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Abstract: The end of Dennard scaling has promoted low power consumption into a first-
order  concern  for  computing  systems.  However,  conventional  power  conservation
schemes such as voltage and frequency scaling are reaching their limits when used in
performance-constrained  environments.  New  technologies  are  required  to  break  the
power wall while sustaining performance on future processors. Low-power embedded
processors and near-threshold voltage computing (NTVC) have been proposed as viable
solutions to tackle the power wall in future computing systems. Unfortunately, these
technologies  may also compromise per-core performance and,  in the case of  NTVC,
xreliability.  These  limitations  would  make  them  unsuitable  for  HPC  systems  and
datacenters. In order to demonstrate that emerging low-power processing technologies
can  effectively  replace  conventional  technologies,  this  study  relies  on  ARM’s
big.LITTLE processors as both an actual and emulation platform, and state-of-the-art
implementations of the CG solver. For NTVC in particular, the paper describes how
efficient  algorithm-based  fault  tolerance  schemes  preserve  the  power  and  energy
benefits of very low voltage operation.

1. Introduction

The performance of today's computing systems is limited by the end of Dennard scaling

[1] and the cooling capacity of CMOS technology [5]. To address these challenges, processor

vendors turned towards multicore designs more than a decade ago. To further curb power

consumption,  power-saving techniques  that  were  originally  designed  for  battery operated

embedded and mobile appliances, such as dynamic voltage and frequency scaling (DVFS)

and sleep states, were integrated into mainstream desktop and server systems. Unfortunately,

these efforts seem unable to support higher performance under reasonable power budgets.

Computing systems are threatened by the Dark Silicon phenomenon, wherein large portions

of  hardware  real  estate  remain  dormant  in  order  to  avoid  power  emergencies.  Exploring

alternative methods to better utilize hardware real estate is thus paramount.

The simple, low-power processors in smartphones and tablets, as well as emerging low-

voltage  processors  that  operate  near  or  even  below  threshold  voltage,  are  promising
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alternatives  to  tackle  the  power  wall  in  computing  systems.  Broadly,  these  technologies

attempt to modestly or drastically reduce supply voltage,  while sustaining processor core

clock  frequencies  to  the  greatest  extent  possible.  However,  these  technologies  may

compromise  performance  and,  in  the  case  of  near-threshold  voltage  computing  (NTVC),

hardware  reliability  [4].  When  these  technologies  are  adopted,  it  is  hoped  that  expected

reductions in performance caused by frequency decay might be compensated by cramming

additional cores into the same power budget. In turn, this increase in hardware concurrency

can be leveraged to improve performance and, in the case of NTVC, provide error tolerance

by allocating cores to implement resilience techniques that address eventual data corruption.

This paper uses the principle of iso-metrics [11] to evaluate and compare conventional

server class processors against low-power embedded architectures and NTVC processors that

support  Algorithm-Based  Fault  Tolerance  (ABFT).  We  compare  these  three  classes  of

architectures under iso-power and iso-performance scenarios [8].  Specifically,  we use the

heterogeneous ARM cores on the big.LITTLE system-on-chip (SoC) as an actual embedded

platform and an emulated NTVC platform. We use a high performance Intel Xeon E5-2650

server as a baseline. To provide fair comparisons and in-depth insights, we use an important

and well-studied algorithm, the Conjugate Gradient (CG) method [6]. CG is a memory-bound

algorithm  for  solving  linear  systems;  it  is  gaining  prevalence  in  High  Performance

Computing, because it represents the type of operations and performance exhibited by many

other scientific and engineering programs executing on supercomputers [2]. 

As an additional contribution, we describe the energy-saving potential of NTVC under

a realistic application execution scenario. For this purpose, we leverage two fault-tolerant

variants  of  CG,  respectively  enhanced  with  (i)  an  inner-outer  detection  and  correction

iteration  [9],  and  (ii)  and  a  self-stabilizing  (SS)  recovery  mechanism  [7],  to  assess  the

practical  energy trade-offs  between hardware  concurrency,  CPU frequency,  and hardware

error rate. We again use the ARM big.LITTLE core architectures as an emulation platform. 

