
Memory Cost Analysis for OpenFlow Multiple Table Lookup

Guerra Perez, K., Scott-Hayward, S., Yang, X., & Sezer, S. (2015). Memory Cost Analysis for OpenFlow Multiple
Table Lookup. In Proceedings of the 2015 28th IEEE International System-on-Chip Conference (SOCC). (pp.
322-327). (System-on-Chip Conference (SOCC) Proceedings). Institute of Electrical and Electronics Engineers
(IEEE). DOI: 10.1109/SOCC.2015.7406975

Published in:
Proceedings of the 2015 28th IEEE International System-on-Chip Conference (SOCC)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© Crown. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33590357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/memory-cost-analysis-for-openflow-multiple-table-lookup(6a3abb85-c279-4c8a-8908-518497922de7).html

Memory Cost Analysis for OpenFlow Multiple Table

Lookup

Abstract—Multiple Table Lookup architectures in Software

Defined Networking (SDN) open the door for exciting new

network applications. The development of the OpenFlow

protocol supported the SDN paradigm. However, the first version

of the OpenFlow protocol specified a single table lookup model

with the associated constraints in flow entry numbers and search

capabilities. With the introduction of multiple table lookup in

OpenFlow v1.1, flexible and efficient search to support SDN

application innovation became possible. However,

implementation of multiple table lookup in hardware to meet

high performance requirements is non-trivial. One possible

approach involves the use of multi-dimensional lookup

algorithms. A high lookup performance can be achieved by using

embedded memory for flow entry storage. A detailed study of

OpenFlow flow filters for multi-dimensional lookup is presented

in this paper. Based on a proposed multiple table lookup

architecture, the memory consumption and update performance

using parallel single field searches are evaluated. The results

demonstrate an efficient multi-table lookup implementation with

minimum memory usage.

Keywords— Packet Classification; Lookup Algorithms;

Software-Defined Networking; OpenFlow; Multi Table Lookup.

I. INTRODUCTION

Software-defined Networking has evolved as a platform to

increase flexibility and innovation in network traffic

management. It achieves this by separation of the control and

data plane with the control plane responsible for defining

network-wide traffic behaviour and the data plane responsible

for implementing packet processing decisions. The control

plane consists of a set of Controllers and the data plane

consists of the network elements e.g. switches, routers. The

controllers connect to the data plane via an Application

Programming Interface (API).

OpenFlow [1] is the most popular API for the control-data

interface. The OpenFlow protocol describes an extensive list

of packet header fields for packet and flow classification. The

classification of packets into flows uses multiple fields of the

packet header. This supports fine-grained flow classification

based on which new network applications can be developed.

However, with increasing granularity of the flow definition, a

greater volume of flow match entries are held in the flow

tables of network devices [2].

The first version of the OpenFlow protocol specified a

single table lookup model with the associated constraints in

flow entry numbers and search capabilities. The complexity

for a single lookup table to support a large number of flow

entries and arbitrary flow features of different applications is

high [3]. In order to optimize the lookup process, a multiple

table pipeline model was introduced in OpenFlow v1.1. Using

this method, packets can be matched against a defined set of

flow tables as specified by the application. This reduces the

number of flow entries per table and increases the

classification performance accordingly.

There are several challenges when implementing the

multiple table lookup model in hardware. For example,

different application characteristics e.g. no. of packet header

fields, field lengths, no. of actions etc. must be mapped into

appropriate lookup tables [3]. In addition, for next-generation

networks, packet classification must support high network

throughput, e.g. 40-100 Gbps. The lookup efficiency in terms

of scalability, flexibility, capacity, incremental update ability,

memory usage and speed must all be considered.

A possible method to implement the multiple table lookup

model in hardware involves the use of multi-dimensional

lookup algorithms. For high lookup performance, the flow

entries can be stored in embedded memory. The memory

requirements for such a solution are analyzed in this paper. A

detailed study of OpenFlow flow filters for multi-dimensional

lookup is presented and a multiple table lookup architecture is

proposed based on parallel single field searches. The

architecture is implemented and synthesized on a Stratix V

FPGA [4] and memory consumption and update performance

results are presented for the OpenFlow flow filters analyzed

(Routing and MAC Filters). The results demonstrate an

efficient implementation of multiple table lookup in hardware

with minimum memory usage.

