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Abstract 

A periodic monitoring of the pavement condition facilitates a cost-effective distribution of the 

resources available for maintenance of the road infrastructure network. The task can be 

accurately carried out using profilometers, but such an approach is generally expensive. This 

paper presents a method to collect information on the road profile via accelerometers mounted in 

a fleet of non-specialist vehicles, such as police cars, that are in use for other purposes. It 

proposes an optimisation algorithm, based on Cross Entropy theory, to predict road irregularities. 

The Cross Entropy algorithm estimates the height of the road irregularities from vehicle 

accelerations at each point in time. To test the algorithm, the crossing of a half-car roll model is 

simulated over a range of road profiles to obtain accelerations of the vehicle sprung and 

unsprung masses. Then, the simulated vehicle accelerations are used as input in an iterative 

procedure that searches for the best solution to the inverse problem of finding road irregularities. 

In each iteration, a sample of road profiles is generated and an objective function defined as the 

sum of squares of differences between the ‘measured’ and predicted accelerations is minimized 

until convergence is reached. The reconstructed profile is classified according to ISO and IRI 

recommendations and compared to its original class. Results demonstrate that the approach is 

feasible and that a good estimate of the short-wavelength features of the road profile can be 

detected, despite the variability between the vehicles used to collect the data. 

1. Introduction 

Road profiles are central to the interaction between a pavement and/or bridge and a heavy 

vehicle suspension. It follows that the maintenance of road profiles for highways and bridges is 

important in reducing dynamic tyre forces, promoting long pavement life, improving passenger 

comfort and ensuring that bridge loads are small (OECD, 1997; Gillespie et al, 1992; Green & 

Cebon, 1994). This paper outlines a novel approach for the periodic estimation of the pavement 

profile using low cost accelerometer measurements. 

 

Currently, there exist several methods for the measurement of road surface profiles. Static 

methods, such as ‘dipstick’ walking profilometers are clearly less efficient than dynamic 

approaches such inertial profilometers which measure profile tracks at full highway speeds. The 

typical inertial profilometer consists of a vehicle equipped with a height sensing device, such as 
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a laser, which measures pavement elevations at regular intervals (Sayers & Karamihas, 1996; 

Sayers & Karamihas, 1998). Accelerometer(s) allow the effects of vehicle dynamics to be 

removed from the elevation measurements. This method provides an accurate, high resolution 

measurement of road profile, though the associated costs of laser-based technology are a 

disadvantage. González et al (2008) propose a road classification method based on the 

relationship between the power spectral densities of vehicle accelerations and road profile via a 

transfer function. This frequency-domain method classifies the road into the appropriate class but 

it is unable estimate road profile irregularities at each point in time. 

 

Harris et al (2009) investigate a method which uses only accelerometers mounted on a single 

vehicle. As in this study of multiple vehicles, Harris et al use a combinatorial optimisation 

technique, known as the cross-entropy method (De Boer et al, 2005; Belay et al, 2008). Knowing 

only the vehicle dynamic properties and the vehicle response to a road profile, it is possible to 

infer the road profile elevations. Their investigation uses a half-car roll dynamic model to infer 

measurements of road profiles in both the left and right wheel paths in a numerical validation. 

Unknown road profiles are characterised by optimising to find the road profile which replicates 

the measured response; in this case acceleration measurements, taken from the unsprung and 

sprung masses of the half-car model for a number of road profiles.  

 

This paper is an extension of the method of Harris et al. In this paper, road profile irregularities 

are estimated from accelerometers mounted in a fleet of non-specialist vehicles, such as police 

cars. Six representative half-car roll vehicle models are simulated over a number of road profiles 

(which vary in ISO class) and the sensitivity of each road inference to vehicle model parameters 

and noise is examined. 

2. Vehicle Fleet Model Parameters 

The vehicle model to be used in simulations is a four degree of freedom half-car roll model as 

described by Harris et al. (Figure 1). This is used as it is possible to infer parallel profiles in the 

left and right wheel paths. For this investigation it is assumed that the parameters of all six 

representative vehicles are known and these are given in Table 1. In reality, the vehicle model 

parameters would be unknown. It is necessary to determine the unknown vehicle model 

parameters based on known measurements of vehicle response due to a known road profile using 

combinatorial optimisation i.e. calibrate the vehicle initially (Harris et al, 2009). It then can be 

used for the identification of unknown pavement profile heights. 