Our  central  conclusion  from  both  studies  is  that  emerging  low-power  processor

technologies can reliably sustain performance and significantly improve energy-efficiency

compared  with  the  state-of-the-art.  For  NTVC in  particular,  we  demonstrate  that  highly

optimized ABFT approaches effectively preserve the energy benefits of extreme low-power

hardware. 
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The remainder of the paper is structured as follows: Section 2 reviews related work on

algorithmic fault tolerance, power saving techniques, and iso-metrics. Section 3 describes our

experimental setup. Section 4 compares high performance and low-power processors using

iso-metrics  for  performance and power.  Section  5 investigates  NTVC processors  and the

effect of NTVC on the CG method. We conclude the paper in Section 6.

2. Related Work

2.1. Power and energy minimization techniques

Power  and  energy  minimization  techniques  in  heterogeneous  platforms  have  been

extensively studied.  Pao et  al.  [14]  studied  the  opportunities  for  energy optimization  via

DVFS in integrated CPU-GPU architectures. Bailey et al. [15] designed models for power

and execution time, and applied them to optimize performance in power-capped execution

scenarios by selecting the appropriate CPU or GPU and the optimal hardware-configuration

for execution. Klenk et al. analyzez communication patterns to identify energy optimization

opportunities  [16].   All  these  approaches  utilize  application  characteristics  to  select  an

optimal,  energy-aware  execution  configuration.  We  explore  the  potential  of  leveraging

algorithmic information,  fault-tolerance, and NTVC to further reduce energy consumption

beyond the state-of-the-art.

2.2. Algorithmic fault-tolerance

Several recent works have considered the effect of soft errors (also known as silent

data  corruption)  on  iterative  Krylov  subspace  methods.  Chen  [12]  proposed  an  on-line

orthogonality  test  to  detect  soft  errors  during  the  execution  of  Krylov  subspace  solvers

combined  with  check-pointing.  Hoemmen and  Heroux  [9]  applied  selective  reliability  to

assemble a fault-tolerant version of GMRES that primarily operates in unreliable mode, to

avoid expensive restarts from checkpoints. Elliott, Hoemmen, and Mueller [13] introduced a

low-cost fault detection mechanism for GMRES, expanding this to limit the magnitude of the

error that the method may return. Pao and Vuduc [7] adopted “self-stabilization” to obviate

the need for full state saving and fault detection, proposing a method that, in an error-prone

scenario, can reach a correct state in a finite number of steps, ensuring convergence. These

methods  point  out  the  importance  of  implementing  algorithmic-level  error-recovery

techniques; however, none of them analyzed the energy overhead of errors and the recovery
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mechanisms they propose. Our approach measures these overheads on a platform that can

operate  in  two modes:  reliable  or  unreliable.  In  “unreliable”  mode  our  platform reduces

power consumption, which is in par with the projections in [4]. 

2.3. Iso-metrics

Iso-energy-efficiency models were introduced by Song et al [8] to predict and balance

energy  and  performance  in  large  power-aware  clusters,  by  taking  into  account  software

characteristics. We extend their approach with additional metrics and a different, application-

driven experimental methodology to explore the trade-offs between performance, power, and

reliability on high-end multicore processors and low-power SoCs. Our goal is to investigate

whether it is possible to build systems out of unconventional low-power architectures that can

match the performance of current throughput-oriented architectures. In a work similar to ours,

Göddeke et al. [3] studied the use of low-power architectures in scientific applications. In this

study,  we  take  Göddeke's  work  one  step  further  to  make  projections  about  the  energy

efficiency of  platforms  operating  under  NTVC conditions  with lower  reliability,  and use

efficient fault tolerance techniques to tackle unreliability.

