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Memory Cost Analysis for OpenFlow Multiple Table 

Lookup 
 

 
Abstract—Multiple Table Lookup architectures in Software 

Defined Networking (SDN) open the door for exciting new 

network applications. The development of the OpenFlow 

protocol supported the SDN paradigm. However, the first version 

of the OpenFlow protocol specified a single table lookup model 

with the associated constraints in flow entry numbers and search 

capabilities. With the introduction of multiple table lookup in 

OpenFlow v1.1, flexible and efficient search to support SDN 

application innovation became possible. However, 

implementation of multiple table lookup in hardware to meet 

high performance requirements is non-trivial. One possible 

approach involves the use of multi-dimensional lookup 

algorithms. A high lookup performance can be achieved by using 

embedded memory for flow entry storage. A detailed study of 

OpenFlow flow filters for multi-dimensional lookup is presented 

in this paper. Based on a proposed multiple table lookup 

architecture, the memory consumption and update performance 

using parallel single field searches are evaluated. The results 

demonstrate an efficient multi-table lookup implementation with 

minimum memory usage. 

Keywords— Packet Classification; Lookup Algorithms; 

Software-Defined Networking; OpenFlow; Multi Table Lookup. 

I. INTRODUCTION 

Software-defined Networking has evolved as a platform to 

increase flexibility and innovation in network traffic 

management. It achieves this by separation of the control and 

data plane with the control plane responsible for defining 

network-wide traffic behaviour and the data plane responsible 

for implementing packet processing decisions. The control 

plane consists of a set of Controllers and the data plane 

consists of the network elements e.g. switches, routers. The 

controllers connect to the data plane via an Application 

Programming Interface (API).  

OpenFlow [1] is the most popular API for the control-data 

interface. The OpenFlow protocol describes an extensive list 

of packet header fields for packet and flow classification. The 

classification of packets into flows uses multiple fields of the 

packet header. This supports fine-grained flow classification 

based on which new network applications can be developed. 

However, with increasing granularity of the flow definition, a 

greater volume of flow match entries are held in the flow 

tables of network devices [2]. 

The first version of the OpenFlow protocol specified a 

single table lookup model with the associated constraints in 

flow entry numbers and search capabilities. The complexity 

for a single lookup table to support a large number of flow 

entries and arbitrary flow features of different applications is 

high [3]. In order to optimize the lookup process, a multiple 

table pipeline model was introduced in OpenFlow v1.1. Using 

this method, packets can be matched against a defined set of 

flow tables as specified by the application. This reduces the 

number of flow entries per table and increases the 

classification performance accordingly.  

There are several challenges when implementing the 

multiple table lookup model in hardware. For example, 

different application characteristics e.g. no. of packet header 

fields, field lengths, no. of actions etc. must be mapped into 

appropriate lookup tables [3]. In addition, for next-generation 

networks, packet classification must support high network 

throughput, e.g. 40-100 Gbps. The lookup efficiency in terms 

of scalability, flexibility, capacity, incremental update ability, 

memory usage and speed must all be considered. 

A possible method to implement the multiple table lookup 

model in hardware involves the use of multi-dimensional 

lookup algorithms. For high lookup performance, the flow 

entries can be stored in embedded memory. The memory 

requirements for such a solution are analyzed in this paper. A 

detailed study of OpenFlow flow filters for multi-dimensional 

lookup is presented and a multiple table lookup architecture is 

proposed based on parallel single field searches. The 

architecture is implemented and synthesized on a Stratix V 

FPGA [4] and memory consumption and update performance 

results are presented for the OpenFlow flow filters analyzed 

(Routing and MAC Filters). The results demonstrate an 

efficient implementation of multiple table lookup in hardware 

with minimum memory usage. 

 The rest of the paper is organized as follows: In section II, 

related work is discussed. A survey of different flow filters is 

presented in section III and the multiple table lookup 

architecture is described in section IV. In section V, 

performance evaluation results are presented and discussed. 

Finally, in section VI, the paper is concluded. 