  

Figure 1 Half-car vehicle roll model 



Table 1 Vehicle model parameters 

Description Unit 
Vehicle 

1 2 3 4 5 6 

Sprung Mass, ms kg 505.36 499.14 490.64 468.29 569.57 534.19 

Unsprung Mass, mu1 kg 28.32 26.04 23.06 27.10 27.70 23.59 

Unsprung Mass, mu2 kg 24.98 24.49 25.42 23.03 24.16 25.66 

Suspension Stiffness, k kN/m 22.62 22.38 20.06 19.41 19.02 18.62 

Tyre Stiffness, kt kN/m 136.99 151.58 153.59 137.49 152.98 146.07 

Passive damping coefficient, cb kNs/m 1.52 1.44 1.54 1.39 1.52 1.48 

Roll Moment of Inertia, Is kg m
2
 777.21 713.86 696.60 619.26 733.41 901.01 

Track width, T m 0.75 0.75 0.75 0.75 0.75 0.75 

 

2.1 Road Profiles 

The identification of road irregularities is carried out for all vehicle models on each of the 

Artificially generated Road profiles, AR1 – AR5, shown in Figure 2, which are 100 m in length. 

These profiles range from class A to class C roughness according to ISO standards (ISO 8608, 

1995) and have IRI ratings ranging from 1.47 – 8.56 m km
-1

. Table 2 lists, for each profile, the 

reference spatial frequency, 0( )dG n , used to generate the profiles, the corresponding IRI values 

and the correlation, ρr, between the left and right profiles. The calculation of IRI ratings and 

analysis of spectral densities in this study is done using ProVAL (Profile Viewing and AnaLysis; 

Chang et al, 2006). 

 

Figure 2 Road profiles used for tests; (----) left wheel path, (---) right wheel path (offset by 

+30mm for clarity); (a) AR1 (b) AR2 (c) AR3 (d) AR4 (e) AR5 



Table 2 Details of road profiles  

Profile 
ISO 

Class 

Gd(n0) 

(m
3
/cycle) 

IRI (m/km) 
ρr 

Left Right 

AR1 A 8 × 10
-6

 1.48 1.47 0.968 

AR2 A 16 × 10
-6

 2.27 2.10 0.931 

AR3 B 64 × 10
-6

 3.09 2.95 0.936 

AR4 B/C 128 × 10
-6

 6.19 6.28 0.922 

AR5 C 256 × 10
-6

 8.56 8.27 0.926 

3. Results of Road Profile Inference  

For each road profile, all vehicle models are run at 80 km/h and their acceleration responses are 

taken as the inputs to the profile inference algorithm. The results of this algorithm for vehicle 2 

can be seen in Figure 3; similar results were obtained for all 6 vehicle models. For each profile, 

the algorithm determines the road profile in the left and right wheel paths, capturing both the 

short and long wavelength components to a high degree of accuracy. This suggests that 

irregularities such as potholes could be detected with ease using this method of identification. 

There is a gradual drifting effect to the estimated road profile in some cases, increasing with 

distance from the start point. This is an unavoidable effect associated with a build up of errors in 

the estimation of the target accelerations over distance. Figure 4 shows the results of correcting 

for this drift effect for all vehicles on profile AR5 which has the largest noticeable drift. Every 

ten metres along the profile, the 1m mean error between estimated and actual profile is 

calculated and the next ten metres of road profile is corrected using this. This correction is only 

used to illustrate the accuracy of the algorithm in estimating the high frequency irregularities of 

the profile despite the presence of gradual drift. 

 

The power spectral densities (PSDs) of the actual and inferred left wheel path profile heights for 

each of the six vehicles are shown in Figure 5 for profiles AR2 and AR5. Similar levels of 

accuracy are obtained for AR1, AR3, AR4 and the right wheel path of each profile. While good 

agreement is obtained overall for the six estimated profiles, there are some slight differences 

between the PSDs obtained for each vehicle. Irrespective of this, the main differences apparent 

for these PSDs occur in the far right ends of the spectrum.  