2.4. Contributions

A preliminary evaluation of iso-metrics and the cost of fault tolerance was presented in

our own prior work [11]. This paper extends  our prior work by: (i) targeting a collection of

sparse problems, arising from actual scientific and engineering applications, instead of simple

synthetic  dense  benchmarks;  (ii) including  a  fault-tolerant  version  of  CG  based  on  a

conventional  detection  and  correction  strategy embedded into  an  inner-outer  Generalized

Minimal Residual (GMRES) solver [9], in addition to the SS approach, which was the only

option considered in our previous study; and (iii) employing a more realistic implementation

of  the  fault-tolerant  versions  of  CG that  switches  between cores  with  different  levels  of

reliability at execution time, thus capturing the overhead of these changes.

3. Experimental setup

3.1. The CG method
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The CG method is a key algorithm for the numerical solution of linear systems of the

form Ax = b, where A є Rnxn is symmetric positive definite (SPD) and sparse, b є Rn contains

the independent terms, and  x є Rn is the sought-after solution [6]. The cost of this iterative

method is dominated by a sparse matrix-vector multiplication involving  A, which must be

computed once per iteration. For a matrix  A with nz nonzero entries, this operation requires

roughly 2nz floating-point arithmetic operations (flops). Additionally, each iteration involves

a few vector operations that cost O(n) flops each.

For our evaluation, we employ IEEE 754 real double-precision arithmetic and terminate

the  CG  loop  after  2,000  iterations.  Furthermore,  for  simplicity,  we  do  not  exploit  the

symmetric structure of the matrix. Under these conditions, we estimate the cost of CG to be

2nz flops per iteration (i.e., we disregard the lower cost of the vector operations). Moreover,

for  efficiency,  we  leverage  multi-threaded  implementations  of  the  matrix-vector

multiplication kernel in Intel MKL (version 11) for the Intel-based CPU. For the ARM-based

cores, we rely on our own multi-threaded implementation of this operation, which is based on

the CSR sparse matrix layout [9] and built upon the OpenMP parallel programming interface.

3.2. Target architectures and scenarios

The  experiments  in  this  paper  were  performed  using  three  different  multicore

processors.  The first processor, hereafter referred to as Xeon, is  a high-performance Intel

Xeon E5-2650 processor with 8 cores, connected to 16 GBytes of DDR3-1333 MHz RAM.

The alternative low-power architectures are two ARM quad-core clusters, based on Cortex-

A15 and Cortex-A7 cores, in an Exynos5 SoC of an ODROID-XU board. These two clusters

share 2 GBytes of DDR3-800 MHz RAM. Table 1 lists the most important features of the

processor  architectures  considered  in  this  paper.  The  column  labeled  “stream  memory

bandwidth”  reports  the  memory  bandwidth  measured  using  the  triad  test  of  the  stream

benchmark (http://www.cs.virginia.edu/stream), when executed with all cores available in the

sockets. The column labeled “Roofline GFLOPS” corresponds to the theoretical upper bound

on computational performance (in terms of GFLOPS, or billions of flops per second) derived

from the roofline model [10].
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Table 1. Hardware specifications of the target architectures.

Acron

.

CPU socket/cluster #Cores Frequency

range

(GHz)

LLC: level, 

type, size 

(Mbytes)

TDP

(W)

Peak

mem.

bandwidth

(GBytes/s)

Stream mem.

bandwidth

(GBytes/s)

Roofline

GFLOP

S

XEO

N

Intel Xeon E5-2650 8 1.2-2.0 L3, shared, 20 95 51.2 44 11

A15 ARM Cortex-A15 4 0.8-1.6 L2, shared, 2 N/A N/A 5.4 1.35

A7 ARM Cortex-A7 4 0.5-1.2 L2, shared, 

0.5

N/A N/A 2.07 0.51

For our experimental analysis, we investigate scenarios that vary the number of cores,

the core clock frequency, and the application benchmarks. For simplicity, we consider the

lowest and highest clock frequencies (disregarding Intel's turbo-mode) for each architecture.

We also consider a collection of inputs that represent “on-chip” execution, whereby the target

working data fill the last-level cache (LLC) of each architecture. Our previous study in [11]

exposed the poor scalability attained with CG when the key working sets reside off-chip. We

purposely  omit  off-chip  working  sets  to  avoid  blurring  the  iso-metric  comparison  of

processor architectures with memory effects. As part of future work, we intend to perform

full system comparisons that also consider alternative memory technologies.

