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Farmed fish are typically genetically different from wild conspecifics. Escapees from fish 20 

farms may contribute one-way gene flow from farm to wild gene pools, which can depress 21 

population productivity, dilute local adaptations and disrupt coadapted gene complexes.  Here 22 

we reanalyse data from two experiments (McGinnity et al., 1997, 2003) where performance 23 

of Atlantic salmon (Salmo salar) progeny originating from experimental crosses between 24 

farm and wild parents (in three different cohorts) were measured in a natural stream under 25 

common garden conditions. Previous published analyses focussed on group-level differences 26 

but did not account for pedigree structure, as we do here using modern mixed-effect models. 27 

Offspring with one or two farm parents exhibited poorer survival in their first and second 28 

year of life compared with those with two wild parents and these group-level inferences were 29 

robust to excluding outlier families. Variation in performance among farm, hybrid and wild 30 

families was generally similar in magnitude. Farm offspring were generally larger at all life 31 

stages examined than wild offspring, but the differences were moderate (5-20%) and similar 32 

in magnitude in the wild versus hatchery environments. Quantitative genetic analyses 33 

conducted using a Bayesian framework revealed moderate heritability in juvenile fork-length 34 

and mass and positive genetic correlations (>0.85) between these morphological traits. Our 35 

study confirms (using more rigorous statistical techniques) previous studies showing that 36 

offspring of wild fish invariably have higher fitness and contributes fresh insights into 37 

family-level variation in performance of farm, wild and hybrid Atlantic salmon families in 38 

the wild. It also adds to a small, but growing, number of studies that estimate key 39 

evolutionary parameters in wild salmonid populations. Such information is vital in modelling 40 

the impacts of introgression by escaped farm salmon. 41 

Keywords: introgression, hybridisation, outbreeding depression, fitness, salmonid, 42 

aquaculture 43 
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Introduction 44 

Intentional releases from hatcheries or unintentional escapes from aquaculture facilities can 45 

lead to genetic introgression between captive and wild fish populations where interbreeding 46 

occurs. Commercial farming of Atlantic salmon (Salmo salar) has increased dramatically 47 

over the past few decades, raising concerns over the genetic and ecological impacts on native 48 

populations (Naylor et al., 2005). Escapes from open net-pen culture facilities regularly 49 

occur, either via chronic low-level ‘leakage’ or acute events (e.g. storms) that release 50 

thousands of fish at one time (Naylor et al., 2005). Many wild Atlantic salmon stocks are 51 

currently severely depleted (ICES, 2010) and in some regions farm escapees can account for 52 

a third or more of salmon caught at sea (Hansen et al., 1999) or on the spawning grounds 53 

(Fiske et al., 2006). A range of studies have demonstrated that escaped farm salmon can 54 

successfully spawn in the wild (Fleming et al., 1996) and hence may contribute one-way gene 55 

flow from farm to wild gene pools (Clifford et al., 1998; Skaala et al., 2006; Glover et al., 56 

2012, 2013).  57 

Farmed Atlantic salmon are often genetically different from wild conspecifics due to 58 

geographical origin, founder effects (Skaala et. al., 2004), and especially domestication 59 

selection and genetic drift in captivity. For example, artificial selection for economically 60 

desirable traits such as faster growth and delayed maturity has been applied to many farm 61 

strains (Gjøen and Bentsen, 1997; Gjedrem 2000). The domestication process can also lead to 62 

rapid genetic changes in farm populations as a result of unintentional selection on non-target 63 

traits, for example increased aggression, higher risk-taking and altered feeding behaviours 64 

(Einum and Fleming, 1997; Fleming et al., 2002; Houde et al., 2010), or as a result of relaxed 65 

selection and genetic drift due to propagation with limited number of broodstock (Lynch and 66 

O’Hely, 2001).   67 
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In the wild, salmon populations invariably exhibit hierarchical genetic structure, with 68 

substantial genetic differences apparent among regions, neighbouring catchments within 69 

regions and even tributaries within the same river (Dionne et al., 2008; Bourret et al., 2013). 70 

Some of this genetic divergence is thought to reflect adaptations to local environments 71 

(Garcia de Leaniz et al., 2007), although the magnitude of local adaptation varies with spatial 72 

scale (Fraser et al., 2011). If continued one-way gene flow occurs from farm to wild salmon 73 

populations at high rates, then genetic differences (both among wild populations and between 74 

wild and farm populations) could rapidly erode, although some populations may be less 75 

susceptible to ‘genetic invasion’ than others (Glover et al., 2012, 2013).  76 

Introgressive hybridisation between farm and wild salmon can also lead to a drop in mean 77 

individual fitness in the wild. Experimental studies involving artificial crosses between wild 78 

and farm fish have provided evidence that offspring with one or two farm parents display 79 

lower survival than those with two wild parents (McGinnity et al., 1997, 2003; Skaala et al., 80 

2012). Larger, more aggressive farm and hybrid fish may also displace native fish or force 81 

them into suboptimal habitats, which increases average mortality (McGinnity et al., 1997, 82 

2003; Fleming et al., 2000). These studies suggest that repeated introductions of farm fish 83 

may depress the productivity of wild populations through both ecological and genetic 84 

mechanisms, in addition to fostering genetic homogenisation (Skaala et al., 2006; Glover et 85 

al., 2012) and potential loss of local adaptations. Most studies of the effects of artificial 86 

immigration of non-native fish (whether from farms or hatcheries), however, tend to 87 

emphasise group-level performance differences and typically overlook family-level variation 88 

in performance (but see Skaala et al. 2012). Information on families can minimise analytical 89 

bias and yield important insights; for example, certain non-native or hybrid families may 90 

fortuitously perform much better than others in natural environments and therefore contribute 91 
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disproportionately to introgression of non-native alleles/traits into wild populations (Garant et 92 

al., 2003).   93 

A recent Norwegian study found substantial among-family differences in the freshwater 94 

growth and survival of Atlantic salmon in a natural stream setting, with progeny of farm 95 

parents exhibiting a broader range of survival rates (in addition to a lower mean survival) 96 

than hybrid or wild progeny (Skaala et al., 2012). As noted by these authors, patterns of 97 

variation in the performance of farm, wild and hybrid families are likely to vary across space 98 

and through time, given that rivers vary in habitat characteristics and performance depends on 99 

an interaction between genes and environment. The extent of genetic divergence between 100 

wild and farmed salmon (and hence the potential threat of outbreeding depression) is also 101 

expected to vary among locales depending on the farm strains used, patterns of differentiation 102 

in the local wild populations, and the extent of any prior gene flow from farm to wild 103 

populations. Additional data on family differences in survival and fitness-related traits (e.g. 104 

size-at-age) of farm salmon and farm-wild hybrids (particularly F2 hybrids and backcrosses, 105 

which were not included in the Skaala et al. 2012 study and which provide extra information 106 

on the genetic basis of farm-wild differences and multi-generation consequences of 107 

interbreeding) from other geographic locations therefore would be highly valuable to estimate 108 

evolutionary consequences of introgression. On a more practical level, data on families can 109 

reveal if overall differences in mean performance between farmed, wild and hybrid groups 110 

are driven by one or two outlier families. Moreover, if phenotypic data is collected on related 111 

individuals (e.g. half-siblings), the resulting pedigree can be exploited to estimate quantitative 112 

genetic parameters such as trait heritabilities and genetic correlations, for which there are still 113 

very few estimates from wild salmonid populations (Carlson and Seamons, 2008). 114 

