this
case and, however, the proposed method is able to recover
the dispersion curves with good accuracy.

The case B (w = 0.1 mm, p = 1.3 mm, hp = 2 mm, and
ha = 1.8 mm) implies a wide stopband going from 15 GHz
to 54.4 GHz. In this case, the GGW has a dispersion close to
the rectangular waveguide. However, this geometry produces
an inductive behaviour of Zln, which imply a larger GGW
in terms of effective area than the corresponding rectangular
waveguide. As a result, also in this case, the rectangular
waveguide is not a good approximation, especially in the
propagation region, whereas the proposed method keeps its
good accuracy.

The presented method has shown good performance even
for these extreme cases indicating that this method is not only
fast and accurate, but also robust. Thus, it can be used for pin
structure optimization purposes in a dispersion synthesis task,
considering a wide range of geometries. Furthermore, with
the different geometries of the periodic structure considered
in this paper, they have been shown the promising dispersion
synthesis possibilities of the GGW.

To end this section a computation efficiency evaluation is
carried out. The used computing machine incorporates an
Intelr Xenonr CPU E3-1245 @ 3.40 GHz and 16 GB of
RAM memory. Results shown in the table I correspond to the
computation time given by CSTr for each case.

The efficiency of the proposed method with regard to the
other cases is clear. The simulation of the whole structure
results in a heavy task because of the size, and the solution
of an eigenvalue problem is cumbersome, by nature [31]. In
order to recover properly the requested data, several phase
shifts and additional modes should be computed with the com-
mercial software. Moreover, there is not possibility of solving
the structure below cutoff with an eigenvalue simulation. In
addition, a thoughtful post-processing is required, specially
in the calculations involving the field at different frequencies
(this additional effort has not been included in the comparison
table).

Finally, a useful feature of this method is that, since the
lateral impedance is independent of a, the same calculated
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(a) a = 2.80 mm.
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(b) a = 3.44 mm.
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(c) a = 4.08 mm.
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(d) a = 4.72 mm.
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(e) a = 5.36 mm.
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(f) a = 6.00 mm.

Fig. 13. Propagation and attenuation constants of the rectangular waveguide and the GGW, comparing several calculations methods for the GGW case.

values can be applied for different waveguide widths. This
means that, for instance, the cost of obtaining the dispersion
data of all the graphs of Fig. 13 is the same as the one
requested for a graph if the proposed method is used. Contra-
rily, calculations corresponding to the field or the eigenvalue
problem must be completely repeated for each case (value
of a). This feature results interesting for the design of more
advanced components, e.g., filters, where GGWs of different
widths are involved, since the lateral impedance data can
be incorporated into a commercial solver, and then use it
for designing purposes considering the equivalent rectangular
waveguide geometries, with expected noticeable reduction
of related computational effort. Thus, due to its speed and
additional physical insight, the proposed method appears to
be an interesting tool for parametric analysis and optimized
design of the GGW.

IV. EXPERIMENTAL RESULTS

In order to validate the presented results, two TRL [32] cal-
ibration kits corresponding to the GGW widths a = 4.08 mm
and a = 5.36 mm have been manufactured through an in-
house process using a DATRONr M25 milling system. Fig. 15
and 16 show the top and bottom piece, respectively, for one
of the fabricated calibration kits. A perspective view of the
bottom piece, where the metal pins can be clearly appreciated,
is included in Fig. 17. Finally, the mounted calibration kit,
including the transition from WR 22 to 2.4 mm coaxial is
shown in Fig. 18. The use of the two different considered
widths allows to further check that the presented method is
properly obtaining the propagation constant in both cases, both
below and above cutoff.

The corresponding measurements have been performed us-
ing a Keysight PNA N5227A Network Analyzer. The measure-
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Fig. 14. Propagation and attenuation constants of a GGW with a = 4.72
mm for two different cases (A and B) of the pin structure, comparing several
calculation methods (field -F-, eigenvalue -EV-, proposed method -PM-). Case
A: w = 0.1 mm, p = 1.3 mm, hp = 2 mm, and ha = 1.8 mm. Case B:
w = 1.15 mm, p = 3 mm, hp = 2.6 mm, and ha = 0.1 mm. Rectangular
waveguide curves and previous GGW curves have been added for comparison.
Also, images of the unit cells of the different geometries are included. GGW
curves are only depicted inside the corresponding stopband.

Fig. 15. TRL calibration kit. Bottom piece containing the pins.

Fig. 16. TRL calibration kit. Top piece.
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Fig. 17. TRL calibration kit. Perspective view.

Fig. 18. TRL calibration kit. Complete piece and WR-22 rectangular to
coaxial transitions.

Fig. 19. Measurement setup.

ment setup is shown in Fig. 19. Note that the TRL calibration
algorithm allows to recover the complex propagation constant
γ = α + jβ of each waveguide. Thus, the TRL calibration
kits let us to recover the propagation constant (or attenuation
constant if the waveguide is below cutoff) for the cases
a = 4.08 mm and a = 5.36 mm. Comparisons between
measured data and previous results (obtained with different
methods) are shown in Fig. 20 and 21 for each case (a value).
A good agreement is observed between the results obtained
with the proposed method and the experimental curve. The
slight frequency shift between both curves is justified by the
precision of the in-house process, which is estimated to be
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Fig. 20. Comparison between simulated and measured results, a = 4.08 mm.
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Fig. 21. Comparison between simulated and measured results, a = 5.36 mm.

about ±10µm in the horizontal plane and ±30µm in the
vertical plane. The study performed in this section confirms
that the novel proposed method provides a very accurate
modelling of GGWs.

V. CONCLUSIONS

Through the study performed in this paper, it is observed
that the direct equivalent correspondence normally assumed
between the GGW and rectangular waveguide, which is nor-
mally used in practice, is a rough approximation providing
accurate results only for some specific cases. Also, it has
been proved that the GGW is able to operate below cutoff
in a similar manner than the rectangular waveguide does.
Nonetheless, it has been confirmed that the GGW and the
rectangular waveguide behave in a different way in terms
of their dispersion characteristics. A simple method for the
accurate analysis of GGW dispersion characteristics, based
on equivalent short-circuited transmission lines, has been pre-
sented, and it has been shown to provide very good prediction
capability for all frequencies (below and above cutoff) and
for a wide range of geometries of the pin structure. The
proposed model reduces significantly the computational effort,
thus being suitable for fast parametric analysis of GGWs
and their efficient design through optimization algorithms. By
using the proposed model it can be concluded that, in dis-
persion terms, the GGW is equivalent to a virtual rectangular
waveguide whose width grows with the frequency. The good
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agreement observed between the two measured results of the
TRL calibration kits and the simulated results fully validates
the proposed analysis method.
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