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A new integral representation for the Barnes double gamma function is derived. This is
canonical in the sense that solutions to a class of functional difference equations of first order
with trigonometrical coefficients can be expressed in terms of the Barnes function. The integral
representation given here makes these solutions very simple to compute. Several well-known
difference equations are solved by this method, and a treatment of the linear theory for moving
contact line flow in an inviscid fluid wedge is given.

1 Introduction

There are many physical problems that can be modelled using a steady state field equation.
For example, Laplace’s equation describes ideal fluid flows and Helmholtz’ the propagation
of acoustic waves. It is the geometrical configuration and the nature of the boundary
conditions, not the physical origin or governing equation, that determines the mathematical
complexity and tractability of a given problem. The boundary conditions may be of mixed
form, be discontinuous or have a smoothly varying parameter. The appropriate method of
solution will, again, depend on the geometry and type of boundary conditions involved. A
vast range of mathematical techniques are available, many of which (including the notable
Wiener-Hopf technique (Noble, 1968)) rely on the use of integral transforms.

The Wiener—-Hopf technique is applicable to two-part problems in which an infinite
boundary condition is discontinuous, having one form for z < 0, say, and another for
z > 0. The method hinges on finding a product factorization for the Wiener—Hopf kernel —
that is, in finding a representation for the kernel as the product of two functions which
are analytic in overlapping upper and lower halves of the complex plane respectively.
The Wiener-Hopf kernel is fundamental to the solution of a given problem containing
information about its physical features. For example, it may define the wavenumbers of any
travelling waves or specify the form of the radiated field.

However, only a small class of boundary value problems can be solved by means of the
Wiener—-Hopf technique and the application of integral transforms to other types may focus
mathematical attention in a direction that is, in some ways, equivalent to finding a
factorization for a Wiener—Hopf kernel. For example, there is a diverse range of boundary
value problems that, under integral transform, give rise to a functional difference equation
(fde) which, like a Wiener—Hopf kernel, is canonical to the physical solution in that it
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contains vital information about its properties. Typically such boundary value problems
may have a wedge geometry with mixed boundary conditions (for example, Isaccson, 1950;
Lauwerier, 1961; Faulkner, 1964; Packham, 1989). Alternatively, they may have a
boundary condition that is applied over an infinite range, — 00 < z <00 say, and which
contains a parameter that varies smoothly with z (Roseau, 1976; Evans, 1984). To obtain
an analytic solution to the boundary value problem, a closed form solution to the fde must
first be found.

There are many classes of f{de and by no means all can be solved analytically. We consider
only linear fdes and for a comprehensive discussion of the analytic solution of linear
difference equations with rational coefficients the reader is referred to Milne-Thompson
(1933). Briefly, the best-known methods include the use of the gamma function,
Alexeiewsky’s G function and, in particular, integral transforms. Koiter (1955) demon-
strates the use these techniques whilst obtaining the solution to the fde

T (s+1) = —2s cot (ms) T,(s). .y
The Maliuzhnets’ function, defined by the fde
M (v+2a)—cot Jv+im M (v—2a) =0 (1.2)

together with the conditions M,(0) = 1 and M, (v) = O(exp {|nT (v)/8al}) as T (v) >0 (see
Maliuzhnets, 1958), may be expressed in integral form (see Appendix): its properties and
use in solving a certain class of fde has been discussed by a variety of authors (for example,
Tuzhilin, 1971; Lipsyzc, 1975, 1980; Hongo, 1986). Williams (1959), when considering
electromagnetic diffraction problems, presents the solution to a fde of similar type first in
terms of the double gamma function as defined by Barnes (1899), and then as a finite
product of elementary trigonometric functions (the source of the latter being unclear).
Lawrie (1990), considering an fde of the same class, goes further in using the recurrence
relations for the Barnes double gamma function (see Appendix) to connect the two forms
of solution.
In this article we consider first-order fdes of the class:

A(ee, ) fls)— B(a, 5) fls +1) = 0, (1.3)
into which category those of Maliuzhnets (1958), Van Dantzig (1958), Williams (1959) and
Lawrie (1990) fall. Here « is a real parameter and A(«,s), B(«,s) denote trigonometrical
functions of the formsin a(s+ /) or a product of such functions (where g is real).
Functional difference equations of this type are particularly common, arising in the
solution of boundary value problems from many areas of applied mathematics. In the case
of linear water waves, the typical boundary value problem consists of Laplace’s equation
in a wedge (0 < 0 < a) with different boundary conditions on the rays § = 0 and 6 = « (see,
for example, Ehrenmark, 1987). One boundary condition is often either Neumann or
Dirichlet in form: 8¢/06 or ¢ given where ¢ is the fluid velocity potential. However, the other
boundary condition may be a linear combination of terms in ¢, d¢/0r and d¢/06. On
applying the Mellin transform to such a boundary value problem, it is found that the
derivatives with respect to r give rise to a fde whilst the derivatives with respect to 8 cause
the quantities A(a,s), B(a,s) to be trigonometrical in form.