Information on the extent to which variation in fitness-related traits (e.g. size-at-age) is 115 
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transmitted from parents to offspring is also crucial to predicting the genetic and 116 

demographic consequences of introgression 117 

Here we reanalyse data from two experiments conducted in the west of Ireland (McGinnity et 118 

al., 1997, 2003) where survival and size-at-age of Atlantic salmon progeny originating from 119 

experimental crosses between farm and wild parents (in three different cohorts) were 120 

measured in a natural stream under common garden conditions. We have three primary 121 

objectives: (1) To reanalyse these data with modern mixed-effects models that account for 122 

kin structure  to test properly for group-level differences in mean survival and size-at-age, 123 

and to check whether patterns were driven by outlier families; (2) To test whether farm or 124 

hybrid families exhibited different patterns of variation in survival and size-at-age relative to 125 

wild families (i.e. variance heterogeneity with respect to groups). For example, farm families 126 

may exhibit higher variance than wild families (Skaala et al., 2012), while outcrossing can 127 

lead to changes in additive genetic and residual (non-additive genetic and environmental) 128 

variance in hybrid groups (Lynch and Walsh, 1998; Debes et al., 2014). (3) To exploit the 129 

pedigree structure inherent in the experimental designs to estimate quantitative genetic 130 

parameters of interest in a wild setting. Effects of egg size on offspring performance, 131 

assumed to reflect environmental maternal effects, are also tested and controlled for 132 

statistically at different offspring ages. 133 

 134 

Methods 135 

Study area and experimental design 136 

The experiments were undertaken in the Burrishoole system in the west of Ireland (Figure 1). 137 

A number of afferent rivers flow into Lough Feeagh (one of two major lakes in the 138 
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catchment), one of which (the Srahrevagh River, hereafter ‘experiment river’) was used for 139 

the freshwater stages of the experiment and was equipped with a trap (‘experiment trap’) 140 

capable of capturing all downstream moving juveniles and upstream migrating adults. The 141 

first experiment involved artificial crosses between farm adults (a derivative of the 142 

Norwegian Mowi strain established in Ireland in 1983, which became known as the ‘Fanad’ 143 

strain) and wild adults captured in the Burrishoole system in December 1992 and December 144 

1993. By 1983, the Mowi strain had already experienced circa 15 years (3-5 generations) of 145 

domestication in Norway, and thereafter the selection trajectory of the Fanad strain, which 146 

has never received inputs from Irish wild strains, was likely different from that of the farm 147 

strains in Norway. Four cross-types (hereafter simply ‘groups’) were made, involving pure 148 

farm, pure wild and both reciprocal hybrids (Table 1). The families established from the 149 

December 1992 broodstock, which hatched in spring 1993, are referred to as the 1993 cohort; 150 

similarly, the families established from the December 1993 broodstock, which hatched in 151 

spring 1994, are referred to as the 1994 cohort. To produce both the 1993 and 1994 cohorts, 152 

each farm dam was mated to one farm sire and one wild sire, and vice versa; thus all dams 153 

and sires were mated twice.  For full details on the experimental design for the 1993 and 1994 154 

cohorts, see (McGinnity et al., 1997) and Appendix 1 (which includes a schematic on the 155 

mating design). 156 

In the autumn of 1997, returning F1 hybrid Atlantic salmon, which had been ranched (i.e. 157 

released to the ocean as hatchery-reared smolts) from the 1994 cohort and had spent two 158 

winters at sea (2SW), were captured at the sea-entry traps (Fig.1). These were then used to 159 

produce F2 hybrids and BC1 backcrosses, while a new set of farm and wild adults were used 160 

as broodstock to produce pure and F1 hybrids (Table 1). Families thus established, which 161 

hatched in spring 1998, are referred to as the 1998 cohort. The mating design for the 1998 162 
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cohort was slightly different from the 1993 and 1994 cohorts (Appendix 1). For full details on 163 

the experimental design for the 1998 cohort, see (McGinnity et al. 2003). 164 

For each cohort, families were first mixed at the eyed-egg stage and then planted out to the 165 

experiment river in artificial redds (Donaghy and Verspoor, 2000). Juveniles were then 166 

sampled from the experiment river by electrofishing in August 1993, August 1994 and 167 

August 1998. The experiment trap was also inspected daily from 30 April 1993 to 20 April 168 

1995, and from 24 April 1998 to 30 June 2011. A random subset of parr and smolts from the 169 

experiment river caught in the experiment trap during these periods  were sacrificed and 170 

preserved in 95% ethanol. Fish in their first calendar year of life were denoted as 0+ and in 171 

their second calendar year as 1+. For the 1993 and 1994 cohorts, sub-samples of eggs from 172 

each family (250 eggs per family for 1993 cohort, 200 eggs per family for 1994 cohort, eggs 173 

measured at this point) were retained in the hatchery and reared to the smolt stage, denoted as 174 

‘hatchery controls’ (measured prior to being released to the ocean as smolts, and hence 175 

termed ‘pre-smolts’). A sample of 0+ parr from the 1993 cohort hatchery control group was 176 

sampled in August 1993, while further samples of mature male parr and pre-smolts were 177 

taken from the hatchery controls in November 1993 and March 1994,  respectively.  A 178 

sample of hatchery pre-smolts was also taken from the 1994 cohort in March 1995, just prior 179 

to their release to sea. In total, sampling of the 1993, 1994 and 1998 cohorts yielded 14 180 

different datasets on size-related traits and survival. DNA profiling techniques based on 181 

minisatellite (1998 cohort) or microsatellite (1993 and 1994 cohorts) marker loci were used 182 

to assign sampled offspring back to their parents with close to 100% power, which allowed 183 

individuals to be grouped into families (see McGinnity et al. 1997, 2003 for full details on the 184 

molecular methods and parentage assignment).    185 

 186 
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Statistical analyses 187 

1. Representation 188 

As the number of fish per family in some samples is determined by both emigration from the 189 

experiment stream and survival, counts are referred to simply as ‘representation’, following 190 

McGinnity et al. (1997, 2003, 2004). A series of generalised linear mixed effects models 191 

(GLMMs) were constructed to examine variation in family-level representation at different 192 

life/sampling stages. Mixed effects models are a powerful statistical technique for making 193 

inferences about explanatory variables of interest (typically the fixed effects, i.e. terms for 194 

which regression coefficients are estimated) while properly accounting for any sources of 195 

non-independence or hierarchical structure (random effects, i.e. terms for which an estimate 196 

of the variance is obtained) in the data; GLMMs are used when the response variable is non-197 

normal (Bolker et al., 2009). The GLMMs were fitted in R version 3.0.2 (R Core 198 

Development Team 2008) using the glmer function from the lme4 package (Bates et al., 199 

2012). The binomial response variable considered in these models was a concatenated vector 200 

of the number of individuals represented per family and the number not represented (the 201 

initial number of eggs per family planted out minus the number of individuals represented) 202 

and a logit link function was used. ‘Dam’ and ‘sire’ (unique identifier codes for each mother 203 

and father) were included as random effects, which accounts for the kinship structure inherent 204 

in the data (full-sibs nested within half sibs) and also provides estimates of the variance 205 

attributable to each parent.  206 

For each model, fixed effects of group as a factor (i.e. separate levels for each cross type) and 207 

eyed-egg diameter (mean-centred) were included. The latter was a single value per family 208 

(see McGinnity et al., 1997, 2003 for details on how this was measured) and was used as an 209 

index of maternal effects mediated via egg size (Einum and Fleming, 1999). Dam fork length 210 
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(LF) and egg mass were also measured but both were strongly correlated with egg diameter (r 211 

