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Abstract. We show that if E is an atomic Banach lattice with an order

continuous norm, A,B ∈ Lr(E) and MA,B is the operator on Lr(E) defined

by MA,B(T ) = ATB then ‖MA,B‖r = ‖A‖r‖B‖r but that there is no real
α > 0 such that ‖MA,B‖ ≥ α‖A‖r‖B‖r.

1. Introduction.

An elementary operator on a Banach algebra A is an operator of the form T 7→∑n
k=1AkTBk, where each Ak, Bk ∈ A. If n = 1 such an elementary operator is

called basic. There is a substantial literature about elementary operators, much
of it in the setting of C∗-algebras with there also being significant results about
the norm in the case of the algebra, L(E), of all bounded operators on a Banach
space E. The elementary starting point for such results in that case is the fact,
which is a simple consequence of the Hahn-Banach theorem, that the norm of a
basic elementary operator T 7→ ATB is precisely ‖A‖‖B‖. This statement refers, of
course, to the norm of T 7→ ATB as an element of the space of bounded operators
on L(E). In this note, we look at the corresponding question for the space of
regular operators, Lr(E) on a Dedekind complete Banach lattice E. This is both
a Banach lattice (for the usual order for operators between Banach lattices) and a
Banach algebra under composition provided it is equipped with the regular norm
‖T‖r =

∥∥|T |∥∥. As T 7→ ATB defines elements of both L
(
Lr(E)

)
and Lr

(
Lr(E)

)
,

this means that we can ask about both its regular and operator norms. We will
see that, at least in the slightly specialized setting in which we are able to obtain
satisfactory results, there are rather different answers in the two cases. This is in
contrast to the only related result in the literature, Proposition 1 of [6], that this
author knows of.

Our interest in this problem is not purely for the sake of generalization. For
Ak, Bk ∈ Z(E), the centre of E (the order ideal generated by the identity on E),
operators of the form T 7→

∑n
k=1AkTBk have already featured in the literature

in connection with descriptions of the centre of Lr(E). The interested reader is
referred to [1], [2] and [9] for details, albeit in slightly more general setting.

We refer the reader to [5] for the standard terminology in the field of Banach
lattices and linear operators on them.

2010 Mathematics Subject Classification. Primary: 47B48, 47B60.

Key words and phrases. Regular operators, basic elementary operators, Banach lattices.

c©XXXX American Mathematical Society

1



2 A.W. WICKSTEAD

The author would like to thank Chen Jinxi for pointing out an error in the proof
of Theorem 3.1 in a previous version of this paper. He would also like to thank
Anton Schep for providing a correction for that error and for pointing out that our
Theorem 3.1 is essentially stated in the remark following Hilfsatz 3 in [7].

2. Notation and History.

We will always assume that E is a Dedekind complete Banach lattice, so that
Lr(E) is also a Dedekind complete Banach lattice (and Banach algebra) under the
regular norm. If A,B ∈ Lr(E) then we will denote by MA,B the operator T 7→ ATB
which is easily seen to map Lr(E) into itself and to be an element of both L

(
Lr(E)

)
and of Lr

(
Lr(E)

)
. A priori there is no reason to expect the two norms ‖MA,B‖

and ‖MA,B‖r to be the same, but what historical results exist might lead one to
believe in such a possibility.

In [6], Schep studied the left regular representation of Lr(E) which, in our no-
tation, is the mapping A 7→ MA,I where I denotes the identity operator on E. In
Proposition 1, he establishes that ‖MA,I‖ = ‖MA,I‖r = ‖A‖r. After that result
he also remarks that ‖MI,B‖ = ‖MI,B‖r = ‖B‖r. As part of his Proposition 1,
he also establishes the rather significant fact that |MA,I | = M|A|,I . Rather earlier,
in Satz 3.1 (a) of [8], Synnatzschke proved the slightly more general result that
|MA,B | = M|A|,B whenever B is positive. In the remarks following Proposition
1, Schep leaves open the possibility that |MI,B | = MI,|B|. We must leave open
the same question, but do wish to point out that this is obviously true when E
is reflexive. This is because the mapping T 7→ T ∗ : Lr(E) → Lr(E∗) is a linear
order isomorphism and MI,B(T )∗ = MB∗,I∗(T ∗). We feel that it should be true
that |MI,B | = MI,|B| at least when E has an order continuous norm. Satz 3.1 (b)
of [8] is relevant here.