The performance of CG, as well as the fault-tolerant methods built upon it, strongly

depend on the implementation of the kernel for the sparse matrix-vector multiplication. The

throughput of this operation, in turn, is governed by the sparsity structure and storage layout

of the matrix, which dictates the memory access pattern. To capture the behavior of different

scenarios, for each architecture we use a set of eight sparse matrices, as well as one dense

matrix, all of which fit into the LLC. The sparse cases in Table 2 were obtained  from the

University of Florida Sparse Matrix Collection (UFMC). For each metric (GFLOPS, power

and GFLOPS/W),  we present  the average value obtained for the cases selected,  for each

architecture.

Table 2. Sparse matrices from UFMC employed in the evaluation.

XEON A15 A7

Name Rows
#nonzero

s
Name Rows

#nonzero
s

Name
Row

s
#nonzero

s
apache1 80,800 542,184 aft01 8,205 125,567 bcsstk2

1
3,600 26,600

cbuckle 13,681 676,515 bcsstk1
3

2,003 83,883 bcsstm1
2

1,473 19,659

6



denormal 89,400 1156,224 bloweyb
q

10,00

1

49,999 ex33 1,733 22,189

�nan512 74,752 596,992 ex10hs 2,548 57,308 mhd480
0b

4,800 27,520

G2_circuit 150,10

2

726,674 ex13 2,568 75,628 msc007
26

726 34,518

Pres_Poisson 14,822 715,804 nasa470
4

4,704 104,756 nasa182
4

1,824 39,208

thremal1 82,654 574,458 s1rmq4
m1

5,489 262,411 plat191
9

1,919 32,399

thermomech
_TK

102,15

8

711,558 sts4098 4,704 104,756 plbuckle 1,824 39,208

4. High Performance vs Low Power

In this section, we perform an experimental evaluation of the target CPU architectures,

assuming they operate in nominal regions. We use the CG method, implemented on top of

optimized multi-threaded versions of the sparse matrix-vector kernel from MKL and our ad-

hoc  OpenMP routine.  The  purpose  of  this  analysis  is  to  expose  the  trade-offs  between

performance, power dissipation, and energy efficiency, for a memory-bound method such as

CG, with the ultimate goal of answering two key questions: 

 Q1 (Iso-performance):  Can we attain the performance of the Intel Xeon processor

with the low-power ARM clusters while yielding a more power-efficient solution?

 Q2 (Iso-power):  What  level  of  performance that  be attained using  the  low-power

ARM clusters within the power budget of the Intel Xeon socket? 

4.1. Trade-offs

Figure  1  illustrates  the  results  from  the  evaluation  of  the  multithreaded  CG

implementations,  in terms of performance (GFLOPS),  power dissipation (W), and energy

efficiency  (GFLOPS/W).  An  evaluation  in  terms  of  GFLOPS and  GFLOPS/W allows  a

comparison of these metrics for problems that vary in size and number of FLOPS performed.

Table 3 quantifies the trends captured by the figure. Our analysis of these results is organized

along  three  axes:  number  of  cores  (#cores),  frequency,  and  architecture  (configuration

parameters),  as  well  as  three  metrics.  From the  point  of  view  of  concurrency  (#cores),

increasing the number of these resources produces fair speed-ups for irregular memory-bound

problems,  which  are  slightly  superior  for  XEON  processors  and  similar  for  both  ARM
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architectures, independent of their frequency. For example, the use of four cores on A15 and

A7 produces speedups between 2.0 and 2.4 for any of the two frequencies. The equivalent

speedup on XEON is 3.1 with 4 cores and both frequencies. From the perspective of power, a

linear regression fit to the data shows a high  y-intercept for XEON, which corresponds to

static power, and can be explained by its large LLC, the complex pipeline, the large area

dedicated  to  branch  prediction,  and  other  complex  micro-architecture  structures  of  the

