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1. INTRODUCTION

The use of fundamental and technical analysis by financigken@rofessionals is well doc-
umente(ﬂ Empirical evidence suggests that investors and fund masage combinations of
fixed and switching strategies based on fundamental anaitathanalysis when making in-
vestment decisions. Recent laboratory experiments (eanrieset al, 2005 and Anufriev
and Hommes, 2012) provide further evidence on that agestsiogple “rule of thumb” trading
strategies and are able to coordinate on a common predrctienshowing that heterogeneity
in expectations is crucial to describe individual foregastand aggregate price behavior. In
this paper we test a simple asset pricing model of heteraysnagents using the daily DAX
30 indeE from 1975 to 2007. We show that the market is dominated by daptae investors
who constantly switch between fundamental and trend fotigugtrategies, although some in-
vestors never change their strategies over the time. Titsgsovide a strong support to the
empirical evidence and laboratory experiments. Consety@re provide further insights into
the explanatory power of heterogeneous agent models tacfalanarkets.

This paper is largely motivated by the recent literature etietogeneity and bounded rational-
ity. Due to limited information and endogenous uncertawftyhe state of the world, investors
are prevented from forming and solving life-time optimieatproblems in favor of more sim-
ple reasoning and rules of thumb (Shefrin, 2005). In genamaéstors are boundedly ratio-
nal by making optimal decisions based on their limited infation and expectations (Sargent,
1993). There is a growing evidence on investors’ heteraggeard bounded rationality, which
has profound consequences for the interpretation of eogpievidence and the formulation of
economic policy (Heckman, 2001). Research into assetngriand financial market dynam-
ics resulting from bounded rationality and interaction déptively heterogeneous traders has
flourished over the last three decades and various hetexogeragent models (HAMs) have

been developeﬂl.‘l’o explore the role of agents’ heterogeneity in financialkets, the market

See, for example, Allen and Taylor (1990), Taylor and All#842), Menkhoff (1998) and Cheurg al, (2004)

for foreign exchange rate markets and Menkhoff (2010) fadfmanagers.

2The DAX, Deutscher Aktienindex (German stock index), tsatke segment of the largest and most im-
portant companies, known as blue chips, on the German eguitiarket. It contains the shares of the 30
largest and most liquid companies admitted to the FrankBiock Exchange in the Prime Standard seg-
ment. The DAX represents about 80% of the aggregate primmelatds market cap. Sddtp:/www.dax-
indices.com/EN/index.aspx?pagelD=1

3See, for example, Frankel and Froot (1990), Day and Huar@0(l Thiarella (1992), Lux (1995, 1998), Brock
and Hommes (1998), Lux and Marchesi (1999), Hommes (20019n@nd Yeh (2002), Farmer and Joshi (2002),
Chiarellaet al.(2002), Chiarella and He (2002, 2003), and De Grauwe and &din2006).
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dominance of different trading strategies representedffarent types of traders plays a central
role in market price behavior. It has been modelled eith@lictily by examining their relative
activity impacts, such as Day and Huang (1990) and Chiaf&882) in early literature, or ex-
plicitly by examining their market fractions, such as Lu®@95b), Brock and Hommes (1998),
and Dieci, Foroni, Gardini and He (2006). The HAMs have sasfidly explained market
booms, crashes, and deviations of the market price fromuh@aimental price. They are also
able to replicate various stylized facts (including excedatility, excess skewness, fat tails,
volatility clustering and power-law behavior in return ablity) observed in financial markJ]s.
The promising perspectives of the HAMs have motivated rrégmpirical studies. Focusing
on the model of Dieci et al. (2006), which allows for agenthei having fixed strategies or
switching their strategies based on past performance ower tve extend the model to include
noise traders to rationalize the market noise in the modelp@in contribution is then to sys-
tematically calibrate a large number of structural paramsedf the model and subsequently
perform series of formal econometric tests showing thatctddrated model is well able to
replicate a large number of stylized facts.

This paper is closely related to a growing literature on thiébcation and estimation of the
HAMs in which the heterogeneity has been modeled throughviiileknown fundamentalists
and chartists approach. These models have been succgsstkd to empirically explain spec-
ulation and bubble-like behavior in financial marlgaﬁespite the success such as Franke and
Westerhoff (2011, 2012), econometric analysis and esiomatf HAMs are still challenging
tasks. The difficulties of estimation come from the complexif the HAMs, together with
(typically) many parameters, which makes verification @ntification rather difficult, and thus
proving consistency of estimation troublesome. Quite ipbsse HAM might be misspecified,
so that likelihood and/or moments based methods might eodaor results. But this situation
is not alone when we look at literatures in other areas of @encs and finance. In the real busi-

ness cycles literature (Kydland and Prescott, 1982) anitiygopemium puzzle literature (Mehra

“We refer the reader to Hommes (2006), LeBaron (2006), Clhaagé al. (2009), Lux (2008), and Cheret al.
(2012) for surveys of recent developments in this litemtur

SSee, for instance, earlier works by Vigfusson (1997), B48#©9), Chavas (2000), and for stock markets (Boswijk
et al, 2007; Franke, 2009; Franke and Westerhoff, 2011, 2012ar€léa et al, 2012, 2014; He and Li, 2015),
foreign exchange markets (Westerhoff and Reitz, 2003; Dg dbal, 2010; ter Elleret al, 2013), mutual funds
(Goldbaum and Mizrach, 2008), option markets (Frigisl, 2010), oil markets (ter Ellen and Zwinkels, 2010),
and sovereign European CDS spreads (Chiasgli, 2015). Also, HAMs have been estimated with contagious
interpersonal communication by Gilli and Winker (2003)fakanoet al. (2005), Lux (2008, 2012), and other
works reviewed in Liet al. (2010) and Cheset al. (2012).
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and Prescott, 1985), we face with the very similar probleand,the models are assessed by cal-
ibration method. For example, in Kydland and Prescott (1982 calibration consists in two
steps. First, structural parameters are calibrated teegdhuprevious empirical studies and to
match long run average values. Second, the verification jdeimented by judging the ade-
guacy of the model to reproduce well chosen stylized fabtspairameters asides from those in
the first step are treated as free parameters, their valedisear chosen to minimize the distance
between the well chosen stylized facts of the U.S. econorytlaa corresponding ones of the
model. The calibration methodology is widely used in areakiding Dynamic Stochastic Gen-
eral Equilibrium (DSGE) models. It does not consider thentdieation problem, precision of
estimates and the goodness of fit are provided by the distaetegeen the model and the data.
It causes a huge amount of debate comparing with the usualatgtn methodology where

it attempts to find the parameters that lead to the best tstatifit by Maximum Likelihood
(ML), Generalized Method of Moments (GMM), Method of Simiédd Moments (MSM), or
Efficient Method of Moments (EMM), and the performance of thedel is examined through
specification and goodness of fit t£t§he calibration and estimation are closest in spirit to
Geweke (2006) classification of weak and strong economigtigcpretation. The advantage
of weak econometric interpretation is that the estimatogsodten more robtﬂthan the full
information estimators. In addition, it allows the resé&@rcto focus on the characteristics in
the data for which the model (which is necessarily an ab$traof reality) is most relevant.
The attractions of strong econometric interpretation fgarcwhen successful, it provides a full
characterisation of the data generating process and aftowsoper specification testing. In
existing works on estimation of HAMs, Franke (2009) appMSM to a small model of Man-
zan and Westerhoff (2005) successfully. Franke and Wesftg2012) further develop model
comparison method. The methods of Gilli and Winker (2003R&r and Gilli (2003), Liet

al. (2010) and He and Li (2015) belong to the weak econometrarpnétation. HAMs are
still in its infancy and they are very likely be misspecifidtlis from this point we argue that

this leaves room for weak econometric interpretation, #nsalternative to other existing ones,

5The debate are best summarized by Canova (1994), Hansenemfehiin (1996), Kydland and Prescott (1991,
1996), and Dridiet al. (2007).
’see, also in Diebolét al. (1998) and Schorfheide (2000).
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and it is also usable for more complicated models. It can tegpreted in terms of consistent
estimation of the parameter of interest (Dratial, 2000

In this paper, following Liet al. (2010) and He and Li (2015) we take the weak economet-
ric interpretation based on the power-law decay patterritkefiutocorrelation of returns, the
squared returns and the absolute returns for the DAX 30 stauket daily closing price in-
dex. We do this by choosing the interesting parameters iwtiede model class that minimize
the distance between particular actual data based augtetoons and HAMs based autocorre-
lations. By conducting econometric analysis via Monte €armulations, we show that the
autocorrelation patterns, the estimates of the power-lawayl indices, (FI)GARCH parame-
ters, and tail index of the model match closely to the cowadmng estimates for the DAX 30.
Consequently, our results provide a strong support to thmresal evidence, including the pop-
ularity of fundamental and technical analysis, and bouhdedional and adaptive behavior of
investors in financial markets.

The paper is structured as follows. Sectidn 2 extends thpti@daasset pricing model de-
veloped in Dieci et al. (2006). Sectigh 3 calibrates the rhéaleharacterize the power-law
behavior of the DAX 30. Based on the calibrated parametettssoinodel, we use Monte Carlo
simulations to examine the effectiveness of the calibnattogenerating the autocorrelation
patterns, the decay indices of the power-law, and the taiber. Sectiol4 presents an expla-
nation on the generating mechanism of the power-law beha¥itne model. We also conduct
formal tests to see how well the calibrated model is able szulee the characteristics of the

DAX 30 and how the model fits better than a pure switching maflettiorl b concludes.