> 0.5 in all cohorts), so to avoid problems with collinearity of explanatory variables only egg 212 

diameter was included in the models. Backwards model selection (Zuur et al., 2009) was 213 

performed on the fixed effects, by dropping each in turn and retaining only significant terms 214 

(as assessed using likelihood ratio tests, LRTs) in the final model, while retaining the random 215 

effects of sire and dam regardless of their significance (which was necessary to properly 216 

account for kin structure in the data). Multiple contrasts with univariate P values were then 217 

used to test whether each group differed significantly from the pure wild group (the reference 218 

group).  219 

The existence of outlier families was checked by visually examining the family-level 220 

representation data. If a potential outlier was identified, its influence on the overall results 221 

was checked by re-running the analysis for that particular sample excluding that family and 222 

determining whether the results were changed qualitatively. To test for variance 223 

heterogeneity across groups in the raw representation data, the non-parametric Figner-Killeen 224 

Test of Homogeneity of Variances was used. The null hypothesis was that all groups had 225 

equal variance; the alternative hypothesis was that the variance differed for at least two of 226 

them. Finally, to test whether representation was consistent from the 0+ to 1+ parr stages, 227 

representation of 1+ parr per family (sampled in June 1995) were plotted against 228 

representation of 0+parr per family (sampled in August 1994) and a standard regression 229 

performed.  230 

 231 

2. Size-at-age  232 

A series of linear mixed effects models (LMMs) were constructed to examine variation in the 233 

LF and mass of juveniles at different life stages (note that for some datasets, mass was not 234 
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measured). Using LMMs is appropriate as ‘family’ can be fitted as a random effect, which 235 

accounts for non-independence of measurements taken on individuals belonging to the same 236 

family (i.e. accounts for ‘genetic pseudoreplication’). Failure to account for family structure 237 

can lead to inflated statistical significance of treatment (here group) effects, as the effective 238 

sample size per treatment level is lower than the number of observations per level (Zuur et 239 

al., 2009). The goals of these LMMS were to test for (1) group differences in mean LF and 240 

mass, (2) environmental maternal effects mediated via egg size (eyed-egg diameter), and (3) 241 

heterogeneity among groups in between-family variance and within-family variance. These 242 

goals were achieved by fitting a series of hierarchical models in two steps. In the first step, 243 

the most appropriate random effects structure was determined while including all candidate 244 

fixed effects, regardless of their statistical significance (Zuur et al., 2009). In the second step, 245 

backwards model selection was performed on the fixed effects (while retaining the best 246 

random effects structure identified in the first step) to determine which were significant. For 247 

each model, fixed effects of group and eyed-egg diameter were included. The response 248 

variables (LF, mass) were natural log-transformed, which ensured that model residuals were 249 

normally distributed.  250 

To determine the most appropriate random effects structure and test for variance 251 

heterogeneity across groups (e.g. whether the variation in farm fish was less than that of wild 252 

fish), five different (increasingly complex) models were compared for each response variable. 253 

First, a common residual variance only was estimated using generalised least squares (the gls 254 

function in the R library nmle). Second, a random effect of family (common to all groups) 255 

was included (using the lme function). Third, the random effect of family was stratified by 256 

group, which allowed for different between-family variances for each group. Fourth, a 257 

common random effect of family (i.e. not stratified by group) was fitted and the residual 258 

variance was stratified by group (which allowed for different within-family variances for 259 



12 
 

each group). Fifth, both the random effect of family and the residual variance were stratified 260 

by group (which allowed for heterogeneity in both between- and within-family variance). The 261 

model with the lowest AIC was then chosen as the most appropriate model in terms of the 262 

random effects. To reduce the number of parameters to be estimated, all mixed ancestry 263 

groups were merged into a single ‘hybrids’ group when stratifying the family or residual 264 

variance by group. That is, ‘group’ was a three-level factor (pure, wild and hybrids) when 265 

included in the random effects part of the model, whereas hybrid groups were distinguished 266 

as separate levels when ‘group’ was fitted as a fixed effect. Significance of the fixed effects 267 

were then tested via backwards selection, with P-values calculated by comparing models with 268 

and without the fixed effect of interest (fit by maximum likelihood) using LRTs. 269 

For the above LMMs, we focussed on size-at-age variation in the electrofishing and hatchery 270 

control samples only, where all individuals were measured on the same day. Variation in 271 

size-at-age was not examined for parr, pre-smolts and smolts caught in the experiment trap, 272 

as these fish were caught at different times of year and hence size differences could simply 273 

reflect age differences (age not being known accurately). The sample sizes were also 274 

insufficient to support more complex analyses of family variation in growth trajectories (e.g. 275 

random regression) for the trap sample data. As for the representation analyses, the existence 276 

of outlier families was checked by visually examining the family-level size-at-age data. If a 277 

potential outlier was identified, its influence on the overall results was checked by re-running 278 

the analysis for that particular sample excluding that family and determining whether the 279 

results were changed qualitatively.  280 

 281 

3. Quantitative genetic analyses 282 
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A Bayesian animal model approach was taken to estimate quantitative genetic parameters of 283 

interest, using the R package MCMCglmm (Hadfield, 2010). The animal model is a particular 284 

form of linear mixed effects model in which the breeding value, or ‘additive genetic merit’, 285 

of each individual is treated as a random effect. An estimate of the additive genetic variance 286 

(VA), and in the case of multivariate models, also the additive genetic covariance (COVA) can 287 

be obtained by combining phenotypic data with a pedigree. In our case, sampled offspring 288 

were assigned back to their parents with almost complete certainty, as there were no 289 

unknown parents (see McGinnity et al. 1997, 2003). The resulting pedigree gives an 290 

expectation of how breeding values should co-vary among individuals of different genetic 291 

relatedness (in this case full-sibs and half-sibs; note that parental phenotypes were not 292 

measured at the same age and hence could not be included in the analysis), which then allows 293 

VA and COVA to be solved for algebraically (Kruuk, 2004; Hadfield, 2010).  294 

While it would have been possible to pool data from all groups to estimate quantitative 295 

genetic parameters, we chose not to, as outcrossing genetically divergent groups (i.e. farm 296 

and wild fish) leads to changes in non-additive genetic components of variance (dominance 297 

and epistasis) in the hybrids (Lynch and Walsh, 1998). The data and pedigree structure were 298 

not sufficiently informative to separate out these non-additive components (which otherwise 299 

end up in the residual variance, VR) and hence obtaining clean estimates of heritability with 300 

the pooled data would be problematic, as both VA and VR are expected to vary among cross-301 

types (groups). We therefore ran animal models separately for the pure wild and pure farm 302 

groups only and only for samples where at least 50 individuals were measured.  Egg size was 303 

included as a continuous fixed effect in all cases to test for environmental maternal effects 304 

mediated via egg size.  305 

Bivariate animal models were used to analyse variation in LF and mass simultaneously. Fixed 306 

effects of egg size were estimated for each trait in the same model (by including a trait × egg 307 
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size interaction), and the phenotypic variance-covariance matrix was decomposed into an 308 

additive genetic matrix and a residual (environmental) matrix (Hadfield, 2010). The 309 

distribution of both traits was modelled as Gaussian and weakly informative inverse Wishart 310 

priors were used (posterior distributions were robust to alternative prior specifications). 311 