If « = 7, so that the wedge becomes a half plane, there are a variety of well-established
techniques for solving the two-part boundary value problem. These include integral
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equation techniques, conformal mapping and, of course, the Wiener-Hopf technique. A
survey of half-plane problems has recently been given by Varley & Walker (1989), who also
present some new methods of solution. However, it is the intention of this work to consider
only genuine wedge problems (& < 7r) where the neither classical nor Varley & Walker’s
methods seem to be readily applicable.

The class of fde described by (1.3) is well documented, and the thrust of this paper is in
presenting a simple analytic algorithm which enables the solution to any fde of this form
to be written down by inspection. Fundamental to the method is the derivation of an
integral representation for the logarithm of the Barnes unsymmetric double gamma
function. This expression is derived in §2 and has two distinct advantages. Firstly, products
and quotients of the Barnes double gamma function are easily combined into one integral
expression and, secondly, the integral has a finite range of integration and is easy to
compute. In §3 it is shown that the solution of fdes of the form of (1.3) can always be
formulated in terms of quotients of the Barnes double gamma function. In §4 it is
demonstrated that an easily computable analytic expression for the solution of such an fde
can thus be written down by inspection. It is also shown that, for the special case & = p7/2g,
the general solution can be simplified to a finite product of trigonometrical functions
without any need for an integral expression. In § 5 a treatment of a moving contact line flow
in an inviscid fluid wedge is given. The displacement of the contact point, which is driven
along a solid surface by surface tension, is expressed and computed using the Barnes double
gamma function, The article is concluded with a brief discussion in §6. Finally, the infinite
product representation for the Barnes double gamma function is given in the Appendix.
This is then used as an aiternative route to the integral representation, confirming the
analysis of §2. The duplication formula is derived, the Barnes double gamma function is
plotted for various values of the parameter ¢ and its connection with the elementary
trigonometric functions, Alexeiewsky’s G function and Maliuzhnets’ function is clarified.

2 An integral expression for the Barnes double gamma function

In this section a simple integral representation for the Barnes double gamma function is
derived by means of expressing its logarithmic derivative as a Mellin transform. The Barnes
double gamma function is defined by the difference equation

G(s+1,8) = I'(s/8) G(s, ) Q.1

with normalization condition G(Lo) = 1. 22)

On taking the logarithm of each side of (2.1) and differentiating twice with respect to s it
is found that,

fis+)=15) = 559/ 6/9) 3

where the prime denotes differentiation with respect to the argument and

/) = < (in 1),

_d[G(s,9)
fs) ‘&{G(s,a)}'
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An exact solution to the first order fde (2.3) may be obtained as follows. Let

(PR =)
f(s)"fo )

where F(r) and j(r) are unknown functions. It is worth noting that the literature contains
many examples whereby an fde has been solved through representing the required function
as an integral. The form of integral chosen varies, for example, Peters (1952) utilizes the
Cauchy integral, Koiter (1955) and Roseau (1958) the inverse Laplace transform, and
Evans (1984) the Fourier integral. However, the representation (2.4) is non-standard in that
it contains two unknown functions. The function j(r) is introduced to ensure convergence
in the final integral representation for In G(s, 8); it is not sufficient to assume that j(r) = 1
as in the case of Evans (1984). Substituting this expression into the left hand side of (2.3),
it is found that

dr, (2.4)

«© |
f Firyr'dr= Fiﬁ’(s/(?). 2.5)
1]
This is a standard Mellin transform, and it follows that
F(r) = H(1—r) f,“ L, (2.6)

where H(-) is the Heaviside function. Thus, from (2.4), it is seen that

In .
fis) = {7 ()} dr. @7)
(r (-
Integrating (2.6) twice with respect to s it is found that
! Inr re!
In G(s,6) = D=1 \inry 2j(r) sk(r);—K(r)ydr (2.8)
0

where j(r), k(r), I(r) are as yet undetermined. The functions j(r) and k(r) are chosen so that
this expression satisfies relation (2.1), i.e.