2. THE MODEL

The use of technical analysis by financial market profesdsis well documented. Empiri-
cal evidence (Allen and Taylor, 1990 and Taylor and Aller@2)3suggests that the proportions
of agents relying on particular strategies such as techarmhfundamental analysis may vary
over time, although there are certaionfidentagents who do not change their strategy over

time. Recently, Menkhoff (2010) analyzes survey evidemoenf692 fund managers in five

8The weak econometric interpretation is closely linked witidirect inference methodology proposed by Gourier-
oux et al. (1993), which has been extended in Dradial. (2000, 2007). This methodology could gather both the
advantages of the weak and strong econometric interpratagiconsistently estimate some of the parameters of
interests despite of model misspecification. Exploring ow ko apply this methodology to HAMs might be a way
forward in the future research.
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countries. He finds that the share of fund managers that peiastt some importance on tech-
nical analysis is very large. Though technical analysisdo® dominate the decision-making
of fund managers in general, but at a forecasting horizoneaks, Menkhoff (2010) finds that
technical analysis is the most important form of analystsiarthus more important than funda-
mental analysis, which is in line with findings from foreigrceange in Menkhoff (1998) and
Cheunget al. (2004). Menkhoff (2010) strongly supports the view thatehegeneous agents
possess different sets of information or different belafsut market processes and the use of
technical analysis seems to react to this view with trefldsiong behavior (and also by relying
more strongly on momentum and contrarian investment giiegg believing that psychologi-
cal factors are important and herding is beneficial. Thisvias also been shared by recent
laboratory experiments in Hommesal. (2005) and Anufriev and Hommes (2012). They show
that agents using simple “rule of thumb” trading strategies able to coordinate on a com-
mon prediction rule. Therefore heterogeneity in expeatetis crucial to describe individual
forecasting and aggregate price behavior.

Based on the empirical evidence, Dieci et al. (2006) extesmtly eHAMs of Brock and
Hommes (1998) by considering the case that market fractiawe both fixed and adaptive
switching components. In each trading period agents argress to be distributed among two
groups, relying upon different predictors (or strategiedfiehavioral rules), fundamental traders
(or fundamentalists) and trend followers (or chartistd)e Tharket fractions in a given period
are partially determined by the past performance of théegji@s over time and partially fixed.
In other words, a switching component is introduced to attar&eadaptively rational behav-
ior of agents who select different strategies over time acogrth a performance measure, and
a constant component of agents is used to represent ageatar@ttonfident and stay with
their strategies over time. While the fixed fraction compurexpresses thmarket moodthe
switching fraction component captures the effecéwblutionary adaptionThe focus of Dieci
et al. (2006) is to explore the complicated price dynamicthefcorresponding nonlinear de-
terministic model. Apart from the fundamentalists and drévilowers, we also consider noise
traders who play an important role in financial market (seegkample, Delongt al. 1990).

In the following, we extend the model of Dieci et al. (2006)rolude noise traders and show

that the resulting model is actually the same as the modelexfiBt al. (2006).



;
Consider an asset pricing model with one risky asset andiskéree asset that is assumed
to be perfectly elastically supplied at gross retdtn= 1 + r/K, wherer is the constant
risk free rate per annum and is the frequency of trading period per year. ete the (ex
dividend) price per share of the risky asset &} the stochastic dividend process of the risky
asset at time. There are three types of traders (or investors/agentsjlafmental traders (or
fundamentalists), trend followers (or chartists) and edraders, denoted by typge2 and3
traders respectively. L&D, .(i = 1,2, 3) be their market fractions at time respectively. We
assume that there is a fixed fraction of noise traders, ddiyte;. Among1l — ns3, the market
fractions of the fundamentalists and trend followers haxedfiand time varying components.
Denote byn; andn, the fixed proportions of fundamentalists and trend follaaenongl —ns,
respectively. Theril — n3)(ny + n9) represents the proportion of traders who stay with their
strategies over time, whil@ — n3)[1 — (n; + n2)] is the proportion of traders who may switch
between the two types. Among the “switching” traders, weaden, , andny; = 1 — ny, the
proportions of fundamentalists and trend followers at timeespectively. It follows that the

market fractiongQ); ;, Q2. Q3) at timet are expressed by

Q1+ = (1—n3)[m+(1—n1—ng)n1 4, Q21 = (1—n3)[no+(1—ny—ng)ngyl, Q3 = ns.

Denoteny = ny + ng, mg = (n1 — na2)/ne andm, = n,; — na. Then the market fractions at

timet can be rewritten as

Qi = 3(1—mng) [ng (14 mg) + (1 —no) (14 my)],
Qo = 2(1—n3) [no (1 —mo) + (1 —np) (1 —my)], (2.1)
Q3t =mn3

Let R, 1 := prr1 + Diy1 — Rp, be the excess return per shargdnt + 1). Forh = 1,2,
let £, andV},; be the conditional expectation and variance of typtaders. LetiV,, be
investor’s wealth at time and z;,, the number of shares of the risky asset held by the investor
from ¢ tot + 1. Then the wealth of investor of typeatt + 1 is given byW,, ;11 = RW),, +
2nt(per1 + Div1 — Rpe). Assume that traders maximize the expected utility of weibction
Un(W) = —exp(—a,W), whereq, is the risk aversion coefficient of typetraders. Then,
under the standard conditional normality assumption, #reahdz; , of a typeh trader on the

risky asset is given by, ; = Ep, 1 (Riv1)/(anVii(Res1))-



Assume the demand of the noise traders is givei;by N(O,ag), which is an i.i.d. ran-
dom disturbance. With zero supply of outside shares, thelptipn weighted average excess

demandZ, ; at timet is given by

Zer = Q214 + Qoy 224 + N3

Following Chiarella and He (2003), the market price in eaekling period is determined by
a market makgrwho adjusts the price as a function of the excess demand. aheetrmaker

takes a long position whe#. ; < 0 and a short position whe#i.; > 0. The market price is

adjusted according to

DPer1 = Pt + Ay, (2.2)

where)\ denotes the speed of price adjustment of the market makentBe = (1 — n3)\ and

os = Anzoe. Then equatior (212) becomes
Per1 = Dt + Py + 0, (2.3)

whereZ.; = q14 214 + @24 22, @ndd; ~ N(0,03) with ¢;; = Q;,/(1 — n3) fori = 1,2. The
price equation(213) is exactly the model developed in Dé¢eil. (2006).

We now describe briefly the heterogeneous beliefs of thedonmeahtalists and trend followers
and the adaptive switching mechanism. This part is the sanire Rieci et al. (2006) and He
and Li (2008). Fundamental traders are assumed to have sdonsation on the fundamental
valuep; , of the risky asset at timé They believe that the stock price may be driven away
from the fundamental price in a short run, but it will everiyigeturn to the fundamental value
in a long-run. Thus the conditional mean and variance of tleegor the fundamental traders

are assumed to follow

Eiy (pey1) = pe + (1 — @) (Pjy1 — p1)s Vig (pes1) = o3, (2.4)

wheres? is a constant variance on the price. The speed of adjustmeatds the fundamental
price is represented byl — «), where0 < o < 1. Anincrease imx may thus indicate less
confidence on the convergence to the fundamental pricenigéala slower adjustment.

‘Different from the Walrasian equilibrium price mechanissed in Boswijket al. (2007), we use market maker

partial equilibrium mechanism for the convenience of aalilon. The market maker mechanism has often been
used in HAMs for its simplicity and convenience.
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Unlike the fundamental traders, trend followers are assiimextrapolate the latest observed
price deviation from a long run sample mean price. More gedgj their conditional mean and

variance are assumed to follow

Est (pes1) = pe + 7 (pr — we) Vor (pes1) = U% + by, (2.5)

wherey > 0 measures the extrapolation from the tremdandv, are sample mean and variance,

respectively, which follow
up = 0ug—1 + (1 —0) py, U= 6v1 + 0 (1 —9) (pe — Ut71)2 )

representing limiting processes of geometric decay psssewhen the memory lag tends to
infinity. Hereb, > 0 measures the sensitivity to the sample variancedand0, 1) measures
the geometric decay rate. Note that a constant variancsusreei for the fundamentalists who
believe the mean reverting of the market price to the fundaatgrice; while a time-varying
component of the variance for the trend followers refleatsetktra risk they take by chasing the
trend.

We now specify how traders compute the conditional variasfdée dividendD;,,; and of
the excess retur®,,; over the trading period. For simplicity we assume that tredare
homogeneous belief about the dividend process and thatatiieg period dividend; is i.i.d.
and normally distributed with meabh and variancer?,. The common estimate of the variance
of the dividend &%) is assumed proportional to the variance of the fundameniz, with no
correlation between price and dividend. It follows thates’ conditional variances of the ex-
cess return can be estima@adsvl,t (Rit1) = (1+7r?) ol andVyy (Riq) = of (1 + 7% + buy),

whereb = by/0?. Denote byp* = D/(R — 1) = (K/r)D the long-run fundamental price.