XEON. By comparison, A15 and A7 exhibit much lower static power, reflecting the simpler

design of these CPU clusters. This difference between the Intel and ARM-based architectures

has  a  major  impact  on  energy.  Increasing  the  number  of  XEON cores  results  in  shorter

execution time. Moreover,  the large static power can be detrimental for energy efficiency

(GFLOPS/W). This is a clear indicator of the potential benefits of a “race-to-idle” policy,

which  can  be  applied  to  this  architecture  in  an  effort  to  amortize  its  high  static  power

consumption. The effect of increasing number of cores for A15 and A7 is the opposite, owing

to their low static power.

We proceed with the analysis of frequency. Independent of the number of cores, the

effect of this parameter on performance is perfectly linear for XEON but sub-linear for A15,

where doubling the frequency only improves performance by a factor of approximately 1.8;

the improvement is slightly higher for A7, where raising the frequency from 0.5 to 1.2 GHz

(a factor of 2.4x) results in a performance increase of 2.1x. The effect of frequency on power

is sub-linear for XEON (a factor between 1.28 - 1.62x, depending on the number of cores)

and super-linear for both A15 (3.24 - 3.59x) and A7 (3.58 - 3.75x).  The net effect of the

variations of time and power with the frequency is that, on XEON, increasing the frequency

slightly improves energy efficiency (again pointing to a race-to-idle strategy for energy-aware

execution), while on the ARM-based clusters, it reduces energy consumption by a factor close

to 48% for A15 and 55% for A7.

Finally, we observe some additional differences between the processor architectures:

the 8-core Intel processor produces significantly higher performance rates (and, therefore,

shorter  execution times)  than the ARM clusters,  at  the expense of  a  much higher  power

dissipation rate and much lower energy efficiency (GFLOPS/W). The differences between the

two types of ARM clusters also follow a similar pattern, offering higher performance with the

A15 in exchange for higher power and lower energy efficiency.
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Figure 1. Evaluation of performance, power, and energy on the target architectures using multi-threaded

implementations of the CG method for the on-chip problem.

Table 3. Evaluation of performance, power, and energy on the target architectures using multi-threaded
implementations of the CG method on the on-chip problems.

CPU Freq. (GHz) #cores Time
per iter.

(ms)

Performance
(GFLOPS)

Speed-up Power
(W)

Energy
(GFLOPS/W)

XEON 1.2 1 3.11 0.72 1.0 18.4 0.039

2 1.73 1.35 1.8 20.4 0.065
4 1.02 2.39 3.1 24.2 0.096

6 0.78 2.88 4.0 27.8 0.101
8 0.66 3.76 4.8 31.3 0.116

2.0 1 1.87 1.19 1.0 23.7 0.050
2 1.05 2.24 1.8 27.9 0.079

4 0.61 4.00 3.1 35.7 0.108
6 0.47 4.82 4.0 43.4 0.107

8 0.39 6.34 4.8 50.9 0.119:q
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A15 0.8 1 1.20 0.17 1.0 0.61 0.272

2 0.76 0.26 1.5 1.01 0.258
4 0.55 0.36 2.1 1.69 0.214

1.6 1 0.71 0.31 1.0 1.98 0.154
2 0.46 0.47 1.5 3.32 0.140

4 0.34 0.64 2.0 6.08 0.103

A7 0.5 1 1.38 0.048 1.0 0.031 1.563

2 0.84 0.081 1.6 0.066 1.236
4 0.58 0.124 2.4 0.128 0.966

1.2 1 0.65 0.103 1.0 0.111 0.926
2 0.40 0.170 1.6 0.238 0.718

4 0.27 0.259 2.4 0.481 0.540

4.2. Analysis of iso-metrics

We start the study of iso-metrics by noting that the questions Q1 (iso-performance) and

Q2 (iso-power), formulated at the beginning of this section, can be explored in a different

number of  configurations/scenarios.  Here we select  one  that  is  relevant  for  design  space

exploration. Concretely, for Q1 we set as the baseline the performance of 1 to 8 XEON cores,

clocked at 2.0 GHz; and then we evaluate how many clusters (consisting of A15 or A7 cores,

operating at either the lowest or highest frequencies) are necessary to match the reference

XEON performance.  Question  Q2 is  the  iso-power  counterpart  of  Q1,  with  the  baseline

power budget fixed by the values obtained with 1 - 8 XEON cores operating at 2.0 GHz. 