II. RELATED WORK 

There is a small body of research on packet/flow 

classification for SDN and OpenFlow-based devices for single 

and multi-table lookup. Flow table mapping is considered in 

[5], [6]. In [[6] a simple table distribution with parallel tables 

for non-dependent fields is proposed. In [7], the limitations of 

an OpenFlow v1.3 software switch with Intel DPDK are 

highlighted. For example, the packet processing performance 

drops rapidly with an increasing number of flow rules. The 

authors suggest improvements such as flow caching, better 

lookup algorithms, and lookup algorithm selection per table 

with tables containing rules of similar types. 

Multi-dimensional lookup techniques can be categorized 

into four groups; Trie-based (HyperCuts [8], HyperSplit [9]), 

Decomposition (RFC [10], DCFL [11]), Hashing (TSS [12], 

TTSS [13]) and Hardware-based (TCAM, Bitmap-insertion 



[14]). The advantages and disadvantages of these techniques 

are outlined in Table I. 
TABLE I 

EVALUATION OF MULTI-DIMENSIONAL LOOKUP ALGORITHMS 

Category Advantages Disadvantages 

Trie-Geometric Efficient Memory 
Moderate lookup 

Very Complex update  

Decomposition Fast Lookup  
Memory explosion 

Complex update 

Hashing-based Fast Lookup 
Collision issue 

Memory explosion  

Hardware-based Very Fast Lookup 
Memory Limitation 

Poor Flexibility  

 

The most common hardware-based structure proposed for 

OpenFlow multiple table devices [15]-[17] is a combination of 

Ternary Content Addressable Memory (TCAM) for wildcard 

matching using linear search and SRAM for exact matching 

using a hash function. In [16], the authors use an Extended 

RFC algorithm. The TCAM and SRAMs are divided into 

blocks to represent each table. The lookup process involves an 

exact match search followed by a TCAM lookup if no match 

was found in the first stage. Although TCAM is a popular 

method for classification due to its high lookup speed, it has 

disadvantages in terms of high power consumption, storage 

limitation and the difficulty of rule ternary conversion. 

An alternative to TCAM is to use multi-dimensional lookup 

algorithms. Two methods have been proposed [18]-[19] based 

on the HyperCut algorithm. However, they are limited to 

single table lookup and the number of rules stored reduces 

with increasing number of lookup fields. The high lookup 

speed of the decomposition approach was demonstrated for a 

single table lookup in [20]. The decomposition technique uses 

parallel search of packet header fields (using a set of 

algorithms) and combines the results for the final matching 

rule lookup.  

In comparison to the existing research, this work presents a 

solution to replace the TCAM with a multi-field, multiple 

table lookup model. The focus of the paper is the analysis of 

memory requirements for this solution, which is critical to 

achieve high lookup performance. 

III. FILTER ANALYSIS 

In order to determine the appropriate search algorithms for 

optimal memory consumption across the multiple table 

lookup, a deep study of network flow filters is performed. The 

terms filter and rule are used here interchangeably. 

A. OpenFlow Match Fields 

The number of matching header fields that can be used for 

packet classification based on OpenFlow v1.3 is 39 (excluding 

metadata) [1]. The metadata field is an additional field 

composed of 64 bits. The system uses the metadata internally 

to pass information between lookup tables during packet 

processing. There are 15 common matching fields supporting 

applications, such as Access Control List, MAC learning or 

Routing. They are listed in Table I along with the field length 

in bits and the matching method required. In addition to the 

field length, the definition of the field in terms of syntax such 

as range or prefix is relevant for the lookup process. Based on 

this syntax, each field requires a different matching method, 

for example Exact Matching (EM), Range Matching (RM) or 

Longest Prefix Matching (LPM). Different matching types 

present a challenge to existing packet classification 

algorithms. The EM approach compares all bits of the packet 

header field against the flow entry field. For the RM approach, 

the narrowest range is selected from all the ranges of the filter 

that match against the packet header field. The LPM selects 

the entry with the prefix with the largest number of matching 

bits from all the matching prefixes of the filter.  
TABLE II 

OPENFLOW MATCH FIELD, FIELD LENGTH AND MATCHING METHOD 

Matching Field 
Number 

of Bits 

Matching Method 

Required 

Ingress Port 32 Exact Matching (EM) 