Owith a geometric decaying probability distributiofi — §){1,4,42,63,---} over the historical prices
{pt, pt—1,pt—2,pPt—3, - , }, ux andv; are the corresponding sample mean and variance. See He) (2DG8
detailed discussion on the process.

U The long-run fundamental value is given py = (K D)/r, where K D is the average annual dividend. Let
op be the annual volatility of the price wheres represents the annual volatility dfdollar invested in the risky
asset. Under independent price increments, the tradirigdoeariance of the price can be estimatedrgs=
(p*0)2 /K. Denote byD 4 ando?,, the annual dividend and its variance and assume an apprxisiationship
D, = rp between annual dividend and price. Then one ggfs = r*(op*)* and therefore?, = o7, /K =
r?(op*)?/K = r?0?. Assuming zero correlation between price and dividendsaliig period frequency, one then
obtainVl,t (Rt+1) = (1 + 7“2) 0’% anqu (Rt+1) = 0‘%(1 + T2) + bavy.
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Using (2.4) and(Z]5), it turns out that traders’ optimal éehs are determined by

. (a—1) (pt—p;rl)_(R_l) (pe —p*) - :’Y(pt—ut)—(R—l)(pt—p*)
o a (1+1r?) o} no azo? (1412 + byy) '
(2.6)
Denote by, ++1 the realized profit, or excess return, betweemdt + 1 by traders of type
h, Thi+1 = 2nt(Pes1 + Diy1 — Rpr) = Whp1 — RW,,, for h = 1,2. Following Brock and
Hommes (1997, 1998), the proportion of “switching” tradat$imet + 1 is determined by

. _ exp [5 (7Th,t+1)]
hyt+1 Yo exp [B(m41)]

where parametes is theintensity of choiceneasuring the switching sensitivity of the popula-

h=1,2,

tion of adaptively rational traders to the better profitatitategy. Together witlh (2.1) the market

fractions and asset price dynamics are determined by tl@wviolg random discrete-time dy-

namic syste
Pey1 = P+ 1(qrt 210 + ot 224) + O, 5 ~ N(0,03), (2.7)
up = ouy—q + (1 —9) py, (2.8)
v =001 +6(1—0)(p—u1)?, (2.9)
m; = tanh {g (z14-1 — 224-1) (pr + Dy — Rpt_l)} , (2.10)
D, = D + opu,, v, ~ N(0,1), (2.11)

wherez; ; andz,, are given by[(2J6). The fundamental price is assumed toviolaandom

walk, such th

2

O- * *
D1 =D; eXp(—ge + Oc€rr1), e ~N(0,1), oe >0, po=p">0 (2.12)

whereg, is independent of the noisy demand procgsd he corresponding deterministic model

can exhibit complicated price dynamics, which help us toaustdnd the underlying mechanism

?Here the hyperbolic functiomnh(z) is defined bytanh(z) = (e* — e=*)/(e® + ¢~%).

BThe specification of the fundamental price procesd$ in {2i42) make sure that there is no significant ACs
in returns, absolute returns and squared returns in theafuedtal price. Since the focus of the paper is on the
characteristics of returns, we also choose the fundamprita proces®; defined in equation (2.12) to have an
expected mean value of zero. The long-run fundamental yélee (K D) /r defined in Footnote11 only indicates
a reference long-run fundamental value, which is choseheamitial value of the fundamental price process.
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of the power-law behavior of the stochastic model. We rdfereader to Diecet al. (2006) for

the complex price dynamics and He and Li (2007) for a detallsdussion on the mechanism.

3. ESTIMATION OF THE POWER-LAW BEHAVIOR IN THE DAX 30

Econometric analysis, especially estimation, of HAMs i atchallenging task. In general,
the difficulties of estimation come from the complexity oftHAMs, together with (typically)
many parameters, which makes verification of identificatather difficult, and thus proving
consistency of estimation troublesome, as we have disdusdke introduction. For recent at-
tempts to estimate HAMs, the identification problem is tgfliccircumvented by focussing on
a relatively simple HAMSs, or by estimating a few key parametnly. For example, Boswijk
et al. (2007) derive a reduced and simplified Brock and Hommes (12998) type model
and estimate it by using the nonlinear least square methtidrafo et al. (2005) estimate a
simplified herding model by the maximum likelihood methodnikon (2008) estimates two
specifications of the extended Brock and Hommes switchingetsoby using the efficient
method of moments and maximum likelihood method; Frank®92@pplies the method of
simulated moments to a model developed by Manzan and We#té2005); Franke and West-
erhoff (2012) use the same method to estimate a structaciastic volatility HAM and show
a strong herding component by conducting a model conteshoAgh a good progress seems
to be made in estimating HAMSs, even if consistent estimatwas possible, the likely heav-
ily nonlinear relationship between observables and unknparameters to be estimated might
seriously complicate estimatiof.

This section provides a calibration of the model(2[7)-2}.tb characterize the power-law
behavior of the DAX 30. After a brief discussion of the stglizfacts of the DAX 30, includ-
ing both fat tail and power-law behavior, we introduce thkbcation procedure to match the
autocorrelation patterns in the returns, absolute andreduaturns for the DAX 30, present
the calibration result and conduct an out-of-sample teasell on the calibrated parameters for
the model, we use Monte Carlo simulations to examine thetfness of the calibration in
generating the autocorrelation patterns and estimatieglétay indices of the power-law be-

havior, comparing with those of the DAX 30. We also used thibcaion result to examine the

14 see, for example, Chest al. (2012) and Amilon (2008). Amilon (2008) concludes that thepde prototype
models seems to have potential to explain empirical fackoagh the fit is generally not quite satisfactory, he
reports local minima, possibly not the global minimum, wicaiculating the estimators.
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power-law tail behavior of the model comparing with the DAX 3Ve show that the calibrated
model closely generates the characterization of the ptavebehavior of the DAX 30 in the

return autocorrelation and tails.

3.1. Stylized Facts and Autocorrelations of Returns for the DAX 30. The price index data
for the DAX 30 comes from Datastream, which contains 800lyadiservations from 11 Au-
gust, 1975 to 29 June, 2007. We yseto denote the price index for the DAX 30 at time
(t = 0,...,8000) with log returnsr; defined byr;, = lnp; —Inp, 1 (t = 1,--- ,8000). Ta-
ble[3.1 gives the summary statisticsffor the DAX 30. We can see from Tahle B.1 that
the kurtosis for; is much higher than that of a normal distribution (which is Bhe kurtosis
and studentized range statistics (which is the range diviethe standard deviation) show
the characteristic fat-tailed behavior compared with amardistribution. The Jarque-Bera
normality test statistic is far beyond the critical valugyigh suggests that is not normally
distributed. Figures 3.1 (a) and (b) plot the time serieg;@ndr;, showing volatility cluster-
ings and time-varying market volatility. This suggestd thauitable model for the data should
be able to generate time varying volatility and volatilitystering as suggested by the ARCH
and (FI)GARCH models.

TABLE 3.1. Summary statistics of.

mean std. skewness kurtosis  min max stud. range Jarque-Bera
0.00034 0.01244 -0.4765 10.436 -0.1371 0.0755  17.092 18735
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FIGURE 3.1. Time series on prices and log returns of the DAX 30 from 11
August, 1975 to 29 June, 2007.

Note that at daily frequency, the difference between Idgsres and simple returns is very small.
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FIGURE 3.2. Autocorrelations of;, r? and|r;| for the DAX 30.

Among those reported stylized facts shared among differerket indices, a well known
stylized fact of stock returns is that the returns themsateatain little serial correlation, but the
absolute returng| and the squared returm$ do have significantly positive serial correlation
over long lags. For example, Dirgf al. (1993) investigate autocorrelations (ACs) of returns
(and their transformations) of the daily S&P 500 index owerperiod 1928 to 1991 and find that
the absolute returns and the squared returns tend to hayslegr decaying autocorrelations,
and further, the sample autocorrelations for the absokitems are greater than those for the
squared returns at every lag up to at least 100 lags. ThisdiA€ feature indicates the long-
range dependence or the power-law behavior in volatilibhe &utocorrelations for the DAX 30

are plotted in Figure_3l2, which clearly support the findiirgBing et al. (1993).

3.2. Model Calibration and Result. In principle, to calibrate the power-law behavior of the
DAX 30 to our model, we minimize the average distance betvtkerautocorrelations of the
log returns, the squared log returns, and the absolute tagweof the DAX 30 and the corre-
sponding autocorrelations generated from the m%eﬂmre precisely, denot® the parameter
space of the model. Lét € O be the vector of parameters in the model to be calibratede
the number of independent simulations of the mo@élbe the estimated autocorrelations of

then-th run of the model, anEDAX be that of the DAX 30. In calibration, we solve

N
~ 1 ~ ~
: R I n __ 2
6 € argming.oDy, Dy := ||N E B" — Bpax]| (3.1)
n=1
16Note that we do not consider other moments such as scalesushseand absolute returns and others. By

exclusively focusing on the autocorrelations of returmigsed return and absolute return, we provide a simple way
to gain insight into the generating mechanism of power-lahvavior of volatility of the model.