f (ra—l_l)—{lrrsl—_r—s(rh_]_rl)j(r)—(rh_]_rl) [k(r) +§j(r)]} dr =In I'(s/é). 2.9

Abramowitz & Stegun (1972) give a standard integral representation for the quantity
In I'(z). It is convenient to write this in the form

{rs“ _Sr"" (r'— l).|_r6‘1 (= )} (2.10)

Inr dinr Inr

In I'(s/8) = J )

Comparison of (2.9) and (2.11) now yields

L =D (°=1)
) =5y

_r"‘l(r—l)(r"—l) 2—1 1
and k) =G {r"— 1‘2&}' 2.12)

@2.11)

Thus, it remains only to determine /(r). This can be done by considering the singularity
structure of the integrand of (2.8) close to the point r = 1. The integrand is expanded to
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third order in powers of (r—1) and /(r) is determined by eliminating singularities in the
terms that are independent of 5. It is then found that

. +62+38+1
S(r—1P° 20r—12 " 128(r—1)"

I(r) = (2.13)
The resulting integral representation is that for {In G(s, 8) +1n C} where C is a constant and
is determined using the normalization condition (2.2). Thus, finally, it is found that

- ' rt st a2 a1
e I e =

1 P dr
T ThE g @19

This integral representation is convergent for all s such that Re(s) > 0 and for all § > 0.
Furthermore, it has the advantage of being easily computable for all real values of s and
4 and, thus, clearly increases the utility of the Barnes double gamma function. A graph
showing the variation of In {G(s,8)} for various values of & is shown in Fig. 3 of the
Appendix.

3 Solution of a class of functional difference equations

It is now shown that the solution to a certain class of fde may always be expressed in terms
of quotients of the Barnes double gamma function. The class of fde to be considered is

Ao, $) fls)— B(e, s) fls+ 1) = 0. 3.1)

Here quantities A(a, s), B(a,s) have the form

A(a,s) = rll sin {a(s+ f,)} rJI cos {a(s +7,)} 3.2)

=l j=1

and B(a,s) = H sin {a(s + p,)} H cos {a(s+v)}, 3.3)

l=1

where a, B, 7,, ,, v, are real. Thus, using the gamma function representation for sine and
cosine, (3.1) may be rewritten as

fs) - Ha(s+p)/m Ml —als+ ) /m Ty +als+7)/my T —als+7,)/m}
S+ 1) 7 e Hals+p)/m I —als+ p)/my T+ als+v)/m T —a(s+v) /m}
(3.4)

where y = K+ L—I—J. Defining § = 7/« and rewriting each gama function in terms of the
Barnes double gamma function (see Appendix), is found that

f(s) i {G(1+S+ﬂ,,3)G(l+8—s—/)’,,3)
f( +l) Lk G(s+4,8)G0—s—4,,9)
G(l+%3+S+TJ,3)G(1+%5-—S—T,,3)G(s+,uk,6)
G(%&-!—s-}-‘rj,(?)G(%(?—S—Tj,ﬁ)G(l+S+,u,k,3)

G(6—5—pt,,8) GEO+5+v,8) GRo—5—1,,0)
G(l+6 §= s ) G(1+38+5+v,8) Gl +38—s—v,, 6)

(3.5)
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The function f{s) is determined by selecting terms in ‘s’ as opposed to ‘s+1°. Thus,

G(1+8—5—B,8) G +30—5—7,,0) G(s + 4 ) GS + 5+ 1, 0)
G(s+ £, 0) GEO+5+7;,0) G(1 +0—5— fig. 8) G(1 + 20— 5—,,0)

It should be noted that this solution can be multiplied by any periodic function of period
unity. The form of such a function is usually determined via information from the
boundary value problem. An example of selection of the periodic function is given in §5 of
this paper.