 The rest of the paper is organized as follows: In section II,

related work is discussed. A survey of different flow filters is

presented in section III and the multiple table lookup

architecture is described in section IV. In section V,

performance evaluation results are presented and discussed.

Finally, in section VI, the paper is concluded.

II. RELATED WORK

There is a small body of research on packet/flow

classification for SDN and OpenFlow-based devices for single

and multi-table lookup. Flow table mapping is considered in

[5], [6]. In [[6] a simple table distribution with parallel tables

for non-dependent fields is proposed. In [7], the limitations of

an OpenFlow v1.3 software switch with Intel DPDK are

highlighted. For example, the packet processing performance

drops rapidly with an increasing number of flow rules. The

authors suggest improvements such as flow caching, better

lookup algorithms, and lookup algorithm selection per table

with tables containing rules of similar types.

Multi-dimensional lookup techniques can be categorized

into four groups; Trie-based (HyperCuts [8], HyperSplit [9]),

Decomposition (RFC [10], DCFL [11]), Hashing (TSS [12],

TTSS [13]) and Hardware-based (TCAM, Bitmap-insertion

[14]). The advantages and disadvantages of these techniques

are outlined in Table I.
TABLE I

EVALUATION OF MULTI-DIMENSIONAL LOOKUP ALGORITHMS

Category Advantages Disadvantages

Trie-Geometric Efficient Memory
Moderate lookup

Very Complex update

Decomposition Fast Lookup
Memory explosion

Complex update

Hashing-based Fast Lookup
Collision issue

Memory explosion

Hardware-based Very Fast Lookup
Memory Limitation

Poor Flexibility

The most common hardware-based structure proposed for

OpenFlow multiple table devices [15]-[17] is a combination of

Ternary Content Addressable Memory (TCAM) for wildcard

matching using linear search and SRAM for exact matching

using a hash function. In [16], the authors use an Extended

RFC algorithm. The TCAM and SRAMs are divided into

blocks to represent each table. The lookup process involves an

exact match search followed by a TCAM lookup if no match

was found in the first stage. Although TCAM is a popular

method for classification due to its high lookup speed, it has

disadvantages in terms of high power consumption, storage

limitation and the difficulty of rule ternary conversion.

An alternative to TCAM is to use multi-dimensional lookup

algorithms. Two methods have been proposed [18]-[19] based

on the HyperCut algorithm. However, they are limited to

single table lookup and the number of rules stored reduces

with increasing number of lookup fields. The high lookup

speed of the decomposition approach was demonstrated for a

single table lookup in [20]. The decomposition technique uses

parallel search of packet header fields (using a set of

algorithms) and combines the results for the final matching

rule lookup.

In comparison to the existing research, this work presents a

solution to replace the TCAM with a multi-field, multiple

table lookup model. The focus of the paper is the analysis of

memory requirements for this solution, which is critical to

achieve high lookup performance.

III. FILTER ANALYSIS

In order to determine the appropriate search algorithms for

optimal memory consumption across the multiple table

lookup, a deep study of network flow filters is performed. The

terms filter and rule are used here interchangeably.

A. OpenFlow Match Fields

The number of matching header fields that can be used for

packet classification based on OpenFlow v1.3 is 39 (excluding

metadata) [1]. The metadata field is an additional field

composed of 64 bits. The system uses the metadata internally

to pass information between lookup tables during packet

processing. There are 15 common matching fields supporting

applications, such as Access Control List, MAC learning or

Routing. They are listed in Table I along with the field length

in bits and the matching method required. In addition to the

field length, the definition of the field in terms of syntax such

as range or prefix is relevant for the lookup process. Based on

this syntax, each field requires a different matching method,

for example Exact Matching (EM), Range Matching (RM) or

Longest Prefix Matching (LPM). Different matching types

present a challenge to existing packet classification

algorithms. The EM approach compares all bits of the packet

header field against the flow entry field. For the RM approach,

the narrowest range is selected from all the ranges of the filter

that match against the packet header field. The LPM selects

the entry with the prefix with the largest number of matching

bits from all the matching prefixes of the filter.
TABLE II

OPENFLOW MATCH FIELD, FIELD LENGTH AND MATCHING METHOD

Matching Field
Number

of Bits

Matching Method

Required

Ingress Port 32 Exact Matching (EM)