14
for the standard Euclidian nordf - ||, using an asynchronous parallel pattern search algo-
rithm The parameters in the model are chosen to lie in the followamges:i o € [0, 1],
v € [0.05,5.5], ay, az € [0.001,9.0], i € [0.1,5], mg € [—1,1], ng € [0.05,0.995], 6 € [0,1],
b € [0.05,8.5], 3 € [0.5,1.5], 0. € [0.005,0.05], ¢ = VKo. andos € [0.05,8.5]. However
ps = p* = 100, ¢ = 72, andr = 0.05 are kept fixed. In the calibration and the subsequent
econometric analysis, we ran 1,000 independent simu@oner 9,000 time periods and dis-
carded the first 1,000 time periods to wash out possiblaimbise effect. For each run of the
model we obtain 8,000 observations to match the sample sthe ®AX 30. It is not possible
to use autocorrelations at all lags, so we focus on a limg¢dfsautocorrelations. In particular,
we focus on all lags until 50 and then each fifth lag up tOIDhis corresponds to 60 auto-
correlations in total for return, the absolute return angbsgd return, respectively. Essentially,
with 60 autocorrelations estimated for each ofithe? and|r,|, the dimension oB™ andBpx
is 180 in total. The calibrated parameters of the model grerted in Tablé 3]

We note that HAMSs are highly likely to be misspecified, thelmaltion procedure in(3l1)
is based on the distance between the model and real worlddeleated set of moments. It
is designed to answer the question “given that the modelss faow true is it?” It allows us
to focus on the characteristics in the data (in our case,réfiess to the power law behavior

in volatility) for which the model is most relevant. A reldtémportant question is “to find

1The software implementing the algorithm is APPSPACK 5.@&,more details in Gray and Kolda (2006), Griffin
and Kolda (2006), and Kolda (2005). In the implementatiorguoid possible local minima we tried different set
of starting values, and for each set of starting value weckdar the minimum and then we re-initialize and search
for the new minimum again. We repeat the procedure untikthero further improvements.

18The parameter ranges far, mg,n,,d are implied by the model specifications. The ranges for paters
~v,a1,a2 andp are selected to reflect reasonable behavior of the tradsesib@n the analysis of the underly-
ing deterministic model in Dieci et al. (2006). The rangedprepresents the volatility of the fundamental price,
while the range fob; indicates the daily market price volatility level.

Note that 1,000 simulation runs works well for us to produoaizate and relatively smooth ACs lines reported in
Fig.[3.3, we do not consider the problem of the optimal nunatbsimulations needed for solving this optimization
problem. In other applications, much fewer number of siiofamight be sufficient.

2O choose a large numbers of lags of ACs because our methatitmftion of the model is exclusively focused
on the ACs, and it works well to produce reasonable resuftsrted in Fig[[3.B. In practice, much less lags may
contain the same information and too many lags would wastepcdation time and even affect the accuracy of
estimation, see for instance, Franke and Westerhoff (2@t 2¢lated discussion.

Utis likely that the estimated parameter values can be rdiffefor differ indices over different time periods. In
fact, in our earlier exploratory model (He and Li, 2007, 202815 and Liet al, 2010) using other indices or
different periods of an index, the estimated model pararseate different in each of the cases. Quantitatively the
stylized facts can vary over time, however, qualitativdlg thain feature of the stylized facts remains the same
over long time periods and across different markets. Itis glalitative feature of the long memory pattern and
the generating mechanism provided in Section 4.1 that @iyiepcontributes to the current literature. It is from
this perspective that the model estimation in this papesbsist. We would like to thank an anonymous referee for
bringing up this discussion.
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out how wrong a model is and to compare the performance oéréift models” (Kan and

Robotti, 2008, 2009). In representative agent and ratierpkctation setting, measures of
model misspecification developed by Hansen and JagannétBai) and recently, Kan and
Robotti (2008, 2009) are used to rank model performance didtance in[(3/1) is an analogue

of Hansen and Jagannathan measure of model misspecificatioe context of HAM
TABLE 3.2. The calibrated parameters of the models

Q v ay as L no mo ) b o Os 15}

0.488 1.978 7.298 0.320 1.866 0.313 -0.024 0.983 3.537 0.32D5 0.954

We now provide an economic intuition of the calibrated resBhased on the calibrated pa-
rameters in Table_3.2, the parametgr= 0.313 implies that, among two strategies, there are
some traders who do not change their investment strategiesiast of traders switch between
two strategies with a switching intensity measuredsby: 0.954. This is consistent with the
empirical evidence of using fundamental and technicalyamaland the adaptive behavior of
investors. Withm, = —0.024, it indicates that, among those traders who do not change the
investment strategies, there are about equal numbersraf tolowers and fundamentalists.
These results demonstrate that both fundamentalists and tollowers are active in the mar-
ket and the market is populated with confident traders asageddaptive traders. Thisisin line
with the findings from foreign exchange markets in Allen amyldr (1990) and Taylor and
Allen (1992) and fund managers in Menkhoff (2010). The reddy highera; thana, implies
that the fundamentalists are more risk averse than the fublm\/erg. A value ofa = 0.488
indicates that the speed of price adjustment of the fundtatists towards the fundamental
value is indicated byl /(1 — «), which is about two trading periods. This may explain the
frequent deviations of the market price from the fundamlesatiie in short-run but not in long-
run. A value ofy = 1.978 indicates that trend followers extrapolate the price trendasured
22For HAMs, model comparison have been discussed ietlal. (2010) and Franke and Westhoff (2012). Franke
and Westhoff (2012) suggest measures of model comparigbe ifhodels can be successfully estimated by the
methods of simulated moments. Developing measures uspydeimated) stochastic discount factor would
provide better insight into HAMs, however, this seems natsfele for the paper at the moment. Behavioral
finance literature often finds limits of arbitrage (see, .eShleifer and Vishny, 1997; Froot and Dabora, 1999;
Lamont and Thaler, 2003; and Gromb and Vayanos, 2010), ea&tiifin of existence of stochastic discount factor
is not trivial, we plan to explore it further in future reselar
23\ote that for simplicity, we assume that agents’ risk prefiees switch when their strategies switch. Comparing
to the trend followers who invest in short-run and are lesis averse, the fundamentalists invest in long-run and
are more risk averse in general. We see from Foofndte 1 lrémat followers have a systematically higher variance
estimate relative to the fundamentalists fyo?). When the additional term is much larger th@an+ r2)o?, the

trend followers have much higher risk perception which fstifies the relative lower risk aversion of the trend
followers than the fundamentalists.



16

by the difference between the current price and the geotneioving average of the history
prices, actively. Also note that= 1.978 > 1 does not lead to explosive expectations by trend
followers because of the quadratic volatility function etdenominator of the demand func-
tion. The geometric decay rate= 0.983 indicates a slow decaying weight. The parameter
by = bo? measures the influence of the sample variancén addition to the common belief
on the price volatilitys?, to the estimated price volatility for trend followers. Tialue of

b = 3.537 implies that trend followers are cautious when estimatireggrice volatility, though
they are less risk averse. The annual return volatility ef 23.1% is close to the annual return
volatility of 19.67%(= /250 x 0.01244) for the DAX 30. A value ofu = 1.866 indicates
that the market maker actively adjusts the market priceagcetttess demand of the traders. A
positiveo; indicates that the noise traders are active in the marketudmmary, the market is
dominated by traders who switch between the two strategissdon their performance over
the time, although there are some traders who do not chaegestrategies over the time. Due
to the switching, the market becomes more volatile, whigbpsuts the theoretical predica-
tion in Brock and Hommes (1998), but in contrast to the findmd@milon (2008) who find

insignificant switching effect when estimating a structd@eM.

seslr)

(a) (b)

FIGURE 3.3. (a) Autocorrelations of;, r? and|r,| for the model. (b) The ACs
of the returns, the squared returns and the absolute refoirrtbe calibrated
model and the DAX 30. The smooth lines refer to the model wthike 95%
confidence intervals are those for the DAX 30.
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3.3. The Autocorrelation Patterns of the Calibrated Model and Out-of-Sample Test. It is
interesting to verify that our calibrated model is able tplieate the power-law behavior of the
DAX 30 described in Fig[_3]2. Using the parameters in Tabl &e run 1,000 independent
simulations for the model. For each run, we estimate the ACseturns, squared returns and
absolute returns. We then take the average over the 1,08Gnehplot the ACs in Fid._3.3(a).
It shows that for the model, the ACs are insignificant for tims, but significantly positive
over long lags for? and|r|. Further, the sample autocorrelations for the absolutenstare
greater than that for the squared returns at all lags up &aat [L0O0 lags. Comparing with Fig.
[3.2 for the DAX 30, we see that the patterns of decay of thecautelation functions of return,
the squared return and the absolute return are very sinidaee how well the calibrated model
is able to match the autocorrelations-gfr? and|r;| for the DAX 30, Fig.[3.B(b) plots the ACs
of returns, the squared returns and the absolute returtisganodel together with the DAX 30
respectively. For comparison purposes, we use the Newesg-¥derected standard error and
plot the corresponding 95% confidence intervals of the AGe®DAX 30. It clearly indicates
that all of the ACs of the model lie inside the confidence wes of the DAX 3

We also perform an out-of-sample test for performance ofrnbdel Recall that we cali-
brate the model using the DAX 30 daily price index from 11 AsiglO75 to 29 June 2007, we
now use data from 02 July 2007 to 02 April 2015 and plot ACs &ums, squared returns and
absolute returns of the DAX 30 together with their 95% confeintervals in Fig[-3]4, and
to see if the ACs from the calibrated model fit in these intesnvi/e see from Fig._3l4 that the
ACs of returns and squared returns of the calibrated modeltfie 95% confidence intervals of
the DAX 30 reasonably well, but the ACs of absolute returnthefcalibrated model lie outside
of the corresponding confidence intervals of the DAX 30 atigr30, which indicate that the
persistence in volatility of the DAX 30 is not as strong asdoefsince the global financial crisis.
Overall, the out-of-sample result indicates that the mpeeforms reasonably well out of the

sample and the calibration method effectively captureg\be patterns of the DAX 30.