Samples were taken from the posterior distributions of the parameters every1000 iterations of 312 

the Markov chain, after an initial burn-in of 2.5×104 iterations, for a total of 1000 samples. In 313 

all cases this was sufficient to achieve good convergence and acceptably low (<0.1) 314 

autocorrelation between adjacent MCMC samples. Posterior distributions of the narrow-sense 315 

heritability h2
 of each trait (for wild and farm groups separately) were calculated by dividing 316 

the posterior distribution of VA by the sum of the posterior distributions of VA and VR, and the 317 

mode and 95% credible intervals (CI) of these posterior h2 distributions are then presented. 318 

Posterior distributions of the genetic correlation between LF and mass were calculated as the 319 

posterior distribution of the genetic covariance divided by the square root of the product of 320 

the posterior distributions of the genetic variances. General maternal environmental effects 321 

not accounted for by egg size effects were also tested for in all models by including an 322 

additional random effect of ‘mother identity’, but in all cases this variance component was 323 

estimated at close to zero (and the deviance information criterion did not drop by >2 units) 324 

and hence was not included in the final models. 325 

 326 

Results 327 

1. Representation 328 

Overall group-level differences in representation were consistently found for 0+ parr in the 329 

electrofishing samples from each cohort, and for 1+ parr in the 1994 cohort (Table 2, full 330 

statistical results presented in Appendix 2). In the 1993 cohort 0+ parr electrofishing sample, 331 
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the WF group was significantly over-represented relative to the WW reference group but the 332 

other groups were equally represented (Table 2, Fig.2). For the 1994 cohort, both 0+ and 1+ 333 

electrofished parr were significantly under-represented in the FF group relative to the WW 334 

group, while 0+ parr were also under-represented in the FW group (Table 2, Fig.2). There 335 

was one obvious outlier in the WW group for the 1994 cohort 0+ parr electrofishing (family 336 

49, Fig.2A); when this outlier was excluded, the results were qualitatively unchanged. Egg 337 

size had a significantly positive effect on representation of 0+ parr in the 1993 and 1994 338 

cohort electrofishing samples and on the representation of 1+ parr in the June 1995 (1994 339 

cohort) electrofishing sample (Appendix 2, Table A2.1 and supplementary figure1).  340 

For the 1994 cohort, representation of 1+ parr per family in June 1995 was positively 341 

correlated with representation of 0 + parr per family in August 1994 (Fig. 3; r = 0.674, P < 342 

0.001; no differences between groups in this relationship). A single outlier family (family 49, 343 

Fig. 2) had a large influence on this relationship; however, the positive correlation remained 344 

significant when excluding this family (r = 0.383, P = 0.012).  345 

For the 1998 electrofishing sample, egg size did not have a significant effect on 346 

representation per family, but all groups were under-represented relative to the WW group, 347 

with the FF group having the lowest representation (Table 2, Fig.2). The other groups were 348 

approximately equally represented, but lower on average than the WW group (Table 2, Fig. 349 

2). There was one obvious outlier in the F2Hy group (family 162, Fig.2A), but excluding this 350 

family did not change the results qualitatively. The variances attributable to dam effects and 351 

sire effects for all representation models are given in Appendix 2 (Table A2.2). 352 

Parr belonging to the 1993 cohort were under-represented in the experiment-trap in the FW 353 

and FF groups relative to the WW group (Table 2, supplementary figure 2A). Pre-smolts and 354 

smolts originating from this cohort were marginally under-represented in the FW and FF 355 
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groups relative to the WW group (Table 2, supplementary figure 2B). The latter result was 356 

robust to excluding one outlier family (family 4, supplementary figure 2B). For the 1994 357 

cohort, parr were under-represented in the experiment-trap in the WF, FW and FF groups (in 358 

this order: WW>WF > FW > FF; Table 2, supplementary figure 2A). Results were 359 

qualitatively the same when a single outlier family belonging to the WW group (family 49, 360 

supplementary figure 2A) was excluded.  361 

There were no significant differences among groups in representation of pre-smolts and 362 

smolts from the 1994 cohort in the experiment-trap (Table 2). For the 1998 cohort, parr were 363 

under-represented in the experiment-trap in the BC1W, F2Hy, BC1F and FF groups (in this 364 

order: WW > BC1W > F2Hy > BC1F > FF; Table 2, supplementary figure 2A).  There were 365 

no significant differences among groups in representation of pre-smolts and smolts from the 366 

1998 cohort in the experiment-trap (Table 2), and this result was robust to excluding one 367 

outlier family (family 162, supplementary figure 1B). Egg size did not have a significant 368 

effect on representation in any of the experiment-trap samples (Appendix 2). 369 

For the 1993 cohort, there were no significant representation differences between groups in 370 

the hatchery control 0+ parr August 1993 sample (Table 2, supplementary figure 3A). In the 371 

hatchery control mature male parr sample, the WF and FF groups were under-represented 372 

relative to the WW group (Table 2, supplementary figure 3B). There were no significant 373 

representation differences among groups in terms of smolts in the hatchery control groups for 374 

the 1993 and 1994 cohorts (Table 2, supplementary figure 3C and 3D). Egg size did not have 375 

a significant effect on representation in any of the hatchery control samples (Appendix 2).  376 

For most of the samples considered, no variance heterogeneity with respect to group was 377 

found (Appendix 2, Table A2.3), apart from a few exceptions. For the 1998 cohort 378 

electrofished 0+parr, the Fligner-Killeen test showed that at least two of the group variances 379 
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were different (median chi-squared = 11.65, df = 4, P = 0.020). The raw variance in 380 

representation (i.e. not correcting for egg-size variation) was highest for the F2Hy group (8.2 381 

× 10-5), intermediate for the BC1W (2.6 × 10-5) and BC1F (2.7 × 10-5) groups and lowest for 382 

the FF (1.6 × 10-5) and WW (1.3 × 10-5) groups. Excluding the outlier in the F2Hy group 383 

(family 162, Fig.2A), the variance for this group dropped considerably (to 2.2 × 10-5), but the 384 

Fligner-Killeen test still showed that at least two of the groups were heterogeneous (median 385 

chi-squared = 9.92, df = 4, P = 0.042). For the 1993 cohort trapped parr, the Fligner-Killeen 386 

test showed that at least two of the group variances were different (median chi-squared = 387 

11.93, df = 3, P = 0.008). The raw variance in representation was highest for the WW (7.6 × 388 

10-5) and WF groups (8.2 × 10-5), and lower for the FW (2.7 × 10-5) and FF (8.1 × 10-6) 389 

groups. For the 1998 cohort trapped parr, the Fligner-Killeen test showed that at least two of 390 

the group variances were different (median chi-squared = 56.6, df = 4, P < 0.001). The raw 391 

variance in representation was highest for the WW group (5.8 × 10-5), intermediate for the 392 

BC1W group (4.0 × 10-5) and lowest for the BC1F (6.5 × 10-6), F2Hy (6.3 × 10-6) and FF (2.8 393 

× 10-6) groups. 394 

 395 

2. Size-at-age variation 396 

For the 1993 and 1994 cohorts, electrofished 0+ parr assigning to the FF group were 397 

significantly larger (LF) than those assigning to the WW group, while the hybrid groups (WF 398 

and FW) were intermediate (Table 2, Fig. 4A,B). A similar pattern was found for 399 

electrofished 0+ parr from the 1998 cohort, with FF parr being larger than WW parr and the 400 

BC1W, F2Hy and BC1F groups being intermediate in size (Table 2, Fig. 4D). The general 401 

pattern was an increase in LF of 0+ parr with an increase in the expected fraction of farm 402 

genes (i.e. the order was WW < hybrids < FF). LF of 0+parr was also positively associated 403 
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with egg size in all three cohorts (Appendix 3, supplementary figure 4). Mass of 0+ parr 404 

showed similar patterns to LF, with farm fish being heavier than pure wild and hybrids 405 

intermediate (supplementary figure 5). Egg size also had a positive effect on mass of 0+ parr 406 

in all three cohorts (Appendix 3). LF and mass of 1+ parr in the 1994 cohort were also higher 407 

in the FF group compared with the WW group, with hybrids again intermediate (Table 2, 408 