 

Figure 3 Actual (----) and estimated (----) road profiles from vehicle 2; left wheel path and right 

wheel path (offset by +40mm for clarity); (a) AR2 (b) AR5 

 

Figure 4 Actual (----) and corrected inferred (- - -) road profiles for left wheel path of AR5 for all 

vehicles 

 

Figure 5 Power Spectral Densities of actual (----) and inferred left wheel path road profiles for 

all vehicles; (a) AR2 (b) AR5 



3.1 IRI Ratings for Estimated Profiles 

The IRI rating of each inferred profile is calculated and compared to the original road profile 

ratings. It is found that the IRI ratings obtained for an individual profile differ between vehicles 

and this highlights the fact that the error in IRI rating is dependent on the vehicle model, not the 

roughness of the profile being estimated. The mean error of estimating the IRI rating for all five 

road profiles is shown in Table 3 for each vehicle. Some of these errors are high despite the 

accuracy of the PSDs. However, if the mean IRI rating of all vehicle results for a single profile is 

taken, an accurate rating is obtained. It can be seen in Table 4 that averaging the estimated rating 

for each profile over all six vehicles gives values with errors predominantly under 1% when 

compared to the actual IRI ratings in Table 2. 

Table 3 Mean error in IRI rating estimation for each vehicle 

Vehicle Mean IRIleft Estimation Error (%)  Mean IRIright Estimation Error (%)  

1 -1.28 -2.54 

2 3.06 2.32 

3 5.44 7.46 

4 8.15 5.21 

5 -2.44 -5.01 

6 -12.85 -7.74 

 

Table 4 Comparison of mean estimated and true IRI Ratings 

Profile 
IRIleft (m/km) IRIright (m/km) 

Estimated Error (%) Estimated Error (%) 

AR1 1.48 0.11 1.46 -0.68 

AR2 2.27 0.07 2.13 1.51 

AR3 3.10 0.16 2.96 0.23 

AR4 6.18 -0.16 6.24 -0.72 

AR5 8.55 -0.12 8.22 -0.58 

3.2 Influence of Noise on Accuracy of the Algorithm 

The influence of noise on the accuracy of the road profile inference algorithm is investigated for 

vehicle 1. The input half car accelerations for profiles AR2 and AR5 are corrupted using an 

additive noise model and analysed for signal to noise ratios (SNR’s) of 20 and 10. With this 

model, noise is randomly added to the true accelerations by sampling a normal distribution of 

zero mean and standard deviation equal to the standard deviation of the true acceleration data 

divided by the signal to noise ratio. Figure 6 shows the corresponding actual, noise-free 

estimated and that inferred using noisy data. The accuracy is similar to that obtained for the 

uncorrupted data and also there is good agreement between SNR 20 results and SNR 10 results 

for short wavelength irregularities. This suggests that the accuracy of the algorithm is more 

dependent on vehicle parameters than the level of noise in the corrupted accelerations. It is of 

note, however, that the gradual drifting effect which was seen for the original estimated road 



profiles increases with noise and higher road roughness. Figure 7 shows the corresponding PSDs 

of road profile heights for the left wheel path.  

 

Figure 6 Actual (----) and estimated with noise (SNR=20 ----; SNR=10 ----) road profiles for 

vehicle 1; left wheel path and right wheel path (offset by +60mm for clarity); (a) AR2 

(b) AR5 

 

Figure 7 PSDs of actual (----), estimated with noise (SNR10 ···, SNR20 ○○○) left wheel path 

road profiles for vehicle 1; (a) AR2 (b) AR5 

4. Conclusion 

A novel method for the periodic monitoring of pavement condition using measurements of 

vehicle acceleration response has been described. The method proposes the collection of 

information on the road profile via accelerometers mounted in a fleet of non-specialist vehicles, 

such as police cars. It proposes an alternative algorithm, based on Cross Entropy theory, to 

predict road irregularities. A half-roll vehicle model was used to test the algorithm for six 

representative vehicles and five generated road profiles. Results show that the algorithm 

estimates the road profile irregularities quite accurately for each vehicle. Optimal accuracy in IRI 



rating is achieved by taking the mean value of all six vehicles for each individual road profile, 

with the obtained IRI values consistently within  2 % of the reference values. The main errors 

in the estimated profiles are generally limited to frequencies which do not have a large influence 

on the vehicle model responses, such as short wavelength, high frequency errors and long 

wavelength errors due to drift. The addition of low levels of noise to the simulated accelerations 

has not affected the accuracy of the profile irregularity identification significantly; the accuracy 

is more dependent on the vehicle parameters. However, the level of noise does affect the amount 

of drift occurring in the profile irregularity identification. Overall the approach is feasible and it 

has been shown that despite variability between vehicles in a fleet used to collect the data, good 

estimates of the short-wavelength features of the road profile can be detected. 
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