3.4. Effectiveness of the Calibration. Based on the calibrated parameters for the model, we
use Monte Carlo simulations to further examine the effectass of the calibration in estimating
the decay indices of the power-law behavior of ACs and intildlaclustering, comparing with

24ere we report the averages of the ACs based on 1,000 siongathd some of the ACs from a single simulation
may lie outside the confidence band.
25Ve thank an anonymous referee for the suggestion.
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FIGURE 3.4. The ACs of the returns, the squared returns and thewbsa-
turns for the calibrated model and the DAX 30. The smoothslirefer to the
model while the 95% confidence intervals are those for the 3@4¢rom 02
July 2007 to 02 April 2015.

those of the DAX 30. We also used the calibration result tovera the power-law tail behavior
of the model comparing with the DAX 30. We show that the calibd model closely generates
the characterization of the power-law behavior of the DAXiBQ@he return autocorrelation,

volatility clustering and tails.

3.4.1. Estimates of Power-law Decay IndeResides the visual inspection of ACsiof 2 and
|r¢|, one can also construct models to estimate the decay rate #@s ofr;, 7 and|r;|. For
instance, we can semiparametrically model long memory iovariance stationary series,
t =0, £1, ..., by s(w) ~ c;w™?? asw — 0%, where0 < ¢; < oo, s(w) is the spectral density
of z;, andw is the frequency. Note thafw) has a pole at = 0 for 0 < d < 1/2 (when there
is a long memory inc;). Ford > 1/2, the process is not covariance stationary. #ct 0,
s(w) is positive and finite. For-1/2 < d < 0, we have short memory, negative dependence,
or antipersistence. The ACs can be describegby: c,k??~!, wherec, is a constant and
1 = 2d — 1 corresponds to the hyperbolic decay index. In the litemttirere are two most
often used estimators df namely the Geweke and Poter-Hudak (1983), henceforth @R¢H,
Robinson and Henry (1999), henceforth RH. We describe ttima®rs and report the results
in AppendixA.

For the DAX 30, we see from Table_A.1 in Appendix A that the restiedd for the returns

are not significant at any conventional significance levaetsignificant for the squared and the
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absolute returns. Thus the DAX 30 displays clear evidenp@wer-law for the squared and the
absolute returns whetrgis positive, and the persistence in the absolute returnsichrstronger
than that in the squared returns. These results coincidethé well-established findings in
the empirical finance literature. For the estimated modtel estimates of the decay ratare
reported in Tablé_AJ2 in Appendix]A, where the column ‘Sig%dicates the percentage of
simulations for which the corresponding estimates areifstgnt at the 5% level over 1,000 in-
dependent simulations. We find that on average the estirobtesre negative and significantly
different from those of the DAX 30 for returns at the 5% levahd insignificant at the 10%
level), but significantly positive for the squared returnsl ahe absolute returns. This verifies
that there is a clear evidence of power-law for the squarenime and the absolute returns. It
also shows that the patterns of the estimatesfof the squared returns and the absolute returns
are comparable to those of the DAX 30 in TablelA.1.

The above analysis clearly demonstrates that our caldiréieffective in matching the auto-
correlation patterns of the DAX 30. In the following discigss we want to see if the calibrated
model can be used to characterize the volatility clusteand power-law tail behavior, for

which our calibration procedure is not designed.

3.4.2. Volatility Clustering, Power-law and (FI)\GARCH Estimate&nother striking feature of
the return series in market indicesvslatility clustering A number of econometric models
of changing conditional variance have been developed t@atesmeasure volatility clustering.
The most widely used one is the one introduced by Engle (1888)its generalization, the
GARCH model, introduced by Bollerslev (1986). The GARCH lrap that shocks to the
conditional variance decay exponentially. In responsééofinding that most of the financial
time series are long memory volatility processes, Badli@l. (1996) consider the Fractional
Integrated GARCH (FIGARCH) process, where a shock to thelitimmal variance dies out at
a slow hyperbolic rate. For convenience, in Appendix A, wecti®e the models and report the
results.

Table[A.3 in AppendiX_A reports the estimates of the GARQH1) model for the DAX
30, where the mean process follows an AR(1) structure. Basesktimates, one can see that
a small influence of the most recent innovation (sma)l is accompanied by a strong persis-

tence of the variance coefficient (large). It is also interesting to observe that the sum of the
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coefficientsa; + 51 is close to one, which indicates that the process is close iatagrated
GARCH (IGARCH) process. Such parameter estimates arerratramon when consider-
ing returns from daily financial data of both stock and foreexchange markets (see, Pagan
(1996)). However the IGARCH implies that the shocks to theditional variance persist in-
definitely. Tablé_A.4 in AppendikJA reports the estimateshe FIGARCH(1, 9, 1) model for
the DAX 30, where the mean process follows an AR(1) model. &tanate for the fractional
differencing parametey is statistically very different from both zero and one. Tisigonsis-
tent with the well known finding that the shocks to the comdiisil variance die out at a slow
hyperbolic rate.

For the same specifications of the GARCH and FIGARCH modetsigport resulting esti-
mates for the calibrated model in TableslA.5 and A.6 in AppeRd respectively. Again, all
these estimates are the average of the estimations for edependent run of the calibrated
model. The results from the GARCH model are very similar tat tihom the DAX 30, that
is, a small influence of the most recent innovation is accangobby strong persistence of the
variance coefficient and the sum of the coefficiemtst 3; is close to one. For the estimates
of the FIGARCH1, 2, 1), we see that the estimate®for the calibrated model is significantly

different from zero and one.

3.4.3. Power-law Tail behavior.Since the work of Mandelbrot (1963), power-law tail behavio
has been found in a wide range of financial time series, andsitdt@come one of the salient
features in financial markets. In general,fif,...; IS the probability density function of a
normal distribution with meam and variancer?, then we haveog f,.orma () ~ —ﬁﬁ as
r — too. Arandom variableX is said to follow a power-law or Pareto distribution with pba
parametery > 0 and scale parametér > 0 if Pr(X > z] = (z/5)"¢, forz > (. In this
caselog fpareto(r) ~ —(a + 1) log(x) asx — +o00. Hence the difference of the tail behavior
between the normal and Pareto distribution is significant.

The estimation of tail indices has been studied in greatldataxtreme value theory. More
precisely, letX;, Xs, ..., X,, be a sequence of observations from some distribution fom¢fi
with its order statistics(; ,, < X5, < ... < X, ,. As an analogue to the central limit theorem,

we know that, on average, if the maximukf, ,,, suitably centered and scaled, converges to a

non-degenerate random variable, then there exist two segqegu,, } (a,, > 0) and{b,} such



21
that
Xon—b
lim Pr (M < x) =G, (x), (3.2)

n—r00 Qa
whereG,,(z) := exp(—(1 + vx)~'/7) for somey € R andz such thatl + vz > 0. Note that
fory = 0, —(1 +~2)~'/7 = e7=. If (B.2) holds, theny is called the extreme value index. In
Pareto distribution, the tail index := 1/« measures the thickness of the tail distribution; the
bigger they, the heavier the tail. The estimationphas been thoroughly studied, see Beirlant
et al. (2004) for a detailed account. In Appendikx A, we outline thneajor estimators of, the
Hill estimator, the Pickands estimator, and the momentregtr in Dekkerset al. (1989) and
report the corresponding results.

The Hill index relies on the average distance between exd@rservations and the tail cutoff
point to extrapolate the behavior of the tails into the beygzhrt of the distribution. In practice,
the behavior of the Hill index depends heavily on the choiteutoff point &£, which is also
true for the other two estimators. This choice involves dduddf between bias and variance,
which is well known in non-parametric econometrics.klfs chosen conservatively with few
order statistics in the tail, then the tail estimate is deresto outliers in the distribution and
has a high variance. On the other hand if the tail includegmiasions in the central part of
the distribution, the variance is reduced but the estinmtaased upward. So, we plot these
estimates index over a range of tail sizes. In the top panElgpfA.1 in AppendiX’A, we plot
the Hill index. We see that for the negative tail, the Hill @xdof the model fits in the 95%
confidence intervals of the DAX 30; for the positive tail, isfivell whenk is less than 500. The
Pickands estimates, plotted in the middle panel of ahbw a larger variability. It seems
that on average the estimates from the model are not far awaythose of the DAX 30. The
moment estimates, plotted in the bottom panel of A.ltHermodel are slightly below the
confidence intervals for the DAX 30. To conclude, the moddilileixs power-law tail behavior
which is very close to that of the DAX 30.