= 1 {

ikl

}. (3.6)

4 Simplification of the general solution

There are two practical methods by which the general solution (3.6) can be reduced to a
tractable form. The first, and probably most useful, approach is simply to write each of the
Barnes double gamma functions in its integral form using (2.14). The resulting integral
expression will be valid, for all § > 0, in a vertical strip of the complex s-plane. The second
approach is to simplify (3.6) using the two independent recurrence relations for the Barnes
double gamma function ((A 9) and (A 10)). If I+ J = K+ L all the double gamma functions
can be eliminated leaving finite products of gamma functions which can then be
manipulated to obtain a solution in terms of standard trigonometrical functions. However,
this approach usually provides a solution for rational values of 8 only. This is because the
exact solution to the fde is expressed in terms of Barnes’ double gamma functions in which
some fraction of & enters the argument as well as being the parameter. Hence, in order to
exploit recurrence relations (A 9) and (A 10), which relate G(n+z,6) and G(né+z,0) to
G(z, d), it is necessary to insist that 6 = 2¢q/p where ¢, p are mutually prime and p is odd.
For the special case in which / = J,K = L and af,, ar;, ap,, av, are integers the fde may
be solved exactly for all values of «. The solution can usually be found by inspection: there
is no need to employ either integral transformations or any sophisticated special functions.
Finally, if /+J+ K+ L then some simplification can be made using the recurrence
relations, however, it will not be possible to eliminate all the Barnes’ double gamma
functions. In this case, it is best to utilize the integral form to simplify the solution.

The first approach is demonstrated here with an equation that was discussed by Van
Lennep (1973) as being fundamental to a class of wedge diffraction problems. The fde is

S+ 2a)—cot Jv+3m)} flv—2a) = 0. 4.1)
As mentioned in §1, this, together with certain normalization conditions, defines

Maliuzhnets’ function. On making the substitutions v = 4a(s+3), g(s) = fdas) and
& = 7/2a, this becomes
8(s)

gis+1)

The quantities sine and cosine can be written in terms of the Barnes double gamma function
using expressions (A 16) and (A 17). Thus, (4.2) can be written as

g(s)  Gls+3+10,0)GE—s5—10) GG+10—5,0) Gs+3+16,0)
gis+1) G(s+3+18,0)GE0—5+14,0)GG0—s5—3,8) GEO+3+5,0)

= tan {% (s+§+%8)}. (4.2)

4.3)

It is a simple procedure to select terms in ‘s’ as opposed to ‘s+1°, and it follows that

_ G(s+3+30,0) GG +30—s5,0)

_ . 44
G(3+38—15,0)G(s +1+34,0) 9

g(s)
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Now, each of the Barnes double gamma functions can be expressed as the exponential of
an integral using (2.14). On combining these terms it is found that

1 st} + pis—s—3 Srt-1 (r"— 2) o1 } “5)

s) = ex . + - —d
£6) p{ o (1= @+ 1) Inr 2Inr r—1 !

Inr
The above integral is valid for § > 0 and —1—34 < Re(s) < $+16. For values of s outside
this range g(s) is determined using (4.2). The original function f{v) is obtained by back
substitution for v and a, i.e.

1 0+ 2okgn—1 + r§n+2a—v—1 ren-1 P29\ rp2il
= - : 4.6
Jw) e"p{ A=)+ D7 dainr <r2"—1)2a In rd’} (46

This is one solution to (4.1); further solutions may be obtained on multiplying by any
function of period 4a. Note that, Van Lennep obtains the following solution to the fde:

0 0 v 2y (-1)"*!
fw) = nI;II rEl {1 _{(2n— 1)%7r+2a(2m— 1)] } ’ 4.7

This is the infinite product representation of the Maliuzhnets function (see Maliuzhnets,
1958) and thus differs from (4.6) by a multiplicative periodic factor or simply a constant.
It follows that the Maliuzhnets function can be expressed as a combination of Barnes
double gamma functions and this relationship is clarified in the Appendix.

The general solution (3.6) can also be simplified using the recurrence relations (A 9) and
(A 10). This is the approach that was employed by Lawrie (1990), and it is demonstrated
here using an fde discussed by Williams (1959). The equation is

sin {3(w—3m)} F(w)—sin (w—3m)} F(w+2a) = 0. 4.8)

Williams shows that the solution can be written down in terms of the Barnes double gamma
function. For the special cases & = 7,27 he shows that this can be simplified in terms of
Alexeiewsky’s G function and integral representations obtained. He also quotes a solution
that is valid for a of the form « = pm/2q (where p, q are relatively prime and p is odd).
However, this expression is not obtained through simplification of the general solution,
instead, it is attributed to Lewy (1946) and Brillouet (1957). Here it is shown how the
solution to (4.8), valid for o = pm/2q, can be derived directly using the Barnes double
gamma function and its recurrence relations.
On putting w = 2as and FQRas) = fs), (4.8) becomes

sin {a(s—3—")} As)~sin {a<s—l)} As+1)=0 (4.9)
4o da

G(14+8—5+38,0)G(s—130,9)
G(5—33,8)G(1 + 6 —5 413, )

with solution

fs) = (4.10)

where 0 =n/a. For o =pn/2q this can be rewritten using the substitutions x =
s—3q/2p—2qr/p and y = | —s+¢q/2p—24(r—1)/p where r = (p—1)/2. Then