Source Ethernet  48 Wildcard matching (LPM) 

Destination Ethernet 48 Wildcard matching (LPM) 

Ethernet Type 16 Exact Matching (EM) 

VLAN ID 13 Exact Matching (EM) 

VLAN Priority 3 Exact Matching (EM) 

MPLS Label 20 Exact Matching (EM) 

Source IPv4 32 Wildcard matching (LPM) 

Destination IPv4 32 Wildcard matching (LPM) 

Source IPv6 128 Wildcard matching (LPM) 

Destination IPv6 128 Wildcard matching (LPM) 

IPv4 Protocol  8 Exact Matching (EM) 

IPv4 ToS 6 Exact Matching (EM) 

Source Port 16 Wildcard matching (RM) 

Destination Port 16 Wildcard matching (RM) 

 

B. Lookup Methods 

Three lookup methods have been identified: EM, RM, and 

LPM. For the fields requiring exact matching, this lookup can 

be handled by a hash function. However, the lookup process 

for fields that require wildcard matching is more complex. For 

this reason, this search method is considered in detail in this 

work in order to achieve high lookup performance. The 

Ethernet and IP address fields are a focus of this work as they 

present the largest field length.   

Rule replication is an issue for multi-dimensional lookup 

algorithms, which implies the storage of the copied rules 

through the algorithm structure. For example, HyperCuts 

requires that the same rule be stored in several trie nodes, 

which leads to inefficient memory use. However, the 

individual field management provides flexibility to handle 

each rule field. An analysis based on the repetition of each 

rule field is therefore performed.  

C. MAC and Routing Filter Analysis 

For the analysis presented in this section, the filter set 

presented in [21] is studied. This filter set contains a range of 

flow sets based on different applications e.g. ACL entries 

(_rtr_config), Routing/Packet Forwarding (_rtr_route), MAC 

learning (_rtr_mac_table) and ARP (_rtr_arp). Each of these 

flow sets is comprised of 16 different flow filters of different 

sizes. These are named according to the Router ID e.g. bbra. 



The analysis begins with a survey of the number of unique 

values identified in the filter set for a given field.  

In Table III, the MAC learning application ruleset is 

analyzed. The two fields in this set are VLAN ID and 

Destination Ethernet address. For each filter, the total number 

of rules and the number of unique VLAN ID and Ethernet 

addresses within that ruleset are identified. Based on a 

previous study of field partition [22], the evaluation of the 

Ethernet address is presented for 16-bit field partitions.  

As illustrated in Table III, there are relatively few unique 

values of VLAN ID field. For example, there are no more than 

209 different VLAN ID values (gozb filter) out of any of the 

analyzed filter sets. The VLAN ID field uses exact matching 

(Table II) and this observation contributes to the multiple table 

lookup design presented in Section IV. The Ethernet address 

field is also in exact value format. The Ethernet address is 

assigned to a network interface for communication. The first 3 

bytes are the Organizationally Unique Identifier (OUI) while 

the second 3 bytes are Network Interface Controller (NIC) 

specific. The results are as expected i.e. there is a smaller 

number of unique values of the higher 16-bit partition 

compared with the other partition values. 
TABLE III 

NUMBER OF UNIQUE FIELD VALUES OF FLOW-BASED MAC FILTER 

Flow 

Filter 

Number 

of Rules 

Number of unique values for MAC filter 

VLAN 

ID 

Higher 

16-bit 

Ethernet 

Middle 

16-bit 

Ethernet 

Lower 

16-bit 

Ethernet 

bbra 507 48 46 133 261 

bbrb 151 16 26 38 55 

boza 3664 139 136 3276 2664 

bozb 4454 139 137 1338 3440 

coza 3295 32 225 1578 2824 

cozb 2129 32 194 1101 1861 

goza 6687 208 172 2579 5480 

gozb 7370 209 159 1946 6177 

poza 4533 153 195 2165 3786 

pozb 4999 155 169 1759 4170 

roza 3851 114 136 2389 3264 

rozb 3711 113 140 1920 3175 

soza 3153 41 187 1115 2682 

sozb 2399 39 161 821 2132 

yoza 3944 112 178 1655 3180 

yozb 2944 101 162 1298 2351 

 

For further analysis, the Routing filter is also evaluated. 