Source Ethernet 48 Wildcard matching (LPM)

Destination Ethernet 48 Wildcard matching (LPM)

Ethernet Type 16 Exact Matching (EM)

VLAN ID 13 Exact Matching (EM)

VLAN Priority 3 Exact Matching (EM)

MPLS Label 20 Exact Matching (EM)

Source IPv4 32 Wildcard matching (LPM)

Destination IPv4 32 Wildcard matching (LPM)

Source IPv6 128 Wildcard matching (LPM)

Destination IPv6 128 Wildcard matching (LPM)

IPv4 Protocol 8 Exact Matching (EM)

IPv4 ToS 6 Exact Matching (EM)

Source Port 16 Wildcard matching (RM)

Destination Port 16 Wildcard matching (RM)

B. Lookup Methods

Three lookup methods have been identified: EM, RM, and

LPM. For the fields requiring exact matching, this lookup can

be handled by a hash function. However, the lookup process

for fields that require wildcard matching is more complex. For

this reason, this search method is considered in detail in this

work in order to achieve high lookup performance. The

Ethernet and IP address fields are a focus of this work as they

present the largest field length.

Rule replication is an issue for multi-dimensional lookup

algorithms, which implies the storage of the copied rules

through the algorithm structure. For example, HyperCuts

requires that the same rule be stored in several trie nodes,

which leads to inefficient memory use. However, the

individual field management provides flexibility to handle

each rule field. An analysis based on the repetition of each

rule field is therefore performed.

C. MAC and Routing Filter Analysis

For the analysis presented in this section, the filter set

presented in [21] is studied. This filter set contains a range of

flow sets based on different applications e.g. ACL entries

(_rtr_config), Routing/Packet Forwarding (_rtr_route), MAC

learning (_rtr_mac_table) and ARP (_rtr_arp). Each of these

flow sets is comprised of 16 different flow filters of different

sizes. These are named according to the Router ID e.g. bbra.

The analysis begins with a survey of the number of unique

values identified in the filter set for a given field.

In Table III, the MAC learning application ruleset is

analyzed. The two fields in this set are VLAN ID and

Destination Ethernet address. For each filter, the total number

of rules and the number of unique VLAN ID and Ethernet

addresses within that ruleset are identified. Based on a

previous study of field partition [22], the evaluation of the

Ethernet address is presented for 16-bit field partitions.

As illustrated in Table III, there are relatively few unique

values of VLAN ID field. For example, there are no more than

209 different VLAN ID values (gozb filter) out of any of the

analyzed filter sets. The VLAN ID field uses exact matching

(Table II) and this observation contributes to the multiple table

lookup design presented in Section IV. The Ethernet address

field is also in exact value format. The Ethernet address is

assigned to a network interface for communication. The first 3

bytes are the Organizationally Unique Identifier (OUI) while

the second 3 bytes are Network Interface Controller (NIC)

specific. The results are as expected i.e. there is a smaller

number of unique values of the higher 16-bit partition

compared with the other partition values.
TABLE III

NUMBER OF UNIQUE FIELD VALUES OF FLOW-BASED MAC FILTER

Flow

Filter

Number

of Rules

Number of unique values for MAC filter

VLAN

ID

Higher

16-bit

Ethernet

Middle

16-bit

Ethernet

Lower

16-bit

Ethernet

bbra 507 48 46 133 261

bbrb 151 16 26 38 55

boza 3664 139 136 3276 2664

bozb 4454 139 137 1338 3440

coza 3295 32 225 1578 2824

cozb 2129 32 194 1101 1861

goza 6687 208 172 2579 5480

gozb 7370 209 159 1946 6177

poza 4533 153 195 2165 3786

pozb 4999 155 169 1759 4170

roza 3851 114 136 2389 3264

rozb 3711 113 140 1920 3175

soza 3153 41 187 1115 2682

sozb 2399 39 161 821 2132

yoza 3944 112 178 1655 3180

yozb 2944 101 162 1298 2351

For further analysis, the Routing filter is also evaluated.