G(y+4,29/p) G(x+9,24/p) @.11)

S = G+ 24r/p,2479) G+ 247/, 2477)
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The solution is now in a form that can be simplified using the recurrence relations, (A 9)
and (A 10), for the Barnes double gamma function. It is found that

e (26\ 7 TIig TLpOm + 3)/20) F{p(m +)/24)
Ss) = @my' ”(,,) 1 I+ 2qm/p) Ty + 2qm/p) @12

To simplify this further it is necessary to rewrite x and y in terms of p, ¢ and s. Then, on
replacing (m+1—¢q) with —m in the second gamma function of the numerator and
(m—r+1) with —m in the first gamma function of the denominator, it is found that

fls) = 2mya-2am (2_4)‘"’ 1152 [{p(m+5)/2q—3—r} I{1 — p(m+5)/2q +§}
p re 1{s—=3q/2p—2qm/p} (1 —s—3q/2p+2qm/p—q}

4.13)
This is easily rearranged to obtain
—2ar —r Iy sin {m(s —3q/2p —2gm/p)}
= (2m) 1 TRP (= )t 22— . 4.14
fs) = @2m) T e i Cpmtm + )/ 24 = 3m/4) @.19)
It follows that the solution to (4.8) is
F(W) — (27T)r(1—2q/p) (_ l)rq T H:n-l sin {q(w_377/2_277n7)/p} (4]5)

1122, sin 3w+ pmm/2q —3n}

Expression (4.15) is a valid solution to (4.8) for « of the form a = pm/2¢. It should be noted
that the solution quoted by Williams (1959) appears to have a factor of 2 missing in the
denominator.

Provided /+J = K+ L (see (3.3) and (3.4)) this approach can be used to simplify the
general solution for rational values of 8. Despite the restrictions on ¢ (and thus on «), the
resulting expressions are useful since they are composed of finite products of elementary
trigonometrical functions.

5 Applications of results to a mixed boundary value problem in a wedge

As a final illustration of the utility of the results of §2, we consider the problem of
determining the motion of the contact point between fluid/solid and air at the tip of a
wedge of fluid which has just snapped off from another body of fluid. The initial
configuration is a semi-infinite wedge with apex angle . To model the snapping process,
it is assumed that the fluid moves instantaneously to form the contact angle §. The angle
between the solid and the free surface remains fixed for subsequent time whilst the original
wedge structure is retained in the far-field. The first study of this was carried out by Keller
& Miksis (1983) who reformulated the fluid mechanics problem as a nonlinear integro-
differential equation. This equation was solved numerically and some interesting results
presented. That a bounded solution exists in the neighbourhood of the contact line was first
pointed out by Tayler (1972). A linearized version of the far-field problem was carried out
by Lawrie (1990) for wedges of arbitrary angle. The far-field solution fails close to the
contact point and in this region the free surface was modelled by a circular arc. A nonlinear
theory, valid for slender wedges was developed by King (1991), and resulted in a novel
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Contact point
FIGURE 1.

eigenvalue problem whose solution was used to determine the free surface of the wedge and
the motion of the contact point.

The linear theory for such flows is now reconsidered and the region close to the contact
point is examined using a formal perturbation theory. The flow is surface tension driven
and the geometry has no natural length scale; thus, following Keller & Miksis (1983), the
boundary value problem may be written in similarity form. Using similarity variables
¢ = x(p/at®y, 5 = y(p/ o), where (x, y) are standard Cartesian coordinates with origin at
the undisturbed wedge apex (see Figure 1), the dimensionless velocity potential ¢, and
free surface Y, satisfy

¢§§+¢m] = 07 g’WEDa,ﬂ’

where D,p=AEm: & <§<0,0 <y <Y(E),
subject to the kinematic and Bernoulli conditions at the free surface, which take the form
,=—sY+3Y,+¢. Y,
and W HE 18 )M+ B+ —— =0
{1+(Y)p

At the solid surface the no-slip condition is applied, thatis ¢, = 0 on 5 = 0. The conditions
at the contact point are Y(£,) =0, Y/(£,) = tan £ and, to ensure a bounded solution, it is
assumed that ¢ -0 as £—o0, and Y,(§) ~ £ tan a as £—00.