The left plot in Figure 2 reports the results from the iso-performance study. In order to

achieve the performance of eight XEON cores (2.0 GHz), it is necessary to use almost 10

A15 clusters (i.e., quad-cores) at 1.6 GHz or more than 51 A7 clusters at 0.5 GHz (note the

different  scales  of  the  y-axis  depending  on  the  type  of  cluster).  In  this  comparison  we

implicitly introduce a simplification that favors the ARM processors.  Specifically, on the

multi-socket ARM platform, data and operations must be partitioned between the clusters,

incurring an overhead associated with communication. For the CG method, we can expect

that this  additional cost comes primarily from the reduction vector operations (which are

analogous  to  synchronization).  Furthermore,  there  is  additional  overhead  caused  by  the

relatively  small  problem  sizes  assigned  to  each  core.  These  sources  of  overhead  are

disregarded in our study.

The  right-hand  side  plot  in  Figure  2  illustrates  the  ratio  between  the  power  rates

dissipated by four configuration “pairs” that attain the same performance. Each pair contains

a XEON core and either a A15 or A7 core, at the lowest or highest frequency. Using the
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previous  examples,  eight  XEON  cores  (2.0  GHz)  deliver  the  same  performance  as  9.9

clusters consisting of A15 cores at 1.6 GHz; however the A15 clusters consume 18% more

power. On the other hand, using 51.1 clusters of A7 cores at 0.5 GHz only requires a fraction

of the power rate dissipated by XEON; concretely 12%.

Figure 3 displays the results from the complementary study on iso-power. The plot on

the left illustrates that the power budget of 1 - 8 XEON cores can accommodate a moderate

number of A15 clusters or a very large volume of A7 clusters. (Note again the different scales

in the y-axis.) The performance ratio between these ARM-based clusters with respect to the

XEON,  shown on  the  right-hand  side  plot,  reveals  decreasing  gains  with  the  increasing

number of A15 clusters and equal performance with respect to seven or more XEON cores.

The ratio also decays for the A7 clusters; however in this case it stabilizes around a factor of

eight.

We note that not all ARM-based configurations considered in the iso-performance and

iso-power  study contain  the  same  on-chip  memory capacity  (iso-capacity)  as  XEON.  In

particular, at least 10 A15 clusters and 40 A7 clusters would be required to achieve an iso-

capacity  scenario,  from the  perspective  of  on-chip  memory,  with  respect  to  the  LLC in

XEON.

We close this section by noting that a study of the energy efficiency ratio under the

conditions imposed by Q1 or Q2 does not contribute new information. For example, given

that  Q1  compares  the  GFLOPS/W  of  the  architectures  with  equal  GFLOPS  rates,  an

evaluation of energy efficiency is equivalent to the analysis of the power ratio.
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Figure 2.  Evaluation of  iso-performance.  Left:  Number of  A15 or A7 clusters  required  to match  the
performance of a given number of XEON cores at 2.0 GHz. Right: Comparison of power rates dissipated

for configurations delivering the same performance.
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Figure 3. Evaluation of iso-power. Left: Number of A15 or A7 clusters that match the power disipated by

a  given  number of  XEON cores  at  2.0  GHz.  Right:  Comparison  of  performance  rates  attained  for
configurations dissipating the same power rate.