This filter contains the IPv4 address and interface fields (e.g.

ingress port). The ACL filter set also contains the IP address

field. However, the Routing filters contain a larger number of

wildcard flow entries and require larger prefix lookups (e.g.

0.0.0.0/0). Therefore, to better illustrate the LPM, the Routing

filter analysis results are presented as an example of the worst

case. As for the MAC filter, the Routing filter survey is based

on the unique field values for IP address with 16-bit partitions.

Table IV summarizes the analysis of the routing filter.

TABLE IV

NUMBER OF UNIQUE FIELD VALUES OF FLOW-BASED ROUTING FILTER

Flow

Filter

Number of

Rules

Number of unique values for Routing

filter

Ingress

Port

Higher

16-bit IP

Address

Lower

16-bit IP

Address

bbra 1835 40 82 1190

bbrb 1678 20 82 1015

boza 1614 26 53 1084

bozb 1455 26 53 952

coza 184909 43 20214 7062

cozb 183376 39 20212 5575

goza 1767 21 57 1216

gozb 1669 22 57 1138

poza 1489 18 54 976

pozb 1434 20 54 932

roza 1567 17 52 1053

rozb 1483 16 52 988

soza 184682 48 20212 6723

sozb 180944 36 20212 3168

yoza 4746 77 58 3610

yozb 2592 48 55 1955

Similar to the MAC filter results, it can be seen in Table IV

that the number of unique ingress port fields achieves a

maximum of 77 different values (yoza filter). Even the largest

flow filter for routing (coza with 184909 entries), only has 43

unique ingress port values. The ingress port field uses exact

matching, similar to the VLAN ID field of Table II.

In contrast, the IP address field can be composed of

wildcard or exact values. The routing filters are comprised of

IP address field with wildcards. Since the address field

identifies the network device (similar to the Ethernet address

for network interface), the higher bits of the address identify

the network and the lower bits identify a particular network

device i.e. the host. Therefore, it is expected that the higher

16-bit partitions contain a smaller number of unique values

compared with the lower 16-bit partitions. This is illustrated in

Table IV. The exceptions to this are coza, cozb, soza and sozb

filters, as highlighted. For these four filters, the higher 16 bits

of the IP address field present a greater number of unique

values, indicating a wider range of network addresses in these

filter sets. The coza filter of routing application (Table IV)

reaches a maximum of 20214 unique address values

corresponding to 11% of the total flow entries.

Based on the filter analysis observations, the proposed

multiple table lookup design is described in the next section.

IV. MULTIPLE TABLE LOOKUP DESIGN

As previously noted, the proposed multiple table lookup

architecture is based on the decomposition technique. The

architecture is illustrated in Fig. 1 with the individual elements

described in the next sections.

A. Packet header and Partition/Selector

For the lookup process, the packet header is split into the

selected fields used for the first table lookup. Each field

partition is sent to the corresponding single-field algorithm.

S.

Fig. 1 Multiple Table Lookup Architecture

B. Algorithm Set and Label Method

From the analysis of the unique values of each flow field

presented in Section III, it was identified that the filters are

comprised of a set of entries based on field repetition.

Labelling the unique rule fields is a key method for efficient

storage and to avoid rule replication. A label method was

presented in [11] for this purpose. The label method is an

efficient technique for algorithms with fixed structures such as

Multi-bit Trie (MBT), and is not applicable to dynamic

structures, which require a re-built algorithm structure.