The overall analysis in this section shows that the calibmnamethod is effective. The cal-
ibrated model is able to characterize successfully not trdypower-law behavior in AC, but

also the volatility clustering and power-law tail behaviothe DAX 30 as well.
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4. EXPLANATION AND COMPARISON OF THECALIBRATION RESULTS

We have shown that the calibrated model closely matchesythiees! facts of the DAX 30. In
this section, we provide an explanation on the generatinchar@sm of the power-law behavior
of the model. In addition, we conduct formal tests to see h@l tue calibrated model is able
to describe the characteristics of the DAX 30 and how the rfadéetter than a pure switching

model.

90
0

1 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
t

FIGURE 4.1. The price of the deterministic model with the calibdgp@arameters.

4.1. Mechanism Analysisof the Power-Law Behavior. With the help of the underlying deter-
ministic dynamics, we now provide some insights into the Ima@ism of generating the power-
law behavior. For the corresponding deterministic modehwhe calibrated parameters, the
constant fundamental equilibrium becomes unst@ﬂeading to (a)periodical oscillation of
the market price around the fundamental equilibrium, ilated in Fig.[4.l. Such periodical
deviations of the price from the fundamental value in thedeinistic model are inherited in
the stochastic model. Fig._4.2(a) plots the time seriesmtat market price and fundamental

price of the stochastic model. It shows that the price desifiom the fundamental price from

26The fundamental price becomes unstable through a so-d4diptibifurcation. This is different from the mecha-
nism provided in Gaunersdorfet al. (2008) that volatility clustering is characterized by thalarlying determin-
istic dynamics with two co-existing attractors with diféeit sizes. In fact, the model developed in this paper can
display such co-existence of locally stable fundamentakpand periodic cycle, which has been demonstrated in
Fig 3 in Dieci et al. (2006). Whether the model developed is fiaper is able to provide a supporting evidence on
the mechanism of Gaunersdortgral. (2008) would be an interesting issue for future researchwadidd like to
thank Cars Hommes to bring our attention to this point.
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time to time, but in general, follows the fundamental pribeaddition, the returns of the sto-
chastic model display the stylized facts of volatility diersng in Fig.[4.2(b) and non-normality
of return distribution in Figl_4]2(c).

i
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FIGURE4.2. Thetime series of (a) the price (red solid line) and timelamental
price (blue dot line) and (b) the return; (c) the return dgrdistribution; the ACs
of (d) the returns; (e) the absolute returns, and (f) the igligeturns.
The calibrated result provides a strong support on the ptavebehavior mechanism re-
ported in He and Li (2007). In He and Li (2007), a constant raafkaction model is used
to examine the potential source of agent-based models withrdgeneous belief in generating

power-law behavior in return autocorrelation patternseBgmining the dynamics of the under-

lying deterministic model and simulating the impact of tbedamental noise and noise traders
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on the deterministic dynamics, He and Li (2007) find that titeraction of fundamentalists,
risk-adjusted trend chasing from the trend followers amdlerplay of noisy fundamental and
demand processes and the underlying deterministic dysarait be the source of power-law
behavior. The calibrated model in this paper shares the spimeof He and Li (2007). In fact,
with the two noise processes, Fig.14.2(d) demonstrategnifigiant ACs for the returns, while
Figs[4.2(e) and (f) show significant and decaying ACs in treohlte and squared returns, re-
spectively. We also plot the times series of price, fundaalemlue, returns, return distribution,
the ACs of return, absolute and squared returns with oneneither the fundamental noise in
Fig. [C.1 or market noise in Fid._C.2, respectively, in App&rd. They clearly demonstrate
that, for the calibrated model, noise traders play an ingmntole in the generation of insignif-
icant ACs on the returns, while the significant decaying A@guas of the absolute returns and
squared returns are more influenced by the noisy fundamemtedss. This shows that the po-
tential source of power-law generating mechanism obtalmezd shares the same spirit as He

and Li (2007) and Chiarella, He and Hommes (2006).

4.2. A Comparison Test. To see how well the model is able to describe the charadterist

the DAX 30, we construct confidence intervals for the esteasdétased upon the DAX 30 to see

if the estimates based upon the calibrated model lie in tiesevals or not. In the following,

we focus on the average estimates of the model rather tharatoairacy since, by running the
model independently many times, the estimates convergé faster than those of the DAX 30.
Apart from checking the confidence intervals, we also caigstihe Wald test for this purpose.
For instance, for the decay indéxof the returns, the squared returns or the absolute returns,
we test whether the values of the paramétestimated from both the DAX 30 and the model

are the same. In other words, we test hypothesis
HO : dDAX =d.

Using the Wald test, this null hypothesis can be tested bynasg that both the number of
simulations and the number of time periods for each simanago to infinity. In the construction

of the Wald test, the test statistic is given by

W = (dpax — d)*/3,
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wherey. is simply the variance QfDA. The resulting test statistics are summarized in Table
4. In the column?,’, the first sub-row reports the test statistics correspoqdd d¢py;, and

the second sub-row correspondingimq, and so on. Notice that the critical values of the Wald
test at 5% and 1% significant levels are 3.842 and 6.635, cagely. For the returns, we see
that the estimated of the DAX 30 and the model are significantly different. Howg\for the
squared returns and the absolute returns, the differeretesbn the estimatedof the DAX

30 and the model are not statistically significant. This lteshows that the calibrated model is
able to describe the ACs of the absolute and squared retuthe DAX 30.

TABLE 4.1. The Wald test of with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250
. 19.41 45.62 61.94 65.86 76.35
*135.41 92.24 126.0 117.5 129.4
2 0.071 1.309 0.282 0.036 0.023
£ 10.037 1.246 0.050 0.767 0.276
0.116 1.165 1.672 0.413 0.195
i 0.020 0.350 0.067 0.031 0.015

Another comparison test is to see if the model (denoted SNHection 2 performs better
than a pure switching model (denoted PSM) with= 0 in line of Brock and Hommes (1998).
Intuitively, the calibration conducted for the SM shouldthie data better than the PQ\AIn
Appendix B, we provide the calibrated parameters in Tab, B4 ACs patterns in Fig. B.1, the
estimated decay indices in Tab. B.2, the GARCH and FIGARGHheges in Tabs B.3 and B.4,
the tail index plots in Fig. B.2, and the Wald test for the P@idart from sharing similar results
and implications to the SM, we calculate the distances of AisD; in Eq. (3.1), between
the DAX 30 and the SM and PSM and obtain 4.56 and 4.59 resedctiVhe test statisti@
(Boax — B (Bpax — ), wheref is estimated from the simulation model afid! is the
generalized inverse (see, for example, Cameron and Tri2@@5b) of corresponding covariance
matrix, for ACs up to 50 lags for the return, the squared re&nd the absolute return of the SM

and PSM are 106 and 108 respectively. Both results confirbthieasSM performs better than

2\\e emphasize that the parameter uncertainti/ias not been taken into account because the simulations of th
model are dependent on calibrated structural parameters.

28Ne notice that the main idea of this exercise is to show theit3h model can perform better than the PSW
model in terms of generating stylized facts, which justiflesexistence of agents in the market with fixed trading
strategies in line with the model of He and Li (2007). So, weerast aiming to compare the SW model with various
restricted version of the model to draw inference on the eisgiimportance of the SW model, we leave this to
future research.

29The test statistics follows a Chi-square distribution vaithical value 180 at th6% significant level.
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the PSM in terms of minimizing the distance in Hq. {3.1) are@leighted average distance by
taking into account th .

Itis possible to develop measures of goodness of fit. Whdertbasures of goodness of fit are
very useful when comparing the performance of different HA(gkee, for example, Franke and
Westerhoff, 2012), the comparison results on various eo@tioc characterizations between
HAM and the actual data seem to imply that it might be diffitalet meaningful test statistics.
In our approach the sampling error from the actual data i# dét the confidence intervals
of the estimates and that from the simulation data is eliteshéy running many independent
simulation. For a more general discussion on the compadstre simulation models with the

real world data, see lat al. (2006, 2010).

5. CONCLUSION

Theoretically oriented HAMs have provided many insights imarket behavior such as mar-
ket booming and crashing, multiple market equilibrium, réfman deviation of market price
from the fundamental price and long-run convergence of thekat price to the fundamental
price. Combined with numerical simulations, the HAMs aré&db reproduce some stylized
fact, such as non-normality in return and volatility clustg. More recent developments in
HAMs have stimulated many interests in the generation masheof those stylized facts and in
particular, power-law behavior. However, estimation aaltbcation of HAMs to the power-law
behavior of financial data, together with some mechanisneegtion and economic intuition,
are still a difficult and challenging task.

This paper calibrates an extended HAM to characterize tixeeptaw behavior in the DAX
30. The model considers a market populated by heterogeneaess who use either funda-
mental or chartist strategies. The market fractions ofersdvho use the two strategies have
both fixed and switching components. The calibration metisdolased on minimization of
the average distance between the autocorrelations (AGsgaéturns, the squared returns and
the absolute returns of the DAX 30 and the corresponding A2eiated from the MF model.
With the parameter values of the calibrated model, we shaitkie ACs of the market fraction

model share the same pattern as the DAX 30. By conductingoeaetnic analysis via Monte

3Owe emphasize that the comparison is based upon the maghivfidisstances we use. In other words, this is
not to say that 4.56 (106) is significantly lower than 4.598)10A formal procedure such as that suggested by
Hnatkovskeet al, (2012) might be explored further.
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Carlo simulations, we estimate the decay indices, the (dRGH parameters, Hill index and
related tests. We show that the calibrated model matchsslglto the corresponding estimates
for the DAX 30. As a by-product, the calibrated model alsoegates non-normality return
distribution, volatility clustering, and fat tails. Théoee the calibrated model can fit most of
the stylized facts observed in the DAX 30.