Fig.4C for LF and supplementary figure 5B for mass). Egg size did not have a significant 409 

effect on LF or mass of 1+ parr (Appendix 3). There were no obvious outlier families in terms 410 

of LF and mass of electrofished parr (Fig. 4). 411 

Growth patterns were less consistent for 0+ parr measured in the hatchery controls (1993 412 

cohort): FF fish were significantly larger than WW fish, as were WF fish, but FF fish were no 413 

larger than WF fish (standard errors largely overlapping, Table 2 and Appendix 3). Parr from 414 

the FW group were not significantly larger than WW parr (Table 2, Fig.5A). Egg size did not 415 

have an effect on LF or mass of 0+parr in the hatchery controls (Appendix 3). No significant 416 

differences in LF of mature male parr in the 1993 cohort hatchery controls were apparent 417 

(Table 2, Fig.5B), nor did egg size influence LF of mature male parr in the hatchery 418 

(Appendix 3). For the 1993 cohort hatchery controls, FF pre-smolts were significantly larger 419 

and heavier than WW pre-smolts (Table 2, Fig.5C) but FW and WW pre-smolts were not 420 

significantly larger than WW pre-smolts (Table 2, Fig.5C). Egg size had no effect on the LF 421 

and mass of pre-smolts in the 1993 hatchery controls (Appendix 3).  422 

For the 1994 cohort hatchery controls, WF, FW and FF pre-smolts were all significantly 423 

larger than WW pre-smolts, with FF being the largest and the two hybrid groups each 424 

intermediate between WW and FF (Table 2, Fig.5D). Egg size had only a marginally 425 

significant positive effect on the LF of pre-smolts in the 1994 cohort hatchery controls 426 

(Appendix 3, supplementary figure 4). The patterns for mass in the hatchery controls were 427 
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very similar to those for LF (Appendix 3, supplementary figure 6). There were no obvious 428 

outlier families in terms of LF (Fig. 5) and mass of hatchery control juveniles (supplementary 429 

figure 4). 430 

For most of the samples considered, no variance heterogeneity in LF or mass with respect to 431 

group was found (Appendix 3), apart from a few exceptions. In the 1994 cohort electrofished 432 

1+ parr sample, there was heterogeneity among groups in the within-family variance in LF 433 

and mass; this variance was highest in the WW group (raw variance = 10.39 g2) and lower in 434 

the other three groups (WF = 6.66 g2; WF = 7.58 g2; FW = 7.34 g2). In the 1993 cohort 435 

hatchery controls (supplementary figure6), the variance in mass of pre-smolts was higher in 436 

the FF group (raw variance = 242.93 g2) compared to the other groups (WW = 102.06 g2; WF 437 

= 85.59 g2; FW = 112.29 g2).  In the 1994 cohort hatchery controls (Fig.5D), the variance in 438 

LF of pre-smolts was higher in the WW group (raw variance = 8.95 mm2) compared to the 439 

other groups (WF = 1.51 mm2; FW = 2.71 mm2; FF = 4.03 mm2).    440 

3. Quantitative genetic analyses 441 

Moderate heritabilities were estimated for LF and mass, with a general trend for higher h2 442 

estimates in the wild group than in the farmed group (Table 3). For LF, modal h2 estimates in 443 

the pure wild group ranged from 0.21 (Bayesian 95% CI: 0.07-0.75) in the June 1995 444 

electrofished 1+ parr sample to 0.89 (CI: 0.23-0.96) in the August 1998 electrofished 0+ parr 445 

sample, whereas model h2 estimates in the pure farm group ranged from 0.10 (CI: 0.03-0.44; 446 

June 1995 electrofished 1+ parr sample) to 0.31(CI: 0.04-0.86; August 1998 electrofished 0+ 447 

parr sample). For mass, modal h2 estimates in the pure wild group ranged from 0.20 (CI: 448 

0.09-0.77) in the June 1995 electrofished 1+ parr sample to 0.53 (CI: 0.15-0.94) in the 449 

August 1994 electrofished 0+ parr sample, whereas model h2 estimates in the pure farm group 450 

ranged from 0.08 (CI: 0.03-0.43; June 1995 electrofished 1+ parr sample) to 0.17 (CI: 0.05-451 
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0.86; August 1998 electrofished 0+ parr sample). The credible intervals for each h2 estimate 452 

were quite large, reflecting the relatively low samples sizes and simple pedigree structure. 453 

The genetic correlations between LF and mass of electrofished (0+ or 1+) parr were estimated 454 

to be very high (posterior modes of >0.85, with credible intervals not overlapping zero) in 455 

both the 1994 and 1998 cohorts, as were the environmental correlations (save for mass of 456 

August 1994 electrofished 0+ parr, where rE was low; Table 3).  457 

 458 

Discussion 459 

Re-analysis of group-level performance differences accounting for family structure 460 

The performances of individuals sharing one or two parents are not independent because of 461 

effects of shared genes and possible parental environmental effects. Earlier analyses of these 462 

experimental data (McGinnity et al. 1997, 2003) did not account for this family structure, but 463 

reassuringly the current results were largely congruent in terms of significant group-level 464 

differences (compare Table 2 here with Table 2 in McGinnity et al. 1997 and with Fig.2 in 465 

McGinnity et al. 2003) when hypothesis testing of parental genotypic effects was based on 466 

families rather than individuals (the former being tantamount to avoiding ‘genetic 467 

pseudoreplication’). Minor differences, however, were noted. For example, with the 468 

electrofishing August 1993 0+ parr sample, McGinnity et al. (1997) reported that the FF 469 

group was significantly under-represented relative to the WW group, whereas here that 470 

difference was not significant. However, the qualitative conclusions were largely unchanged 471 

when kin structure was accounted for, suggesting that either the kin structure was not strong 472 

enough for genetic pseudoreplication to be a major issue, and/or that covariation in the 473 

performance of individuals sharing one or two parents was relatively weak due to moderate 474 

trait heritabilities. 475 
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Focusing analyses in to the family level allowed us to uncover interesting biological patterns 476 

of variation and covariation in representation. Families highly represented at the 0+ parr stage 477 

in the experiment stream (caught by electrofishing) were also highly represented at the 1+ 478 

parr stage (Fig. 3), implying consistent performance differences in the wild underpinned by 479 

genetic differences or persistent maternal effects. Outlier families were also obvious in some 480 

samples. For example, in the August 1994 0+ parr electrofishing sample, one pure wild 481 

(WW) family (family 49, see Fig.2A and Fig.3) was represented by 59 parr, which compares 482 

with an average representation of 11.4 parr per family excluding this family. Nevertheless, 483 

the overall group-level differences in this sample remained statistically significant after 484 

removing the outlier, instilling further confidence that the lower representation of offspring 485 

with one or two farm parents was a robust, biologically meaningful result, not driven simply 486 

by one or two highly performing wild families. Similarly, in the August 1998 0+ parr 487 

electrofishing sample, one F2 hybrid family (family 162, Fig.2A) was anomalously highly 488 

represented relative to all other families, but the inferences regarding group-level differences 489 

were robust to excluding this family. We can only speculate on the reasons as to why these 490 

particular families were so highly represented, but in the case of the F2 hybrid family, 491 

recombination between the divergent wild and farm parental genomes could have produced 492 

rare offspring genotypes that were fortuitously well-adapted to the local conditions through 493 

hybrid vigour, or heterosis.  494 

Performance of farm and hybrid families: more or less variable than wild families? 495 