For the proposed architecture, the exact matching fields for

the analysed flow filters are handled using a simple hash-

based Lookup table (LUT). However, the prefix-based fields

require a more complex lookup to support LPM. Several one-

dimensional lookup algorithms support LPM, of which the

multi-bit trie algorithm is the most popular. MBT searches

several bits at one tree level simultaneously.

The label method is applied to each of these lookup

algorithms so that each unique field value is labelled and

stored in the corresponding algorithm.

C. Index Calculation and Action Tables

The result from each algorithm search is a label, which is

used to obtain the final index to address the action tables.

In the applications presented in Section III (Routing and

MAC learning), there are two fields that can be distributed

into two tables. The flow entries have been adapted to support

the required OpenFlow-based instructions [1] for multiple

table lookup. Hence, when the packet header matches with a

flow entry, there are two required instructions:

- Goto-Table: Forward the packet header being processed

to the next table.

- Write-action: Apply the actions to the packet header e.g.

forward the packet to a specific output port.

In the case that no matching rule has been found for the

packet header, the instruction is “Send to controller”.

The results of the performance evaluation for this multiple

table lookup architecture are presented in the next section.

V. PERFORMANCE EVALUATION

The proposed architecture is implemented and synthesized
on 5SGXMB6R3F43C4 of the Stratix

®
 V FPGA family [4].

The evaluation of the proposed architecture is measured in
terms of memory consumption and update performance.

A. Figures and Tables

Implementation of the proposed architecture based on the

MAC learning and Routing filters consumes 5 Mb of total

memory. In this case, 4 OpenFlow Lookup Tables are

implemented along with two independent multibit trie

structures and two exact matching LUTs. The MBT

implementation consumes the majority of the total storage

(2Mb for both MBT structures).

For these two use cases, 209 values must be addressed on

implemented LUTs based on the worst case of unique fields

(VLAN ID from Table III). However, it can be seen that IP

and Ethernet address fields are more complex and the memory

space of MBT algorithms depends on the number of stored trie

nodes, which depends on the prefixes.

In order to evaluate the memory consumption for MBT,

Fig. 2 shows the results regarding the number of nodes stored

for Ethernet address fields (Fig. 2 (a)) and IPv4 address fields

(Fig. 2 (b)). The Ethernet address field is 48 bits and requires

three 16- bit MBT structures. The highest 16 bits of the fields

are searched in the higher trie, the following 16 bits are sent to

the middle trie and, finally, the lower trie handles the lowest

remaining 16 bits of the field. All tries are distributed with

three levels. The IPv4 address field is split into two 16-bit

partitions and sent to two 3-level trie structures (Higher trie

and Lower trie). Every trie structure works in parallel to find

the corresponding label.

In Fig. 2(b), it can be seen that for all filters except coza/b

and soza/b, the lower tries consume larger memory space to

allocate the required stored nodes. This corresponds to the

number of unique values identified in Table IV. Analysing the

maximum number of nodes, the largest memory space must

store 54010 nodes (MAC learning gozb filter).

To support pipeline lookup in the multiple table approach,

each lookup algorithm is implemented in a separate memory

block, and each node level of the multi-bit trie is searched in a

different pipeline stage. To optimize the distribution of the

pipeline trie structure, each level has been analyzed. A study

presented in [22] concluded that the distribution of 3-level trie

is optimal for a tradeoff between fast lookup and efficient

memory space. The memory space required for each memory

block (L1, L2 and L3) and the total space are evaluated. As

shown in Fig. 2, the lower trie structures present the worst

case. Thus Fig. 3 and Fig. 4(a) present the number of Kbits

required to store the lower trie structures for Ethernet address

and IP address, respectively. The trie node data is composed

of the child pointer, the label and a flag bit. However, each

level node requires different child pointer sizes. This size is

determined by the worst case (lower trie). The very low

number of nodes of L1 is notable across the graphs of Fig. 3

and Fig. 4(a). The maximum stored nodes in L1 are 32 and the

memory consumption is less than 1 Kbit (832 bits).