This filter contains the IPv4 address and interface fields (e.g. 

ingress port). The ACL filter set also contains the IP address 

field. However, the Routing filters contain a larger number of 

wildcard flow entries and require larger prefix lookups (e.g. 

0.0.0.0/0). Therefore, to better illustrate the LPM, the Routing 

filter analysis results are presented as an example of the worst 

case. As for the MAC filter, the Routing filter survey is based 

on the unique field values for IP address with 16-bit partitions. 

Table IV summarizes the analysis of the routing filter.  

 

 

 

TABLE IV 

NUMBER OF UNIQUE FIELD VALUES OF FLOW-BASED ROUTING FILTER 

Flow 

Filter 

Number of 

Rules 

Number of unique values for Routing 

filter 

Ingress 

Port 

Higher 

16-bit IP 

Address 

Lower 

16-bit IP 

Address 

bbra 1835 40 82 1190 

bbrb 1678 20 82 1015 

boza 1614 26 53 1084 

bozb 1455 26 53 952 

coza 184909 43 20214 7062 

cozb 183376 39 20212 5575 

goza 1767 21 57 1216 

gozb 1669 22 57 1138 

poza 1489 18 54 976 

pozb 1434 20 54 932 

roza 1567 17 52 1053 

rozb 1483 16 52 988 

soza 184682 48 20212 6723 

sozb 180944 36 20212 3168 

yoza 4746 77 58 3610 

yozb 2592 48 55 1955 

 

Similar to the MAC filter results, it can be seen in Table IV 

that the number of unique ingress port fields achieves a 

maximum of 77 different values (yoza filter). Even the largest 

flow filter for routing (coza with 184909 entries), only has 43 

unique ingress port values. The ingress port field uses exact 

matching, similar to the VLAN ID field of Table II.  

In contrast, the IP address field can be composed of 

wildcard or exact values. The routing filters are comprised of 

IP address field with wildcards. Since the address field 

identifies the network device (similar to the Ethernet address 

for network interface), the higher bits of the address identify 

the network and the lower bits identify a particular network 

device i.e. the host. Therefore, it is expected that the higher 

16-bit partitions contain a smaller number of unique values 

compared with the lower 16-bit partitions. This is illustrated in 

Table IV. The exceptions to this are coza, cozb, soza and sozb 

filters, as highlighted. For these four filters, the higher 16 bits 

of the IP address field present a greater number of unique 

values, indicating a wider range of network addresses in these 

filter sets. The coza filter of routing application (Table IV) 

reaches a maximum of 20214 unique address values 

corresponding to 11% of the total flow entries.  

Based on the filter analysis observations, the proposed 

multiple table lookup design is described in the next section. 

IV. MULTIPLE TABLE LOOKUP DESIGN 

As previously noted, the proposed multiple table lookup 

architecture is based on the decomposition technique. The 

architecture is illustrated in Fig. 1 with the individual elements 

described in the next sections.  

A. Packet header and Partition/Selector 

For the lookup process, the packet header is split into the 

selected fields used for the first table lookup. Each field 



partition is sent to the corresponding single-field algorithm.   

S. 

 
Fig. 1 Multiple Table Lookup Architecture 

 

B. Algorithm Set and Label Method 

From the analysis of the unique values of each flow field 

presented in Section III, it was identified that the filters are 

comprised of a set of entries based on field repetition. 

Labelling the unique rule fields is a key method for efficient 

storage and to avoid rule replication. A label method was 

presented in [11] for this purpose. The label method is an 

efficient technique for algorithms with fixed structures such as 

Multi-bit Trie (MBT), and is not applicable to dynamic 

structures, which require a re-built algorithm structure. 