Overall genetic diversity may be considerably lower in farm salmon compared to wild 496 

populations (Norris et al., 1999; Skaala et al., 2004), at least when considering highly 497 

polymorphic genetic markers, because of low effective population sizes in the farm and/or 498 

strong directional selection on target traits, which can deplete genetic variation (Lynch and 499 

Walsh, 1998). A priori, therefore, one might expect that offspring produced by farm parents 500 
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should exhibit reduced phenotypic variation in the wild and therefore less variable survival 501 

rates compared to wild families. Skaala et al. (2012), however, reported the opposite: a larger 502 

range in survival rates (a ratio of 38:1 between the lowest and highest survival rates) in farm 503 

families compared to hybrid (7:1) or wild (8:1) families in a natural stream setting. In our 504 

case, however, no variance heterogeneity in representation with respect to group was found 505 

for most of the samples considered (Appendix 3). In a few samples, we did find variance 506 

heterogeneity but the patterns were inconsistent; for example, in the 1998 cohort 507 

electrofished 0+parr, survival variation was greatest among F2Hy families (perhaps due to 508 

rare advantageous recombinants), while for the 1993 and 1998 cohort trapped parr samples, 509 

variance in representation was highest for pure wild families and lowest for pure farm 510 

families (as one would predict if farm families are genetically depauperate), with hybrid 511 

families being generally intermediate. While Skaala et al. used Mowi strain salmon in one of 512 

their experimental cohorts, the Fanad Mowi strain used by us is likely to be divergent from 513 

theirs in its genetic make-up (due to lower broodstock numbers and a separate breeding 514 

programme); thus differences in genetic background and selection trajectories of the farm 515 

strains may explain the inconsistent results, in terms of variance in performance, between 516 

Skaala et al. (2012) and the current study.  517 

For offspring LF and mass, no heterogeneity in between-family variance was found 518 

(Appendix 3), suggesting that each group had similar levels of additive genetic variance for 519 

these traits. In terms of within-family (residual) variance, which largely reflects 520 

environmental influences on the phenotype, no differences among groups were apparent in 521 

nine out of fourteen samples (Appendix 3). In the other  five samples, the residual variance 522 

was either highest in the WW group (e.g. mass of 1994 cohort electrofished 1+ parr sample) 523 

or the FF group (e.g. LF and mass of pre-smolts in 1993 cohort hatchery controls). 524 

Intriguingly, Debes et al. (2014) found that within-family variation in body size of Atlantic 525 
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salmon (measured in a hatchery setting) diminished with increasing generations of 526 

domestication (see also Solberg, Skaala et al., 2013). Under fully wild conditions, variance 527 

differences between wild, farmed and hybrid families may be largely unpredictable and 528 

context-dependent, given that our findings did not match those of Skaala et al. (2012) despite 529 

very similar study designs (but different genetic backgrounds). One possibility is that farmed 530 

fish may lose their environmental sensitivity (i.e. degree to which their phenotypes or 531 

performance is buffeted by prevailing conditions) in hatchery environments, but not wild 532 

environments, as they are only selected in the former.  533 

Genetic basis of group and family differences in size-at-age 534 

Directional selection in farm strains has resulted in higher intrinsic growth rates of farm 535 

salmon, which in a hatchery environment can grow up to three times faster than wild salmon 536 

(Glover et al., 2009; Solberg, Skaala, et al., 2013, Solberg, Zhang, et al., 2013). However, 537 

these growth rate differences seem to be less pronounced in wild stream environments 538 

(Skaala et al., 2012) and in hatchery conditions simulating a semi-natural environment with 539 

restricted food (Solberg, Skaala, et al., 2013). In our experiments, size-at-age differences 540 

between wild and farm offspring measured in the wild were statistically significant but 541 

moderate in magnitude (Table 2), with electrofished farm parr being on the order of 5-20% 542 

larger and heavier than wild parr, consistent with the findings of these previous studies. 543 

However, size differences between farm and wild juveniles were similar in the hatchery 544 

environment as in the wild (Table 2), which contrasts with the above-cited studies. This 545 

presumably reflects the fact that the Fanad farm strain used in our study had experienced a 546 

different selection trajectory in Ireland up until our experiments were carried out in the 1990s 547 

than the Norwegian farm strains used in the more recent Norwegian studies (Glover et al., 548 

2009; Skaala et al., 2012; Solberg, Skaala, et al., 2013, Solberg, Zhang, et al., 2013) had.  549 

The latter had also undergone more generations of targeted artificial (and/or inadvertent 550 
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domestication) selection than our farm strain. These differences in historical selection 551 

regimes, as well as possible founder effect differences, may explain why we found only 552 

moderate size differences between our farm and wild groups in both the hatchery and wild 553 

environments, whereas the Norwegian studies observed much larger differences in hatchery 554 

environments (where their higher genetic growth potential is likely more easily realised) that 555 

were attenuated in the wild (where environmental influences on growth are likely larger and 556 

selection against extreme phenotypes also stronger). Interestingly, genetically-based somatic 557 

growth differences between the farm and wild strains used in the Norwegian studies seem to 558 

be more important after the onset of exogenous feeding, with alevin lengths being similar 559 

once egg size differences between farm and wild strains are corrected for (Solberg et al. 560 

2014). 561 

VA is a crucial parameter influencing the rate of microevolution and thus the potential for 562 

genetic adaptation to a changing environment, while in the case of multivariate selection, 563 

COVA among characters determine the extent to which they can evolve along independent 564 

trajectories. Typically, VA  is scaled relative to the phenotypic variance VP, which gives a 565 

measure of heritability h2, while COVA  is scaled relative to the square root of the product of 566 

the VA  in each trait to give a measure of the genetic correlation (rG). Estimates of both 567 

heritabilities and genetic correlations (including the sign of the latter) may depend, however, 568 

on the quality of the environment experienced by measured individuals, which can affect both 569 

VA and VR (i.e. the residual, or environmental variance) (Charmantier and Garant, 2005). In 570 

the case of salmonid fishes, quantitative genetic parameter estimates calculated under farm or 571 

hatchery conditions may have limited relevance for wild populations, given the 572 

environmental-sensitivity of these parameters. Carlson and Seamons (2008) reported that 573 

only 2% of published h2 estimates in salmonids were from wild-reared populations, while no 574 

estimates of rG were available at the time for wild salmon reared in the wild. Since then, a 575 
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few additional studies have been published that estimated quantitative genetic parameters in 576 

wild settings (Saura et al., 2010; Serbezov et al., 2010; Letcher et al., 2011) and our current 577 

study adds to this small list. For the pure wild group, our estimates of h2 of LF and mass 578 

(electrofished parr samples) were generally in the range of 0.20 to 0.50 (Table 3), which 579 

compares with a median h2 of 0.29 and 0.32 for length-at-age and mass-at-age, respectively, 580 

reported in Carlson and Seamons (2008). Saura et al. (2010) estimated the h2 of adult length 581 