Fig. 3 Memory space required for each level of Ethernet Lower trie.

The coza/b, soza/b filters are shown separately in Fig. 4 (b)

due to their higher number of stored nodes compared with the

other filters. Due to the exception described in Section II, the

evaluation is performed for both higher and lower tries.

For Routing filters, the max. memory space required is

572.57 Kbits for the lower trie implementation using the

coza/b or soza/b filters. For these filters, the higher trie

structure requires higher memory space for L2 and L3 with a

total of 706.06 Kbits. Otherwise, 321.3 Kbits are needed for

the lower trie implementation.

Comparing the two MBT evaluations, the Ethernet address

fields require a higher number of stored nodes for all cases

with a maximum requirement of 54010. Consequently, the

max. no. of bits required for the three levels of trie structure

using this worst case is 983.7 Kbits (gozb filter).

For the IP address of the Routing filter, the number of

stored nodes is less than 40000 even for the worst case filters

with more than 180K rules (coza, cozb, soza and sozb). This

difference is due to the fact that the MAC learning filters are

composed of exact values for Ethernet address fields.

The multi-bit trie can suffer from memory explosion in

cases of coz/b, soza/b filters from Routing filters due to all the

individual values that must be stored. The label method selects

the unique values to store, avoiding value repetition.

Fig. 4 (a) Memory space required for each level of IP address Lower trie.

Fig. 4 (b) Memory space required for each level of IP address Higher trie

and Lower trie for coza/b and soza/b filters.

B. Evaluation of Update Process

In order to simulate the Software Controller platform, two

files are generated with the information to characterize each

algorithm and table block. For each entry, the required

information is extracted and interpreted to update the

algorithm structures and the action tables. For example, the

trie node information is determined according to the address

fields, and the exact match LUTs are characterized from

Fig. 2 (a) Number of total stored nodes for Ethernet address fields

using different flow filters
Fig. 2 (a) Number of total stored nodes for IP address fields using

different flow filters

VLAN ID or Ingress port fields. The processed information is

stored in an update file. The timing evaluation is based on an

update process using optimized algorithm files and action

files. On average, two clock cycles are required for each

update. The update data is composed of the label and the

information for each lookup algorithm structure or table. The

index used to address the algorithm data is calculated in the

first clock cycle and stored in the second clock cycle. The

same process is performed for both algorithm and lookup table

update. Fig. 5 shows the number of CPU clock cycles required

to update the lookup algorithms using the optimized algorithm

files, in which the label method is applied, and initial

algorithm files (without the label method).

The advantage of the update time reduction using the label

method is considerable, achieving a 56.92% fewer CPU clock

cycles on average. Consequently, the update process is faster

and the memory space is reduced using the label method.

Fig. 5 Number of CPU clock cycles required for algorithm update using

the original algorithm and using the label method.

VI. CONCLUSION

The OpenFlow protocol describes an extensive list of

packet header fields that can be used for packet/flow

classification. The leads to a potentially large rule set for fine-

grained flow classification. The multiple table pipelined

approach introduced in OpenFlow v1.1 is designed to

optimize the lookup process. An analysis of OpenFlow filters

has been presented in this paper, highlighting the potential to

select a lookup method based on the packet header field type.

Based on this analysis, a multiple table lookup architecture is

proposed in which parallel one-dimensional field searches are

performed with an individual field set managed for each table.

The performance study, focused on memory consumption for

the MBT algorithm, has identified an optimal approach to

minimize memory usage. For the investigated prototype, only

5 Mbits of total memory are required. A significant

improvement of the update process is also demonstrated.

REFERENCES

[1] Open Networking Foundation, OpenFlow https://
www.opennetworking.org/Openflow . Accessed February 2015.

[2] S. Sezer, S. Scott-Hayward, P. Kaur Chouhan, B. Fraser, D. Lake, J.
Finnegan, N. Viljoen, M. Miller, N. Rao. “Are we ready for SDN?-

Implementation Challenges for Software- Defined Networks”. IEEE
Communications Magazine, Vol 51, pp. 36-43, 2013.