For the proposed architecture, the exact matching fields for 

the analysed flow filters are handled using a simple hash-

based Lookup table (LUT). However, the prefix-based fields 

require a more complex lookup to support LPM. Several one-

dimensional lookup algorithms support LPM, of which the 

multi-bit trie algorithm is the most popular. MBT searches 

several bits at one tree level simultaneously.  

The label method is applied to each of these lookup 

algorithms so that each unique field value is labelled and 

stored in the corresponding algorithm.  

C. Index Calculation and Action Tables 

The result from each algorithm search is a label, which is 

used to obtain the final index to address the action tables.  

In the applications presented in Section III (Routing and 

MAC learning), there are two fields that can be distributed 

into two tables. The flow entries have been adapted to support 

the required OpenFlow-based instructions [1] for multiple 

table lookup. Hence, when the packet header matches with a 

flow entry, there are two required instructions: 

- Goto-Table:  Forward the packet header being processed 

to the next table. 

- Write-action: Apply the actions to the packet header e.g. 

forward the packet to a specific output port. 

In the case that no matching rule has been found for the  

packet header, the instruction is “Send  to controller”.  

The results of the performance evaluation for this multiple 

table lookup architecture are presented in the next section. 

 

V. PERFORMANCE EVALUATION 

The proposed architecture is implemented and synthesized 
on 5SGXMB6R3F43C4 of the Stratix

®
 V FPGA family [4]. 

The evaluation of the proposed architecture is measured in 
terms of memory consumption and update performance. 

A. Figures and Tables 

Implementation of the proposed architecture based on the 

MAC learning and Routing filters consumes 5 Mb of total 

memory. In this case, 4 OpenFlow Lookup Tables are 

implemented along with two independent multibit trie 

structures and two exact matching LUTs. The MBT 

implementation consumes the majority of the total storage 

(2Mb for both MBT structures). 

For these two use cases, 209 values must be addressed on 

implemented LUTs based on the worst case of unique fields 

(VLAN ID from Table III). However, it can be seen that IP 

and Ethernet address fields are more complex and the memory 

space of MBT algorithms depends on the number of stored trie 

nodes, which depends on the prefixes.  

In order to evaluate the memory consumption for MBT, 

Fig. 2 shows the results regarding the number of nodes stored 

for Ethernet address fields (Fig. 2 (a)) and IPv4 address fields 

(Fig. 2 (b)). The Ethernet address field is 48 bits and requires 

three 16- bit MBT structures. The highest 16 bits of the fields 

are searched in the higher trie, the following 16 bits are sent to 

the middle trie and, finally, the lower trie handles the lowest 

remaining 16 bits of the field. All tries are distributed with 

three levels. The IPv4 address field is split into two 16-bit 

partitions and sent to two 3-level trie structures (Higher trie 

and Lower trie). Every trie structure works in parallel to find 

the corresponding label. 

In Fig. 2(b), it can be seen that for all filters except coza/b 

and soza/b, the lower tries consume larger memory space to 

allocate the required stored nodes. This corresponds to the 

number of unique values identified in Table IV. Analysing the 

maximum number of nodes, the largest memory space must 

store 54010 nodes (MAC learning gozb filter).  

To support pipeline lookup in the multiple table approach, 

each lookup algorithm is implemented in a separate memory 

block, and each node level of the multi-bit trie is searched in a 

different pipeline stage. To optimize the distribution of the 

pipeline trie structure, each level has been analyzed. A study 

presented in [22] concluded that the distribution of 3-level trie 

is optimal for a tradeoff between fast lookup and efficient 

memory space. The memory space required for each memory 

block (L1, L2 and L3) and the total space are evaluated. As 

shown in Fig. 2, the lower trie structures present the worst 

case. Thus Fig. 3 and Fig. 4(a) present the number of Kbits 

required to store the lower trie structures for Ethernet address 

and IP address, respectively. The trie node data is composed 

of the child pointer, the label and a flag bit. However, each 

level node requires different child pointer sizes. This size is 

determined by the worst case (lower trie). The very low 

number of nodes of L1 is notable across the graphs of Fig. 3 

and Fig. 4(a). The maximum stored nodes in L1 are 32 and the 

memory consumption is less than 1 Kbit (832 bits). 