Under the assumption that # = o +¢,¢ < 1, a formal linearization is obtained by writing

d=ep+..., (5.1)
Ys=§tana+el7+.‘., (5.2)
£ =k +..., (5.3)

with a corresponding domain decomposition in the form
D,,=D,,UD, V..,
where D, ={&7):0<E<00,0<y<{tana}.
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Here, the position of the contact point is given, to leading order, by £. On substituting
expansions (5.1)—~(5.3) into the full nonlinear boundary value problem, the leading order
linear problem is found to be

b+, =0, E9eD,,
subject to the boundary conditions
§¢§—§£{¢§g+ ¢§,, tan a}+ ¥ (§) cos’a =0, 7 =¢{tana,
~,I = —§§)~”+§)~’+¢~g tana, 7 =§tana,

$,=0, =0,

and with contact conditions given by

£ = — Y(0) cot a,
T°(0) = sec? a.
As before, it is assumed that Y(£), 0 as £ >c0.

It is expedient to write this boundary value problem in terms of polar coordinates,
Eg=rcosf,9p=rsin g, { =Y cosa. It then takes the form

subject to ;¢0—§r§’+§§=0, 0=a

G-t +0 =0, 0=a
=0, 6=0
{0y =—¢,sina, (5.4)
oy =1, (5.5
together with the usual constraints that ¢, {0 as r—co. This mixed boundary value

problem, excluding conditions (5.4)—(5.5), was solved by Lawrie (1990) as part of the far-
field solution to the linear problem; we quote the solution as

é(r,0) = 2im f: I(s) 1“(—:3%5—%) 1s) cos (Bs)r2ds, (5.6)
l 'c+ion —2S 2 ] _
{ry=—5— F(S)F(———)j(s— 1) sin (a1 =5))r*ds (5.7
27 ), 3 3

where 0 < ¢ < ¢, is chosen so that the integrals converge and give rise to a bounded
solution, and f{s) satisfies the fde

fls) cos (as)+fls—3)sin{a(s—3)} =0, 0<s<c, (5.8)
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An examination of the integrand in (5.7) shows that a double pole exists at s = — 1. This
gives rise to a In (r), thus, to ensure that {(r) is bounded the condition

A=2)=0 (5.9
is imposed. Similarly, in the integral expression for ¢(r, 6) there is a pole at s = —3 which

results in the velocity being 0(7™%) as r - 0. Again, this unbounded behaviour is eliminated
by choosing
f=H=0 (5.10)

The form of ¢(r) as r - 0 is determined by closing the Mellin inversion integral contour to
the left of the origin and using the calculus of residues. It is found that

(o) = r(—?;—s)/(— 1) sin o, (5.11)
¢’(0) = —sin 2« lim {r(:;f—g) fls— 1)}. (5.12)

Equations (5.5) and (5.12) can be used to give a third condition on the solution of the
difference equation (5.8), i.e.

lim {F(_Tzs—g)ﬂs— 1)} = —csc 2a (5.13)

s——1

whilst (5.4) and (5.11) allow the position of the contact point to be expressed as

. (-_2)},(_1):1"(—2/3)003 (2a)f(2).

=— - 5.14
2 3 sin o« (5.14)
The solution to the boundary value problem is now complete apart from the specification
of the solution to the third order difference equation (5.8). This is firstly reduced to a first
order equation using standard methods and then a solution can be found in terms of the
double gamma function in the form

GEO+1s+1,8)G(1—1s,8)

S = O 15,0 GEs +3,0)

(5.15)
where § = 7/3a and C(s) is a function of period 3. Application of conditions (5.9) and
(5.10) leads to C(s) = Cy(a) sin 3m(2s + 1); the remaining condition, (5.13), gives

I G@E—39)GGE+4,9)
mcosa GGO+3,0)GE,0)

Cola) = — (5.16)

which allows, after a little algebra, the position of the contact point £, to be written as

> 3V38cosa {r(g)r(z/sa) G(to+2,8) G, 5)}2 -

*T 2@ sin2a | 1(1/38) G5+ GG+9)