[3] Open Networking Foundation “The Benefits of Multiple Flow
Tables and TTPs “, Version Number 1.0, February 2, 2015.

[4] Altera, Stratix V. https:// www.altera.com/products/fpga/stratix-
series/stratix-v/support.html. Accessed December 2014.

[5] H. Song, "Protocol-oblivious forwarding: Unleash the power of
SDN through a future-proof forwarding plane," in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, 2013, pp. 127-132.

[6] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D.
Talayco, A. Vahdat, G. Varghese and D. Walker, "Programming
protocol-independent packet processors," ArXiv Preprint
arXiv:1312.1719, 2013.
[7] G. Pongrácz, L. Molnar and Z. L. Kis, "Removing roadblocks from
SDN: OpenFlow software switch performance on intel DPDK," in
Software Defined Networks (EWSDN), 2013 Second European
Workshop on, 2013, pp. 62-67.
[8] S. Singh, F. Baboescu, G. Varghese, J. Wang “Packet Classification
Using Multidimensional Cutting”. SIGCOMM, pp. 213-224, 2003.

[9] Y. Qi, J. Fong, W. Jiang, B. Xu, J.Li, V. Prasanna, “Multi-
dimensional Classificaiton on FPGA: 100 Gbps and Beyond”, Field-
Programmable Technology, pp: 241-248, 2010.

[10] P. Gupta and N. Mckeown, "Packet classification on Multiple
Fields". SIGCOMM’99, pp. 147-160, 1999.

[11] D. E. Taylor and J.S. Turner, “Scalable Packet Classification using
Distributed Crossproducting of Field labels”, IEEE INFOCOM 2005,
Vol. 1, pp. 269-280, 2005.

[12] V. Srinivisan, S. Suri, G. Varghese, “Packet Classification using
Tuple Space Search”, ACM SIGCOMM’99, pp 135-146, 1999.

[13] R. Avudaiammal, R. SivaSubramanian, R. Pandian, P.

Seethalakshmi, “TTSS Packet Classification Algorithm to enhance
Multimedia Applications in Network Processor based Router”,

International Journal of Computer Science and Information Security,

vol. 2, 2009.
[14] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet

Forwarding Using Efficient Multi-dimensional Range Matching”, ACM

Sigcomm, 1998.
[15] NetFPGA 10G OpenFlow Switch Architecture [Online] Available:
https://github.com/NetFPGA/NetFPGA-public/wiki/NetFPGA-10G-
OpenFlow-Switch

[16] O. Ferkouss, I. Snaiki, O. Mounaouar, H. Dahmouni, R. Ben Ali, Y.
Lemieux and C. Omar, "A 100gig network processor platform for
openflow," in Network and Service Management (CNSM), 2011 7th
International Conference on, 2011, pp. 1-4.

[17] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao
and Y. Zhang, "ServerSwitch: A programmable and high performance
platform for data center networks." in Nsdi, 2011, pp. 2-2

[18] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li and V. Prasanna, "Multi-
dimensional packet classification on FPGA: 100 gbps and beyond," in
Field-Programmable Technology (FPT), 2010 International Conference
on, 2010, pp. 241-248.
[19] W. Jiang, V. Prasanna “Scalable Packet Classification on FPGA”.
IEEE Transactions on Very Large Scale Integration (VLSI) System, pp.
1668-1680, 2012.

[20] K. Guerra Perez, X. Yang, S. Scott-Hayward, S. Sezer “A
Configurable Packet Classification Architecture for Software-Defined
Networking”. IEEE SoCC’14, pp. 353-358, 2014

[21] GitHub Yang (Jack) Wu, https:// github.com/wuyangjack/stanford-
backbone. Accessed February 2015.

[22] K. Guerra Perez, X. Yang, S. Scott-Hayward, S. Sezer “An
Improvement of IP address Lookup based on Rule Filter Analysis”.
IEEE ICC’14, pp. 688-693, 2014.