3. The Regular Norm.

Our results for the regular norm of MA,B are restricted to the setting that E is
atomic with an order continuous norm. Such Banach lattices are certainly Dedekind
complete. The reader will not go too far astray in thinking of E as being something
like `p for 1 ≤ p <∞.

One reason that we are able to obtain results for such spaces is the observation
that if e is an atom of E and T ∈ Lr(E) then |T |(e) = |T (e)|. This follows from
the well known formula |T |(e) =

∨
{T (x) : |x| ≤ e}. As e is an atom, the x’s here

are of the form λe for λ ∈ [−1, 1] so that |T |(e) =
∨
{|λT (e) : λ ∈ [−1, 1]} = |T (e)|.

If f ∈ E∗ and x ∈ E, then the operator T = f ⊗ x : e 7→ f(e)x is certainly a

member of Lr(E). Furthermore, MA,B(T )(e) = A
(
T
(
B(e)

))
= A

(
f
(
B(e)

)
x
)

=

f
(
B(e)

)
A(x), for any e ∈ E.

Theorem 3.1. If E is an atomic Banach lattice with an order continuous norm
and A,B ∈ Lr(E) then |MA,B | = M|A|,|B|.
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Proof. Suppose that T ∈ Lr(E)+. As products of positive operators are positive,
decomposing A and B into their positive and negative parts we have

MA,B(T ) = ATB = (A+ −A−)T (B+ −B−)

= A+TB+ −A+TB− −A−TB+ +A+TB+

≤ A+TB+ +A+TB− +A−TB+ +A+TB+

= (A+ +A−)T (B+ +B−)

= |A|T |B| = M|A|,|B|(T ),

which shows that |MA,B | ≤M|A|,|B|.
We establish the reverse inequality first for the particular case that T = f ⊗ x

where f ∈ E∗+ and x ∈ E+. As non-negative linear combinations of the atoms in E
are norm dense in the positive cone of E, it suffices to prove that |MA,B |(f⊗x)(e) ≥
M|A|,|B|(f ⊗ x)(e) for any atom e ∈ E+. Note that

|MA,B |(f ⊗ x) =
∨
{MA,B(S) : |S| ≤ f ⊗ x}

≥
∨
{MA,B(g ⊗ y) : |y| ≤ x, |g| ≤ f},

so that

|MA,B |(f ⊗ x)(e) ≥
∨
{|MA,B(g ⊗ y)|(e) : |y| ≤ x, |g| ≤ f}

=
∨
{|MA,B(g ⊗ y)(e)| : |y| ≤ x, |g| ≤ f}

=
∨
{|g(Be)Ay| : |y| ≤ x, |g| ≤ f}

=
∨
{|g(Be)||Ay| : |y| ≤ x, |g| ≤ f}

=
∨
{|g(Be)| : |g| ≤ f}

∨
{|Ay| : |y| ≤ x}

= f(|Be|)|A|(x)

= f(|B|e)|A|(x) [As e is an atom.]

= M|A|,|B|(f ⊗ x)(e).

We have now established that |MA,B |(f ⊗ x) = (M|A|,|B|(f ⊗ x), if f ∈ E∗+ and
x ∈ E+. By linearity this will also hold for any f ∈ E∗ and x ∈ E and therefore
|MA,B |(T ) = M|A|,|B|(T ) for any finite rank operator T on E.