5. Energy Cost of Reliability

The experiments and analysis  in this section aim to explore the potential  impact of

NTVC on energy, a technique that trades lower processor voltage and frequency for higher

concurrency,  but  also  a  higher  failure  rate.  In  order  to  perform this  study,  we make the

following assumptions:

 To emulate a reliable/unreliable execution, we consider a big.LITTLE SoC consisting

of several (N) quad-core A15 cluster plus the same number of A7 clusters. Here, the

A15  clusters  operate  at  the  highest  frequency,  are  reliable,  and  apply  the  fault

tolerance mechanism (i.e., the stabilizing part in SS or the computations other than

CG in the GMRES-based solver). On the other hand, the A7 clusters operate at the

lowest frequency, operate in the NTVC region, and are de facto less reliable than the

A15 clusters. The A7 clusters are thus used to compute the CG iterations. We will

refer to this SoC as NA15/A7, and we will use performance and energy efficiency

data for the corresponding on-chip problems for all  experiments.  Furthermore,  we

assume  that  idle  clusters  (e.g.,  the  N  A7  clusters  during  the  execution  of  the

stabilizing operations) still contribute to the total consumption with an idle power.

Safety measures integrated in the hardware prevent us from using these architectures

below the minimum nominal frequency/voltage. The A7 consumes 0.128 Watts when

being  used  at  the  highest  frequency. Given  that  these  operating  values  are

significantly lower than state-of-the-art high performance cores, we use the A7 power

and performance regions as representative of NTVC cores. 

 We employ a tuned variant of our multi-threaded implementations of the CG method

equipped with an SS recovery mechanism [7]  to  cope with  silent  data corruption

introduced by unreliable hardware. Following the experiments in [7], the SS part is

activated  once  every 10  iterations  in  the  CG method,  and must  be  performed on

reliable cores. From the computational point of view, the major difference between an

SS iteration and a “normal” CG iteration (baseline routine) is that the former performs
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two matrix-vector products instead of only one. However, these two operations can be

performed simultaneously, as they both involve matrix  A. Therefore, for a memory-

bound operation such as the matrix-vector product, we assume that, in practice, the

two types of iterations share the same computational cost.

 Additionally, we consider an outer GMRES iteration that leverages CG as the inner

solver  [9]  and  integrates  a  conventional  detection/correction  mechanism for  fault

tolerance. The cost of this inner-outer iteration is dominated by the CG solver plus

two additional matrix-vector products involving matrix  A. The CG iteration can be

performed on unreliable cores, but the remaining computations should be executed on

reliable cores. Following the experiments in [9], we perform 20 iterations of the outer

method, with the inner solver executed for 50 iterations each time it is invoked. With

these numbers, 96.2% of the FLOPS are performed on unreliable cores and only 3.8%

are performed on reliable cores.

 The convergence rate of the CG iteration depends on the condition number of matrix

A [6]. The convergence of the fault-tolerant variants degrades logarithmically with the

error rate [7]. SDC occurs during the matrix-vector product, introducing bit flips into

any of its results, and propagates from there to the remainder of the computations. The

convergence rate of the fault-tolerant variants also depends to some extent on whether

the bit flips are bounded to the sign/mantissa or can also affect the exponent.

Under  the  aforementioned  conditions,  we  perform an  experimental  analysis  of  the

energy gains that a hybrid reliable/unreliable big.LITTLE SoC can achieve, against a reliable

single quad-core A15 cluster operating at the highest frequency. We compare the architectures

again  under  iso-performance  and  iso-power  conditions.  Note  that  for  the  latter,  we  still

consider the power of a single idle quad-core A7 cluster.

Under iso-performance assumptions, we aim to determine how many NA15/A7 clusters

must  be  involved  during  the  execution  of  the  fault-tolerant  CG iterations  so  that,  when

combined, the hybrid clusters match the performance of the baseline CG solver running on a

single A15 cluster operating at the highest frequency. Table 4 lists these values, which were

determined experimentally for each problem (matrix) and fault-tolerant solver. For example,

for the dense case, 7.06 NA15/A7 clusters are required to run the SS variant at the same
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GFLOPS rate as the baseline CG solver executed on a single A15 cluster. For simplicity, we

will round this number to seven NA15/A7. Next we can compare the power dissipation rate

of the two configurations (for the dense case and SS): 4.28 W for one A15 cluster (plus one

idle A7 cluster) and 2.1 W for seven NA15/A7. This implies that, for this benchmark case and

fault-tolerant solver, it is possible to accommodate an increase in the number of iterations