This expression is easily computed using a simple subroutine call to evaluate the double
gamma function by a numerical quadrature of the integral representation of §2. Some
results are shown in Figure 2. '
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6 Discussion and conclusion

The unsymmetric double gamma function as defined by Barnes (1899) is one of the lesser-
known special functions of applied mathematics. Nevertheless, it has some interesting
properties. In this article its relationship to the well-known gamma function and the
standard trignonmetric functions has been exploited to provide an algorithm by which a
class of functional difference equations with trigonometrical coefficients can be solved by
inspection. Further properties, namely the recurrence relations (A 9) and (A 10), or the
integral representation derived in §2, enable the solution to be simplified further. The
practical application of this approach has been demonstrated in §5, where the contact line
displacement of a surface tension-driven fluid wedge is determined as a quotient of the
Barnes double gamma functions. A single integral expression for the displacement is
obtained via the integral form (2.14). This is then evaluated and plotted against «, the initial
wedge angle (see Figure 2).

Of course, the Barnes double gamma function is not the only means by which the first
order fdes with trigonometric coefficients can be solved. The Maliuzhnets function was
initially derived (Maliuzhnets, 1958) as the solution to (1.2), together with specified
normalization and radiation conditions. It has subsequently been used to solve further fdes
of the type considered in this paper. However, considering the form of (1.2), it is no surprise
that the Maliuzhnets function can be expressed as a quotient of Barnes double gamma
functions (see Appendix). A simple change of argument enables (1.2) to be written as

g(s)
gs+1)

= tan {7 (s+1+18)/0}, 6.1)

which can be expressed as
81(5) £2(5) 85(5) 84(s) _T(38/4+5+3)/8} 1{(8/4—s5—3)/6}
gi(s+ D g(s+Dgy(s+1)g(s+1)  T{(6/4+s+3)/8 T{(30/4—s5—3)/8}

where g(s) = g,(s) g,(s) g5(s) g,(s). By comparison, the Barnes double gamma function is
defined by (2.1), i.e.

(6.2)

G(z,0) 1
G(z+1,8)  I(z/é) (6.3)

together with the normalization condition G(1,8) = 1. Linear fdes are multiplicative and
thus it is clear that, with correct choice of z and neglecting any arbitrary periodic functions,
g,(s),/j = 1,2,3,4 is simply some constant times either a Barnes double gamma function or
its reciprocal. It must therefore be concluded that, explicitly or implicitly, the Barnes
double gamma function is fundamental to the solution of any first order fde with
trigonometric coeflicients.

Appendix The Barnes double gamma function

The unsymmetric double gamma function as defined by Barnes (1899) is the solution to the
difference equation
G(z+1,0) =1(z/8)G(z,6) (A1)

with condition
G(1,8) =1. (A2



Functional difference equations for moving contact line flow 153

6.0

5.0

4.0+

£o 3.0

2.0

T T T 1
] 0.4 0.8 1.2 1.6
a

FIGURE 2.

Barnes shows that the function G(z, 8) can be expressed as an infinite product of gamma
functions with argument differing by multiples of 4. In fact,

eA(a)zw(a)z“/z © F(m(?)
611(z) ey Iz +mé)

G(Z, 8) = eZW(m6)+52W'(m6)/2’ (A 3)

where ¢(-) denotes the Psi or Digamma function defined by

I"'(2)
I(z)

V) = S (n 1) = (A%

Note that, ¥(1) = —y where y = 0.577215...is Euler’s constant. The quantities 4(4) and
B(6) are here defined by

A) = %Sﬂn ®-3 {¢f(ma)—1n (m6)+%} (A S)
and B() = _§_,§1 {;//(ma)—mia}, (A 6)

where the prime indicates differentiation with respect to the argument. Each of the above
sums converge at rate 1/n® so that A(6) and B(8) are functions of ¢ only. It should be noted
that Barnes expresses these functions in a slightly different, though equivalent, form. By
inspection of (A 3), it is clear that the Barnes double gamma function has no poles but an
infinite number of zeros given by

z=—(mdé+n), m=0,1,2,...,n=0,1,2,.... AT
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The Barnes double gamma function also satisfies the difference equation
G(z+86,8) = 2m)¥ V2§24 [(2) G(z, 8). (A8)

Using (A 3) and (A 8) two recurrence relations can be deduced, these are

n-1
G(n+z,8) = G(z,8) TI I'(m+12)/8} (A9)
me=0
n-1
and G(z+nd,8) = (2m)" =12 gre=ne=82ni2 Gz, 8) T [z +m). (A 10)
m=0