Now take any T ∈ Lr(E), F a finite set of atoms in E and PF the band projection
onto the linear span of these atoms. As E is atomic with an order continuous norm,
PF (x)→ x in norm as the sets F increase. In particular, this means that the finite
rank operators PF ◦ T converge upwards to T for the strong operator topology. It
follows easily that M|A|,|B|(PF ◦T ) converges strongly to M|A|,|B|(T ). On the other
hand if T ≥ 0 and x ∈ E+ then we have

0 ≤ |MA,B |(T − PF ◦ T )(x) ≤M|A|,|B|(T − PF ◦ T )(x)→ 0

and hence |MA,B |(T − PF ◦ T )(x) → 0 from which it follows that |MA,B |(PF ◦
T ) → |MA,B |(T ) strongly for positive T and hence for all regular T . From these
observations it is immediate that |MA,B |(T ) = M|A|,|B|(T ) for all T ∈ Lr(E) and
hence that |MA,B | = M|A|,|B|. �

Corollary 3.2. If E is an atomic Banach lattice with an order continuous norm
and A,B ∈ Lr(E) then ‖MA,B‖r = ‖A‖r‖B‖r.



4 A.W. WICKSTEAD

Proof. We certainly always have ‖MA,B‖r ≤ ‖A‖r‖B‖r. If A and B are positive
then, as in the Banach space case, we have ‖MA,B‖ = ‖A‖‖B‖.To see this take
ε > 0 and pick x ∈ E+ with ‖x‖ = 1 and ‖A(x)‖ ≥ ‖A‖ − ε, where we may choose
x ≥ 0 as A is positive. Similarly pick y ∈ E+ with ‖y‖ = 1 and ‖B(y)‖ ≥ ‖B‖ − ε.
Let f ∈ E∗+ with ‖f‖ = 1 and f

(
B(y)

)
= ‖B(y)‖. Take T = f ⊗x which is positive

with ‖T‖ = ‖T‖r = ‖f‖ × ‖x‖ = 1. As

‖MA,B(T )(y)‖ = |f
(
B(y)

)
|‖A(x)‖ ≥ (‖A‖ − ε)(‖B‖ − ε)

we have ‖MA,B‖ ≥ ‖A‖‖B‖ = ‖A‖r‖B‖r. From the preceding Theorem, in general
we have ‖MA,B‖r =

∥∥|MA,B |
∥∥ = ‖M|A|,|B|‖ =

∥∥|A|∥∥∥∥|B|∥∥ = ‖A‖r‖B‖r. �

4. The Operator Norm

In this section, not only do we establish that we need not have ‖MA,B‖ =
‖A‖r‖B‖r (even in the setting of Corollary 3.2), but that there need not even be
a constant α > 0 such that ‖MA,B‖ ≥ α‖A‖r‖B‖r for all A,B ∈ Lr(E). Our
example will be on the space `2 and will be built from finite dimensional examples.
We need to estimate the operator norms, ‖A‖, and regular norms, ‖A‖r, of certain
square matrices A = (aij)

m
i,j=1 when considered as acting as linear operators on an

m-dimensional Hilbert space `m2 . We write Ai =
∑m

j=1 aij for the sum of the i’th

row of A and then set cj =
∑m

i=1 aijAi.

Proposition 4.1. If A is a m×m matrix then

(1)
1

m

m∑
j=1

cj =
1

m

m∑
i=1

A2
i =

1

m
‖(Ai)

m
i=1‖22 ≤ ‖A‖2

(2) If A has non-negative entries then also ‖A‖2 ≤ max{cj : 1 ≤ j ≤ m}.

Proof. For (1) set x = ( 1√
m

)m1 so that ‖x‖2 = 1 and Ax = 1√
m

(A1, A2, . . . , Am) so

that ‖Ax‖22 = 1
m

∑m
i=1A

2
i , showing that ‖A‖2 ≥ 1

m

∑m
i=1A

2
i . Note also that

m∑
j=1

cj =

m∑
j=1

(
m∑
i=1

aijAi

)

=

m∑
i=1

 m∑
j=1

aij

Ai =

m∑
i=1

A2
i .
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To establish (2) we need to estimate ‖Ax‖2 for x ∈ `m2 with ‖x‖2 ≤ 1 and (as A
has non-negative entries) all xi ≥ 0.