(decay of convergence)  that  is  close to a factor of 2 and still  attain the same energy-to-

solution (ETS). Figures 4 and 5 report the percentage of increase in the number of fault-

tolerant solver iterations (executed on unreliable clusters) that would produce the same ETS

as the baseline CG executed on the reliable platform. These results demonstrate the energy

gains that can be expected from operating with simpler low-power cores, at low frequencies,

for these particular applications. Concretely,  depending on the benchmark case, NA15/A7

outperform a single A15 in terms of ETS when the degradation occurs in up to 7 - 129% more

iterations for SS and 178 - 359% for the fault-tolerant version of GMRES furnished with an

inner-outer iteration.

Table 4. Iso-performance of reliable A15 cluster vs unreliable NA15/A7.

benchmar

k

iso-performance CG-SS iso-performance GMRES

dense 7.06 5.02

nasa1824 9.24 7.42

bcsstk21 9.78 8.23

bcsstm12 13.1 9.35

plat1919 8.53 6.74

msc00726 13.09 9.02

ex33 11.67 8.33

plbuckle 11.94 8.71
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Figure 4. Iso-performance ETS for the original CG (right) and GMRES (left) methods executed by A15 at

the highest frequency (reliable mode) and the SS variant of CG executed by NA15/A7 under unreliable 
conditions that degrade convergence.

We also conducted an iso-power study. We set the power dissipated by the A15 cluster,

operating at the highest frequency, as the baseline. We derive how many NA15/A7 clusters,

operating at the lowest frequency, fit within the same power budget. This exercise produces

the same ETS as the iso-performance analysis. This is to be expected, because any increase in

NA15/A7 clusters  yields  a  proportional  increase  in  its  GFLOPS rate,  or  equivalently an

inversely proportional decrease in execution time. Simultaneously, the power dissipation will

be increased in the same proportion, yielding the same ETS.

To conclude this section, we focus on the iso-capacity problem. For this case study, we

require the aggregated LLC of the A7 clusters in NA15/A7 to equal the capacity of A15.

Now, the A15 includes a 2MB LLC cache and four A7 clusters, to match the LLC capacity of

a single A15 cluster (see Table 1). In conclusion, we can build an NA15/A7 system that can

solve problems that are same in size to those tackled by a single A15.

6. Conclusions and Future Work

The computation and data processing requirements of  future systems demand more

energy-efficient  processors.  In  this  study,  we  utilize  processors  designed  for  the  mobile

computing  market  and future  processors  that  operate  outside  the  nominal  supply voltage

regions to investigate whether they can be used to build HPC systems and datacenters with

better energy-to-performance ratios.  We concretely show that it  is possible to use power-

efficient ARM clusters in order to match the performance of a high-end Intel Xeon processor

while operating, in a worst-case scenario, within the same power budget. Conversely, it is

possible to use a rather large number of ARM clusters, fit within the power budget of one

Intel Xeon processor, and attain higher performance.

As a further contribution,  we tested a reliable CG execution in an A15 cluster,  and

compared  it  with  an  execution  of  fault-tolerant  variants  of  this  method  using  a  hybrid

configuration of A15 and A7 clusters to emulate an unreliable processor that operates in the

NTVC region. From this study, we find that it is possible to improve ETS, even when errors

significantly slow down the convergence of CG.

Because the cornerstone of the CG method is  the sparse matrix-vector  product,  we

believe that the significance of this study carries over to many other numerical methods for
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scientific and engineering applications. On the other hand, the study has certain limitations.

For  example,  we  did  not  consider  factors  such  as  the  cache  hierarchy,  interconnection

networks, memory buses, and bandwidth, which can be relevant in large-scale designs and

affect both performance and power consumption. We made this choice in order to be able to

extract some first-order conclusions about the potential of employing NTVC; however we

intend to investigate those matters in more depth in the future.
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