 

 

 
Fig. 3 Memory space required for each level of Ethernet Lower trie. 

 

The coza/b, soza/b filters are shown separately in Fig. 4 (b) 

due to their higher number of stored nodes compared with the 

other filters. Due to the exception described in Section II, the 

evaluation is performed for both higher and lower tries.  

For Routing filters, the max. memory space required is 

572.57 Kbits for the lower trie implementation using the 

coza/b or soza/b filters. For these filters, the higher trie 

structure requires higher memory space for L2 and L3 with a 

total of 706.06 Kbits. Otherwise, 321.3 Kbits are needed for 

the lower trie implementation. 

Comparing the two MBT evaluations, the Ethernet address 

fields require a higher number of stored nodes for all cases 

with a maximum requirement of 54010. Consequently, the 

max. no. of bits required for the three levels of trie structure 

using this worst case is 983.7 Kbits (gozb filter). 

For the IP address of the Routing filter, the number of 

stored nodes is less than 40000 even for the worst case filters 

with more than 180K rules (coza, cozb, soza and sozb). This 

difference is due to the fact that the MAC learning filters are 

composed of exact values for Ethernet address fields.  

The multi-bit trie can suffer from memory explosion in 

cases of coz/b, soza/b filters from Routing filters due to all the 

individual values that must be stored. The label method selects 

the unique values to store, avoiding value repetition. 

 

 

 

 

 

 
Fig. 4 (a) Memory space required for each level of IP address Lower trie. 

 

 
Fig. 4 (b) Memory space required for each level of IP address Higher trie 

and Lower trie for coza/b and soza/b filters. 

 

B. Evaluation of Update Process 

In order to simulate the Software Controller platform, two 

files are generated with the information to characterize each 

algorithm and table block. For each entry, the required 

information is extracted and interpreted to update the 

algorithm structures and the action tables. For example, the 

trie node information is determined according to the address 

fields, and the exact match LUTs are characterized from 

Fig. 2 (a) Number of total stored nodes for Ethernet address fields 

using different flow filters 
Fig. 2 (a) Number of total stored nodes for IP address fields using 

different flow filters 



VLAN ID or Ingress port fields. The processed information is 

stored in an update file. The timing evaluation is based on an 

update process using optimized algorithm files and action 

files. On average, two clock cycles are required for each 

update. The update data is composed of the label and the 

information for each lookup algorithm structure or table. The 

index used to address the algorithm data is calculated in the 

first clock cycle and stored in the second clock cycle. The 

same process is performed for both algorithm and lookup table 

update. Fig. 5 shows the number of CPU clock cycles required 

to update the lookup algorithms using the optimized algorithm 

files, in which  the label method is applied, and initial 

algorithm files (without the label method).  

The advantage of the update time reduction using the label 

method is considerable, achieving a 56.92% fewer CPU clock 

cycles on average. Consequently, the update process is faster 

and the memory space is reduced using the label method. 

 

 
Fig. 5 Number of CPU clock cycles required for algorithm update using 

the original algorithm and using the label method. 

VI. CONCLUSION 

The OpenFlow protocol describes an extensive list of 

packet header fields that can be used for packet/flow 

classification. The leads to a potentially large rule set for fine-

grained flow classification. The multiple table pipelined 

approach introduced in OpenFlow v1.1 is designed to 

optimize the lookup process. An analysis of OpenFlow filters 

has been presented in this paper, highlighting the potential to 

select a lookup method based on the packet header field type. 

Based on this analysis, a multiple table lookup architecture is 

proposed in which parallel one-dimensional field searches are 

performed with an individual field set managed for each table.  

The performance study, focused on memory consumption for 

the MBT algorithm, has identified an optimal approach to 

minimize memory usage. For the investigated prototype, only 

5 Mbits of total memory are required. A significant 

improvement of the update process is also demonstrated.  
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