‖Ax‖22 =

m∑
i=1

 m∑
j=1

aijxj

2

=

m∑
i=1

 m∑
j=1

a2ijx
2
j + 2

m∑
1≤j<k≤m

aijaikxjxk


≤

m∑
i=1

 m∑
j=1

a2ijx
2
j +

m∑
1≤j<k≤m

aijaik(x2j + x2k)

 =

m∑
i=1

 m∑
j=1

(
m∑

k=1

aijaikx
2
j

)
=

m∑
i=1

 m∑
j=1

aij

(
m∑

k=1

aik

)
x2j

 =

m∑
i=1

 m∑
j=1

aijAix
2
j

 =

m∑
j=1

[
m∑
i=1

aijAi

]
x2j

=

m∑
j=1

cjx
2
j ≤ max{cj : 1 ≤ j ≤ m}

m∑
j=1

x2j ≤ max{cj : 1 ≤ j ≤ m}

so that ‖A‖2 ≤ max{cj : 1 ≤ j ≤ m}. �

Corollary 4.2. If A is a m×m matrix of non-negative reals and each row of A is
constant then

‖A‖2 =
1

m

m∑
i=1

A2
i =

1

m
‖(Ai)

m
i=1‖.2

Proof. This follows immediately as all the cj are the same. �

Corollary 4.3. If A is any real m×m matrix with each row constant then

‖A‖2r =
1

n

m∑
i=1

A2
i .

Proof. If B = |A| and Bi is the sum of the i’th row of B then Bi = |Ai| so that
B2

i = A2
i . B has constant rows so that

‖A‖r = ‖B‖ =
1

m

m∑
i=1

B2
i =

1

m

m∑
i=1

A2
i =

1

m
‖(Ai)

m
i=1‖22.

�

Define a sequence of matrices inductively by K0 = (1) and

Kn+1 =

(
Kn Kn

−Kn Kn

)
.

These matrices were introduced to the study of positive operators by Krengel in [3]
and [4]. The matrix 2−n/2Kn is an orthogonal matrix so that as an operator on `2

n

2

it is an isometry. It follows that ‖Knx‖2 = 2n/2‖x‖2 for all x ∈ `2n2 and in particular
‖Kn‖ = 2n/2 whilst it is easily checked, and well known, that ‖Kn‖r =

∥∥|Kn|
∥∥ = 2n.

In particular, we will make use of the fact that |Kn| is the 2n × 2n matrix with all
its entries equal to 1.

Our intention is to estimate the norm of the operators MKn,|Kn| ∈ L
(
Lr(`2

n

2 )
)

defined by MKn,|Kn|(T ) = KnT |Kn|.

Example 4.4. Although ‖Kn‖r =
∥∥|Kn|

∥∥ = 2n, ‖MKn,|Kn|‖ ≤ 23n/2.
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Proof. Take an arbitrary real 2n × 2n matrix T . All the entries in the i’th row of
T |Kn| are equal to Ti, the sum of the i’th row in T . The columns in KnT |Kn| are
therefore all equal to the product of Kn with the column vector (Ti)

2n

i=1 so that the
column vectors of row sums for KnT |Kn| is precisely 2nKn(Ti)

2n

i=1. We may thus
apply Corollary 4.3 to see that∥∥KnT |Kn|

∥∥2
r

= 2−n × 22n‖Kn(Ti)
2n

i=1‖22
= 2n‖Kn(Ti)

2n

i=1‖22
= 2n(2n/2‖(Ti)2

n

i=1‖2)2

= 22n‖(Ti)2
n

i=1‖22

whilst by Proposition 4.1, ‖T‖2r ≥ ‖T‖2 ≥ 2−n‖(Ti)2
n

i=1‖22, so that ‖MKn,|Kn|(T )‖2r =∥∥KnT |Kn|
∥∥2
r
≤ 23n‖T‖2r and ‖MKn,|Kn|‖r ≤ 23n/2. �

Embedding each of the examples on `2
n

2 into Lr(`2) shows that for regular oper-
ators A,B on `2 there is no real α > 0 such that ‖MA,B‖ ≥ α‖A‖r‖B‖r.
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