(and also adult mass) of Atlantic salmon to be 0.32, while Serbezov et al. (2010) report h2 582 

estimates between 0.16 and 0.31 for length-at-age for wild-living juvenile brown trout (Salmo 583 

trutta). Body size of salmon juveniles is positively related to their ability to acquire and 584 

defend feeding/nursing territories and has previously been shown to be under positive natural 585 

selection (Einum and Fleming, 2000). Thus estimates of the h2 of size-at-age traits obtained 586 

under natural conditions are of evolutionary importance; moreover, these traits are known to 587 

vary between farm and wild populations and hence understanding how they are inherited can 588 

improve predictions of likely genetic consequences of introgression. 589 

We also found that the modal h2 estimates for LF and mass were generally lower for the pure 590 

farm (FF) group, compared with the pure wild group (Table 3), although the uncertainty 591 

associated with each h2 estimate was relatively large and the posterior distributions for the 592 

wild and farm groups overlapped considerably. Because these traits were first natural-log 593 

transformed before running the animal models, the VA values reported in Table 3 (multiplied 594 

by 100) can also be interpreted as evolvabilities (i.e. mean standardised additive genetic 595 

variances on the untransformed scale, see Hansen et al., 2011). Evolvability measures the 596 

expected proportional evolutionary change in a trait under a unit strength of selection and in 597 

many ways is a better measure of evolutionary potential that h2, particularly when comparing 598 

groups or populations that have very different VP. Thus for example, when the mean 599 

standardised selection gradient is 1 (i.e. very strong selection), the expected evolutionary 600 
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response in LF for the wild 0+parr based on the August 1998 electrofishing sample would be 601 

0.4% (i.e. an evolvability of 0.4% for the WW group), while that for the farmed parr would 602 

be only 0.2% (Table 3). In general we found that VA (and hence evolvability) was lower in the 603 

FF group compared with the WW group, which is in line with previous findings that genetic 604 

variation in farm salmon strains are often lower than in wild strains (Norris et al., 1999; 605 

Skaala et al., 2004). Interestingly, Solberg, Zhang et al. (2013) reported reduced heritability 606 

of juvenile mass in farm-provenance Atlantic salmon, compared to progeny of wild parents, 607 

when both were reared under standard hatchery conditions with unrestricted access to food. 608 

This pattern was reversed , however, when access to food was restricted, possibly reflecting 609 

selective mortality against the slowest-growing wild genotypes (Solberg, Zhang, et al., 2013). 610 

We also found strong positive genetic correlations between LF and mass (>0.85 in all 611 

samples), which is higher than the median rG of +0.71 reported by Carlson and Seamons 612 

(2008) for pairs of morphological traits. Hence positive selection on body size would be 613 

predicted to result in population-level increases in both mean LF and mean mass (Lynch and 614 

Walsh, 1998). We controlled for environmental maternal effects as far as possible by 615 

including egg size as a covariate (fixed effect) in the animal models. Larger females tend to 616 

produce larger eggs (as do farm females, see Table 1), and larger eggs can result in larger size 617 

of fry at emergence and higher early-life survival (Einum and Fleming, 1999; Heath et al., 618 

1999). We found that egg size had a significant positive effect on the LF and mass of 0+ fry 619 

caught by electrofishing, whereas no egg size effect was found for electrofished 1+parr 620 

(Appendix 3), consistent with previous findings in salmonids that egg size effects tend to 621 

attenuate with offspring age (Heath et al., 1999). However, positive effects of egg size on the 622 

representation (i.e. survival) of both 0+ and 1+ electrofished parr were also found (Appendix 623 

2, supplementary figure 1). Future salmonid studies that disentangle maternal genetic and 624 
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environmental effects from additive genetic effects in wild stream environments would be 625 

very revealing. 626 
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Figure 1 

 

Fig.1 Map of the Burrishoole river system showing location of experiment river, experiment-

trap and sea-entry traps. 

 

 

 

 

 



Figure 2 

 

 

Fig.2 (a) Representation of 0+ parr in the August electrofishing samples for the 1993, 1994 

and 1998 cohorts, scaled by the number of eyed-eggs planted per family. (b) Representation 

(scaled by eggs planted) of 1+ parr in the June 1995 electrofishing sample for the 1994 

cohort. Families are labelled arbitrarily in each panel and family labels for 1994 cohort 

correspond between (a) and (b). Arrows indicate outlier families. 

B 
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Figure 3 

 

Fig.3 Representation of 1+ parr in the June 1995 electrofishing sample plotted against 

representation of 0+ parr in the August 1994 electrofishing sample (1994 cohort). Each data 

point is a family. The outlier family indicated with an arrow is family 49, which corresponds 

to the same outlier family identified in Fig. 2A. 

 

 

 

 

 

 

 



Figure 4 

 

Fig.4 Fork length of (a) 0+ parr in August 1993 electrofishing sample (1993 cohort), (b) 0+ 

parr in August 1994 electrofishing sample (1994 cohort)  (c) 1+ parr in June 1995 

electrofishing sample (1994 cohort), and (d) 0+ parr in August 1998 electrofishing sample 

(1998 cohort). Error bars are standard deviations around the mean per family. 

 

 

 

 

 



Figure 5 

 

Fig.5 Fork length of (a) 0+ parr in August 1993 hatchery control sample (1993 cohort), (b) 

mature male parr in November 1993 hatchery control sample (1993 cohort)  (c) pre-smolts in 

March 1994 hatchery control sample (1993 cohort), and (d) pre-smolts in March 1995 

hatchery control sample (1994 cohort). Error bars are standard deviations around the mean 

per family. 

 

 

 

 

 



Table 1 Experimental groups of Atlantic salmon in the 1993, 1994 and 1998 cohorts. Number 

of eggs = number of eyed-eggs planted out in the experiment river. Final column gives the 

expected percentage of farm genes per group. D = dam. S = sire. 

Cohort Group Group code 
No. 

dams 
No. 
sires 

No. 
families

No. 
eggs  

Mean 
egg size 
(mm ± 

SD) 

% Farm 
genes 

1993 Wild D x Wild S WW_93 6 6 6 5273 
0.60 

(0.04) 
0 

  Wild D x Farm S WF_93 6 6 6 5886 
0.60 

(0.04) 
50 

 Farm D x Wild S FW_93 8 8 8 8659 
0.61 

(0.03) 
50 

  Farm D x Farm S FF_93 15 15 15 14997 
0.61 

(0.04) 
100 

         

1994 Wild D x Wild S WW_94 11 11 11 10537 
0.61 

(0.04) 
0 

  Wild D x Farm S WF_94 11 11 11 10537 
0.61 

(0.04) 
50 

 Farm D x Wild S FW_94 11 11 11 10537 
0.64 

(0.05) 
50 

  Farm D x Farm S FF_94 11 11 11 10537 
0.64 

(0.05) 
100 

         

1998 
Wild D x Wild S 

WW_98 
4 5 12 8787 0.61 

(0.02) 
0 

 F1 hybrid x Wild BC1W_98 14 5 41 9549 
0.61 

(0.02) 
25 

 
F1 hybrid x F1 

hybrid 
F2Hy_98 14 2 26 8337 

0.61 
(0.02) 

50 

 F1 hybrid x Farm BC1F_98 14 5 42 9928 
0.60 

(0.03) 
75 

 Farm D x Farm S FF_98 7 5 33 9832 
0.61 

(0.02) 
100 

 

 

 

 

 

 



Table 2 Mean representation (number of fish in the sample divided by the initial number of eggs planted out/retained in hatchery) and mean fork length 

(LF) for each group for the 1993, 1994 and 1998 cohorts. Also shown in parentheses are the means expressed relative to (divided by) the means for the 

WW reference group, and whether groups differ significantly (based on the GLMM for representation and the LMM for LF, both of which control for 

egg size variation) from the WW group: P value bands: †: 0.1 - 0.05; * 0.05 – 0.01; ** 0.01 – 0.001; *** <0.001.  