The calibration results support the empirical evidencenarfcial markets that investors and
fund managers use combinations of fixed and switching sfiegdased on various fundamen-
tal and technical analysis when making complicated investrdecisions. By calibrating the
model to the daily DAX 30 index from 1975 to 2007, we show the market is dominated
by the adaptive investors who constantly switch betweeriuhdamental and trend following
strategies, though there are some investors who never elthag strategies over the time. In
addition, the calibrated model also provides a consistepibeation on the generating mecha-
nism of the power-law behavior in the literature. In conaduas the calibration results provide
strong support to the explanatory power of heterogeneoaistagodels and the empirical evi-

dence of heterogeneity and bounded rationality.
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APPENDIX A. ESTIMATES OF POWERLAW DECAY INDEX, (FI)GARCH, AND
POWERLAW TAIL BEHAVIOR

This appendix provides the details of estimates of powerdacay index, (F)GARCH, and
power-law tail behavior.

A.l. Power-law decay index. Geweke and Poter-Hudak (1983) suggest a semiparametric es-
timator of the fractional differencing parametébased on a regression of the ordinates of the
log spectral density. Given spectral ordinatgs= 27;j/7 (j = 1,2, ...,m), GPH suggest to
estimate/ from

log I(w;) = ¢ — dlog(4sin®*(w;/2)) + v, (A.1)
wherev; are assumed to big.d. with zero mean and varianeé /6. If the number of ordinates
m is chosen such that = ¢(7") and satisfylimr_,, ¢(T") = oo, limr_,. g(7)/T = 0 and
limr o (log(T)?)/g(T) = 0, then the OLS estimator af based on[{All) has the limiting

distribution ,

Vin(depi = d) 5 N (0, 7). (A.2)
Robinson (1995) provides a formal proof ferl/2 < d < 1/2, Velasco (1999) proves the
consistency ofl;py in the casel /2 < d < 1 and its asymptotic normality in the casg2 <
d < 3/4. ltis clear from this result that the GPH estimator is RGE-consistent and in fact
converges at a slower rate.
Another most often used estimatord&has been developed by Robinson and Henry (1999),
they suggest a semiparametric Gaussian estimate of the m@am@ametet/, by considering

7 : L <~ d -
dpp = arg min R(d), R(d) = log {E lej I(wj)} — 2% leog Wy, (A.3)
Jj= Jj=
in whichm € (0, [T'/2]). They prove that, under some conditions,

Vildrs —d) % N (0,7) (A.4)

whenm < [T'/2] such thatl/m + m/T — 0 asT — .

A major issue in the application of the GPH and the RH estinsatothe choice ofn, due to
the fact that there is limited knowledge available conaggrihis issue, see Geweke (1998) for
instance. Hence it is a wise precaution to report the estidv&sults for a range of bandwidths.
In our study, for both the GPH and the RH estimateg, aVe report the corresponding estimates
for m = 50, 100, 150, 200 and250, respectively. For instance, for the DAX 30, TablelA.1 repor
the GPH and the RH estimates @for returns, the squared returns, and the absolute returns,
respectively. In each panel of Talile A.1, the first row repthe results from the GPH and the
RH estimates withn = 50, the second row reports the results of the GPH and the RH &t&tsm
with m = 100, and so on. Table Al2 is arranged similarly.

A.2. (FI)GARCH. Following the specification of Bollerslev (1986), if we maodlee returns
as an AR(1) process, then a GARGHg) model is defined by:

T =a+bri_y + &, €t = OtZt,
2 _ 2 2 (A.5)
o; =ap + a(L)e; + B(L)o;, 2z ~ N(0,1),
whereL is the lag operatory(L) = 3!, a; L' andB(L) = >=7_, 8;1/. Definingu; = ¢} — o7,
the process can be rewritten as an ARMAv) process
[1—a(L) = B(L)]e} = ao + [1 = B(L)]v (A.6)
with s = max{p, ¢}. Table[A.3 reports the estimates of the GARCH1) model for the DAX
30, where the mean process follows an AR(1) structure.
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TABLE A.1. The estimates af for the DAX 30 withm = 50, 100, 150, 200, 250

depy t  p-value 95% ClI dru t  p-value 95% ClI

7, 0.0014 0.014 0.989 [-0.2005, 0.203#}0.0179 -0.253 0.801 [-0.1565, 0.1207]
0.0407 0.587 0.557 [-0.0954, 0.176P]0.0615 1.229 0.219 [-0.0365, 0.1595]
0.0548 0.985 0.325 [-0.0542, 0.1638]0.0829 2.031 0.042 [0.0029, 0.1629]
0.0406 0.852 0.394 [-0.0528, 0.1340]0.0482 1.362 0.173 [-0.0211, 0.1175]
0.0543 1.283 0.199 [-0.0286, 0.1372]0.0571 1.807 0.071 [-0.0048, 0.1191]

rZ 04111 3.990 0.000 [0.2091,0.613()]0.3785 5.353 0.000 [0.2399, 0.5171]
0.4527 6.518 0.000 [0.3165, 0.5888]0.4365 8.731 0.000 [0.3385, 0.5345]
0.4053 7.288 0.000 [0.2963,0.5148]0.3735 9.149 0.000 [0.2935, 0.4535]
0.3666 7.696 0.000 [0.2733,0.4600]0.3508 9.923 0.000 [0.2816, 0.4201]
0.3785 8.946 0.000 [0.2956, 0.4614]0.3605 11.40 0.000 [0.2985, 0.4225]

;] 05242 5.087 0.000 [0.3222, 0.726]]0.4801 6.790 0.000 [0.3415, 0.6187]
0.5495 7.911 0.000 [0.4133,0.6856$]0.5167 10.33 0.000 [0.4187, 0.6147]
0.5442 9.785 0.000 [0.4352,0.6532]0.4914 12.04 0.000 [0.4114,0.5714]
0.4993 10.48 0.000 [0.4059, 0.5927]0.4818 13.63 0.000 [0.4125, 0.5511]
0.4797 11.34 0.000 [0.3968, 0.562($]0.4708 14.89 0.000 [0.4088, 0.5327]

TABLE A.2. The estimates af for the model withm = 50, 100, 150, 200, 250

dapH t p-value 95% ClI Sig%| dru t p-value 95% ClI Sig%
re -0.4524 -4.390 0.060 [-0.4588,-0.4460] 83|9-0.4386 -6.203 0.038 [-0.4430,-0.4342] 90.4
-0.4287 -6.173 0.034 [-0.4330, -0.4244] 91|2-0.4187 -8.374 0.026 [-0.4218,-0.4156] 94.0
-0.3828 -6.883 0.030 [-0.3863,-0.3794] 92|5-0.3750 -9.187 0.022 [-0.3776,-0.3725] 94.7
-0.3457 -7.257 0.025 [-0.3487,-0.3428] 93|l1-0.3355 -9.488 0.016 [-0.3376,-0.3333] 95.3
-0.3153 -7.453 0.024 [-0.3179,-0.3127] 93|l1-0.3023 -9.559 0.019 [-0.3043,-0.3003] 95.3
r7 0.3836 3.723 0.022 [0.3772,0.3900] 90[}40.3920 5.544 0.002 [0.3876, 0.3964] 99.2
0.3732 5.374 0.002 [0.3689,0.3775] 99|20.3807 7.615 0.000 [0.3776,0.3838] 100
0.3758 6.758 0.000 [0.3724,0.3793] 99{90.3826 9.372 0.000 [0.3801, 0.3851] 100
0.3756 7.884 0.000 [0.3726,0.3785] 10Qp 0.3818 10.80 0.000 [0.3796, 0.3840] 100
0.3721 8.795 0.000 [0.3695,0.3747] 10p 0.3771 11.92 0.000 [0.3751,0.3790] 100
|r¢] 0.4891 4.747 0.003 [0.4827,0.4954] 98/20.4902 6.932 0.000 [0.4858,0.4946] 99.9
0.4745 6.831 0.000 [0.4702,0.4788] 10D 0.4749 9.497 0.000 [0.4718,0.4780] 100
0.4723 8.493 0.000 [0.4689,0.4758] 10p 0.4731 1159 0.000 [0.4706, 0.4757] 100
0.4687 9.839 0.000 [0.4658,0.4717] 10p 0.4693 13.28 0.000 [0.4672,0.4715] 100
0.4610 10.90 0.000 [0.4584,0.4637] 10D 0.4621 14.61 0.000 [0.4601, 0.4640] 100

TABLE A.3. GARCH(1, 1) Estimates for the DAX 30

a x 10° b ap x 10% o B
0.4827 0.0539 0.0218 0.1056 0.8831
(0.1136) (0.0127) (0.0073) (0.0232) (0.0216)

Note: The numbers in parentheses are standard errors.