It is possible to derive the integral representation, obtained in §2, for the Barnes double
directly from (A 3). The method involves first taking logarithms of both sides of the
equation and expressing the terms of each summation in integral form. Thus,

In G(z,8)=(E—1DInd+z(1—-2)y/(28)—In I'(z)

t
m-1 (62”‘ D (m*+ %/ 32)

2 1
+Z 3 {1+ln—_rr)}(r5)"'dr

2 o lr (1
0 1 l_rz (S)m
- — I
mZ_‘,l 0{lnr -+-z+ nr} (l—r) (All)

The orders of summation and integration may now be interchanged and, on performing,
the summations it is found that

In G(z,8) = (z—1) In 8+ 2(1 —2)y/(26) —In I'(2)
_z_nr{ue-ﬁw_g} dr
8 J, ll—e gtf (e —1)
22 Inr) 1!
’5“”1—r}(r—1)
(e 2 -
-Jo {r;n—rl-z—%ln r}mdr. (A 12)

On making the substitution r = e/ in the first integral, expressing the quantities vy, In &
and In I'(z) in integral form and rearranging it is found that

! P! 2 (=21
G(Z"”‘e"p{Jo{o—l)(rﬁ—l) 25 T {r’—l*ﬁ}
1 ¥

8-1 i dr
—r +(r—1)_(r_1)("5—1)}ln_r}’ (A 13)

which is in agreement with the result of §2. The above integral representation can be
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employed to obtain the duplication formula for the Barnes double gamma function. It is

found that
G(z,8/2)G(z+1/2, 8/2) (A 14)

G(2z,0) = RTP)

Higher order multiplication formulae can also be obtained. It is a simple matter to compute
the Barnes doubles gamma function using the integral representation (A 13). Figure 3
shows In G(z, §) against z > 0 for various ¢&; note that each of the curves tends to —co as
z-0, is zero when z = | and then grows exponentially as z o0,
The integral expression (A 13) is a finite integral of the Mellin transform type. However,

it is worthwhile pointing out that alternative forms do exist and may occasionally be of
more use. For example, by making the substitution r = e~ in (A 13), it is found that
0 —sT -z
G(s, ) = exp U {(e"—ll)Fe“”—1)+(e‘s‘f‘—l)+(s_ 1)(%-1)5“}%}. (A 15)

0

It is useful to relate the Barnes double gamma function to other well known functions.
Of particular relevance to this work are the trigonometric functions all of which can be
expressed in terms of Barnes’ function. For example, the function sin (7z/8) can be

expressed in terms of Gamma functions as follows:
(A 16)

. m
sin (7TZ/(S) = ﬁm
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On putting n = | in (A 9), the gamma functions can be rewritten as a quotient of double
gamma functions and it follows that

G(z,8)G(6—2z,0)

Sin (n2/0) = M . 5) G +0—2,0)" (A 17)
The equivalent expression for cos (7z/d) is
cos (n2/8) = G(8/2+12,8)G(8/2—z,0) (A 18)

G(1+0/2+2,0)G(1 +6/2—2,0)

Alexeiewsky's % function is also related to the Barnes double gamma function,
corresponding to the case d = 1, i.e.

Gz, 1) = 9(z) (A 19)

where %(z) satisfies
G(z+1) = I2)%(), (1) = 1. (A 20)

The reader is referred to Whittaker & Watson (1927) for further details regarding
Alexieiwsky’s ¢ function.

Finally, Maliuzhnets’ function may be expressed in terms of the Barnes double gamma
as follows:

G(38/4+1, a)}2 G(8/4+1+08/2m,8) G(3/4+1—v8/2m, 8)

M.(o) = { G(0/4+1L,9) | GB8/a+1+v8/2m 0)G(36/4+1—08/2m,0)

(A21)
Here M, (v) satisfies (4.1) and § = n/2a. On using the integral expression (A 13), and
making the substitution r = e, where r is the variable of integration, it may be confirmed
that

© cosh (vx)—1 } (A 22)

M, (v) = exp{-‘zJ.O x cosh (x71/2) sinh (2xa) o

which agrees with the integral expression given by Lipszyc (1975). Further infinite product
and integral representations for the Maliuzhnets function are given by Maliuzhnets (1958),
Lipszyc (1975) and Hongo (1980).
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