Cohort Sample 
Representation Fork length (LF) 

WW WF FW FF  WW WF FW FF  

1993 
Electrofishing Aug 1993 

0+parr 
0.005 
(1.00) 

0.01* 
(1.97) 

0.003 
(0.61) 

0.002 
(0.49) 

 
54.50 ± 0.96 

(1.00) 
57.43 ± 0.58* 

(1.05)  
54.78 ± 1.00 

(1.01) 
59.24 ± 0.92** 

(1.09) 
 

1994 
Electrofishing Aug 1994 

0+parr 
0.016 
(1.00) 

0.012† 

(0.76) 
0.010*** 

(0.65) 
0.008*** 

(0.48) 
 

54.13 ±  0.33 
(1.00) 

55.67 ± 0.43* 
(1.03) 

56.89 ± 0.43 * 
(1.05) 

57.41 ± 0.52** 
(1.06) 

 

1994 
Electrofishing Jun 1995 

1+parr 
0.019 
(1.00) 

0.014 
(0.74) 

0.016 
(0.84) 

0.011** 
(0.58) 

 
94.02 ± 0.71 

(1.00) 
96.46 ± 0.69  

(1.03) 
98.09 ±  0.66* 

(1.04) 
98.69 ±  0.78** 

(1.05) 
 

1993 
Trapped parr May 1993-May 

1994 
0.017 
(1.00) 

0.014 
(0.82) 

0.008** 
(0.47) 

0.005*** 
(0.29) 

      

1993 
Trapped pre-smolts + smolts 

Sep 1994-Apr 1995 
0.007 
(1.00) 

0.006 
(0.86) 

0.003† 
(0.43) 

0.003† 
(0.43) 

      

1994 
Trapped parr May 1994-May 

1995 
0.023 
(1.00) 

0.011** 
(0.48) 

0.012** 
(0.52) 

0.005*** 
(0.22) 

      

1994 
Trapped pre-smolts + smolts 

Sep 1995-Apr 1996 
0.003 
(1.00) 

0.002 
(0.67) 

0.003 
(1.00) 

0.002 
(0.67) 

      

1993 
Hatchery controls 0+parr Aug 

1993 
0.013 
(1.00) 

0.012 
(0.92) 

0.009 
(0.69) 

0.01 
(0.77) 

 
106.14 ± 2.72 

(1.00) 
114.09 ± 2.23* 

(1.07) 
109.64 ± 2.28 

(1.03) 
111.41 ± 1.54* 

(1.05) 
 

1993 
Hatchery controls mature 

0+parr Nov  1993 
0.018 
(1.00) 

0.006* 
(0.33) 

0.011 
(0.61) 

0.005* 
(0.28) 

 
133.78 ± 1.77 

(1.00) 
135.89 ± 5.07 

(1.02) 
137.81 ± 3.18 

(1.03) 
133.47 ± 2.48 

(0.99) 
 

1993 
Hatchery controls smolts Mar 

1994 
0.023 
(1.00) 

0.013 
(0.57) 

0.019 
(0.83) 

0.019 
(0.83) 

 
170.35 ± 1.72 

(1.00) 
168.16 ± 2.03  

(0.99) 
173.21 ± 1.73 

(1.02) 
178.56 ± 1.68*  

(1.05) 
 

1994 
Hatchery controls smolts Mar 

1995 
0.015 
(1.00) 

0.014 
(0.93) 

0.013 
(0.87) 

0.014 
(0.93) 

 
136.34 ± 5.29  

(1.00) 
162.80 ± 2.44*** 

(1.19) 
156.14 ± 3.11** 

(1.15) 
170.20 ± 

3.61*** (1.25) 
 

  WW BC1W F2Hy BC1F FF WW BC1W F2Hy BC1F FF 

1998 
Electrofishing Aug 1998 

0+parr 
0.008 
(1.00) 

0.005* 
(0.65) 

0.006† 
(0.81) 

0.005† 
(0.66) 

0.003*** 
(0.44) 

64.60 ± 0.61 
(1.00) 

66.91 ± 0.63 
(1.04) 

69.99  ± 0.91* 
(1.08) 

70.49 ± 0.73** 
(1.09) 

73.77 ± 0.74*** 
(1.14) 

1998 
Trapped parr May 1998-May 

1999 
0.011 
(1.00) 

0.007* 
(0.64) 

0.002*** 
(0.18) 

0.001*** 
(0.09) 

0.001*** 
(0.09) 

      

1998 
Trapped pre-smolts + smolts 

1998 cohort 
0.003 
(1.00) 

0.003 
(1.00) 

0.005 
(1.67) 

0.004 
(1.33) 

0.003 
(1.00) 

     



Table 3 Quantitative genetic parameter estimates for size-at-age traits based on bivariate Bayesian animal models. EF = electrofished. WW = pure wild 

group. FF = pure farm group. LF = fork length. VP = raw phenotypic variance. VA = additive genetic variance. h2 = narrow sense heritability.  rP = raw 

phenotypic correlation between LF and mass. rG = additive genetic correlation between LF and mass. rE = residual correlation between LF and mass. For 

VA, h2, rG and rE, estimates are posterior modes, with credible intervals in parentheses. LF and mass were natural log-transformed in all models.  

Cohort Variable and sample Group VP VA h2 rP rG rE 
1994 EF Aug 1994 0+parr LF  WW 6.2×10-3 1.8×10-3 (0.3-8.1×10-3) 0.29 (0.11-0.89) 0.95 0.96 (0.73-0.98) 0.94 (0.78-0.97) 
1994 EF Aug 1994 0+parr mass  WW 0.065 0.019 (0.005- 0.085) 0.53 (0.15-0.94) - - - 
1994 EF Aug 1994 0+parr LF  FF 6.7×10-3 6.0×10-4 (0.2-5.7×10-3) 0.15 (0.03-0.65) 0.94 0.90 (0.27-0.97) 0.06 (0.03-0.09) 
1994 EF Aug 1994 0+parr mass FF 0.069 0.008 (0.002- 0.060) 0.11 (0.03-0.63) - - - 
1994 EF Jun 1995 1+parr LF WW 0.01 0.002 (0.001-0.01) 0.21 (0.07-0.75) 0.98 0.95 (0.82-0.99) 0.97 (0.94-0.98) 
1994 EF Jun 1995 1+parr mass WW 0.09 0.019 (0.005-0.091) 0.20 (0.09-0.77) - - - 
1994 EF Jun 1995 1+parr LF FF 0.008 7.0×10-4 (0.2-4.2×10-3) 0.10 (0.03-0.44) 0.97 0.82 (0.49-0.98) 0.97 (0.95-0.98) 
1994 EF Jun 1995 1+parr mass FF 0.06 0.008 (0.002-0.033) 0.08 (0.03-0.43) - - - 
1998 EF Aug 1998 0+parr LF WW 0.006 0.004 (0.001-0.009) 0.89 (0.23-0.96) 0.89 0.92 (0.47-0.97) 0.56 (0.22-0.96) 
1998 EF Aug 1998 0+parr mass WW 0.069 0.025 (0.006-0.105) 0.39 (0.16-0.095) - - - 
1998 EF Aug 1998 0+parr LF FF 0.007 0.002 (0.001-0.009) 0.31 (0.04-0.86) 0.93 0.90 (0.38-0.98) 0.93 (0.71-0.98) 
1998 EF Aug 1998 0+parr mass FF 0.065 0.009 (0.003-0.084) 0.17 (0.05-0.86) - - - 
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