TABLE A.4. FIGARCH (1,0, 1) Estimates for the DAX 30

a b ap x 10* 0 ol B
-0.0019 0.0012 0.0699 0.3259 0.2286 0.7716
(0.0003) (0.0092) (0.0248) (0.0078) (0.0148) (0.0034)

Note: The numbers in parentheses are standard errors.

In response to the finding that most of the financial time seaie@ long memory volatility
processes, Bailliet al.(1996) consider the Fractional Integrated GARCH (FIGAR@H)cess,
where a shock to the conditional variance dies out at a slgeetinpolic rate. Chung (1999)
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suggests a slightly different parameterization of the node
G(L)(1 = L)(ef — 0®) = ag + [1 = B(L)]u,, (A7)

whereg(L) =1-7_, ¢;L*, ap = ¢(L)(1— L)°c?, ando? is the unconditional variance of the
corresponding GARCH model. Taljle A.4 reports the estinmaftde FIGARCH(1, 2, 1) model
for the DAX 30, where the mean process follows an AR(1) moHBet.the same specifications
of the GARCH and FIGARCH models, we report resulting esteador the estimated model
in Tabled A5 and A6, respectively.

TABLE A.5. GARCH(1, 1) Estimates for the Model

a X 103 b g X 104 Qaq 61
-0.0754 0.0292 0.3084 0.0963 0.9084
(0.5974) (0.0121) (0.0886) (0.0087) (0.0076)
0.5 64.7 87.7 100 100
Note: The numbers in parentheses are the standard errarghe@numbers in the last
row are the percentages that the test statistics are smymifat5% level over 1000
independent simulations. This also holds for Tablg A.6.

TABLE A.6. FIGARCH (1,9, 1) Estimates for the Model

a b Oé0><104 0 §Z51 61
0.0325 0.0358 0.1314 0.4234 0.2108 0.7446
(0.0871) (0.0296) (0.1217) (0.0642) (0.0426) (0.0413)
71.8 67.8 4.5 87.3 91.0 94.9

A.3. Power-law tail behavior. We outline three major estimators of the Hill estimator, the
Pickands estimator, and the moment estimator in Dekkél. (1989). The Hill index is
defined by

k
1
Hk,n = <E Z log anJrl,n) - log ank,n-

j=1
This estimator is consistent far — oo, k/n — 0 asn — oo, and under extra conditions,
Vk(Hy,,, — ) is asymptotically normal with meahand variance?. The Pickands estimator

is defined as
”A}/Rk _ 1 lo (Xn—(k/éﬂ—i—l,n - n—fk/Q]-i—l,n) .
log 2 Xn—fk/Q]-i—l,n — An—k+1,n
The simplicity of the Pickands estimator is appealing bigeifby large asymptotic variance,

equal toy?(227+1 + 1){(27 — 1) log 2} 2. Dekkerset al.(1989) introduce a moment estimator,
which is a direct extension of Hill index,

1 HL\
Mk,n:Hk,n+1_§ 1-— 2) s

where

Y =

n

(log Xy jy1,n — log Xn—k,n)Q'

| =
-

1
nd asymptotic normalitizid.[A.1, we plot the estimates of

<
I

They also prove the consistenc
the three tail estimators.

<
jab)
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FIGURE A.1. The tail index plotgk, Hy.,,), (k,7px), and(k, M ,,) of the neg-
ative tails @), (b1), (c1) and the positive tailsat), (b2), (c2) for the SMF model
and the DAX 30, respectively. The smooth lines refer to thelehavhile the

95% confidence intervals are those for the actual data.
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APPENDIX B. ECONOMETRIC ANALYSIS OF THEPURE SWITCHING MODEL

This Appendix provides calibration results of the pure shiitg model [(Z.7)E(2.12) with
n, = 0 to characterize the power-law behavior of the DAX 30.

TABLE B.1. The calibrated parameters of the SW models

«

~y

ai a2

J

b

g

s

B

0.513 0.764 7.972 0.231

I
2.004

0.983 3.692 0.231 3.268 0.745

035

(@)

(b)

FIGURE B.1. (a) Autocorrelations aof;, r? and|r,| for the SW model. (b) The
ACs of the returns, the squared returns and the absolutesdtr the calibrated
SW model and the DAX 30. The smooth lines refer to the SW modidievihe

95% confidence intervals are those for the DAX 30.

TABLE B.2. The estimates af for the SW model withn = 50, 100, 150, 200, 250

dapH t p-value 95% ClI Sig%| dru t p-value 95% ClI Sig%
re -0.4466 -4.334 0.059 [-0.4530, -0.4402] 84{1-0.4361 -6.168 0.037 [-0.4405,-0.4318] 90.6
-0.4241 -6.106 0.033 [-0.4284,-0.4198] 91|9-0.4159 -8.317 0.025 [-0.4190, -0.4128] 94.2
-0.3816 -6.861 0.028 [-0.3850,-0.3781] 92|5-0.3746 -9.175 0.021 [-0.3771,-0.3720] 95.1
-0.3466 -7.277 0.024 [-0.3496, -0.3437] 94}11-0.3373 -9.539 0.015 [-0.3395, -0.3351] 96.1
-0.3176 -7.506 0.023 [-0.3202,-0.3149] 94|2-0.3059 -9.673 0.016 [-0.3078,-0.3039] 95.6
r7 0.3843 3.730 0.021 [0.3779,0.3907] 90[[10.3918 5.540 0.002 [0.3874,0.3961] 99.2
0.3751 5400 0.001 [0.3708,0.3794] 99/60.3801 7.603 0.000 [0.3770,0.3832] 100
0.3768 6.776 0.000 [0.3734,0.3803] 99{90.3815 9.345 0.000 [0.3790, 0.3840] 100
0.3754 7.879 0.000 [0.3724,0.3783] 10p 0.3803 10.76 0.000 [0.3781,0.3825] 100
0.3717 8.786 0.000 [0.3691,0.3743] 10p 0.3758 11.88 0.000 [0.3738,0.3778] 100
|r¢] 0.4909 4.765 0.003  [0.4845,0.4973] 98/60.4910 6.943 0.000 [0.4866, 0.4954] 100
0.4771 6.869 0.000 [0.4728,0.4814] 10p 0.4760 9.520 0.000 [0.4729,0.4791] 100
0.4738 8.519 0.000 [0.4703,0.4772] 10p 0.4735 11.60 0.000 [0.4710,0.4761] 100
0.4687 9.839 0.000 [0.4658,0.4717] 10p 0.4693 13.27 0.000 [0.4671,0.4715] 100
0.4609 10.89 0.000 [0.4583,0.4636] 10p 0.4618 14.60 0.000 [0.4598, 0.4637] 100
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TAaBLE B.3. GARCH(1, 1) Estimates for the SW Model

a x 103 b ap x 10% o Bi
-0.0660 0.0351 0.3141 0.0971 0.9078
(0.6081) (0.0121) (0.0905) (0.0089) (0.0078)
0.5 68.2 87.8 99.8 100
Note: The numbers in parentheses are the standard errdrthemumbers in the last
row are the percentages that the test statistics are samifet5% level over 1000
independent simulations. This also holds for Tablg B.4.

TABLE B.4. FIGARCH(1,?,1) Estimates for the SW Model

a b a0><104 0 §Z51 61
0.0410 0.0244 0.1229 0.4282 0.1981 0.7578
(0.2272) (0.0694) (0.1311) (0.0899) (0.1519) (0.0578)
72.6 66.2 4.2 88.3 90.7 96.1

00 300 500 700 900 1100

100 300 500 700 900 1100 100 300 500 700 900 1100
() ()

FIGURE B.2. The tail index plot$k, Hy ), (k,ypk), and(k, My ) of the neg-
ative tails ¢1), (b1), (c;) and the positive tailsa), (b2), (c2) for the SW model
and the DAX 30, respectively. The smooth lines refer to ther8¥del while the
95% confidence intervals are those for the actual data.

TABLE B.5. The Wald test off with m = 50, 100, 150, 200, 250

m | 50 100 150 200 250
18.92 44.73 61.61 66.17 77.30
34.99 91.16 125.7 118.6 132.0
2 0.068 1.247 0.263 0.034 0.026
£ 10.035 1.272 0.038 0.694 0.234
0.105 1.085 1.603 0.413 0.198
0.024 0.331 0.064 0.031 0.016

Tt

|7¢]
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APPENDIX C. THE EFFECT OFONE NOISE
This appendix demonstrates the impact of single noise imthéel [2.7){(Z2.12) on the AC

patterns of the return, absolute returns and squared seturn

0 160 2(;0 360 460 560 660 760 8(‘)0 9(‘)0 1000 0 160 2(;0 360 460 560 660 760 8(‘)0 9(‘)0 1000
t t
(a) The price and the fundamental price (b) The return{)
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(e) The ACs of the absolute return

(f) The ACs of the squared return

FIGURE C.1. The time series of (a) the price (red solid line) and tneda-
mental price (blue dot line) and (b) the return; (c) the digrdistribution of the
returns; the ACs of (d) the returns; (e) the absolute refiand (f) the squared
returns, with the fundamental noise onby (= 0).
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() The ACs of the squared return

FIGURE C.2. The time series of (a) the t price (red solid line) andfthela-
mental price (blue dot line) and (b) the return; (c) the digrdistribution of the
returns; the ACs of (d) the returns; (e) the absolute refiand (f) the squared
returns, with the market noise only (= 0).
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