
Network Connectivity Proxy: Architecture, Implementation, and
Performance Analysis

Bolla, R., Giribaldi, M., Khan, R., & Repetto, M. (2015). Network Connectivity Proxy: Architecture,
Implementation, and Performance Analysis. IEEE Systems Journal. DOI: 10.1109/JSYST.2015.2438639

Published in:
IEEE Systems Journal

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including
reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/network-connectivity-proxy-architecture-implementation-and-performance-analysis(547877c8-d084-4dd0-8023-edcd6f1e6999).html


Queen's University Belfast - Research Portal

Network Connectivity Proxy: Architecture, Implementation, and
Performance Analysis

Bolla, R., Giribaldi, M., Khan, R., & Repetto, M. (2015). Network Connectivity Proxy: Architecture,
Implementation, and Performance Analysis. IEEE Systems Journal. 10.1109/JSYST.2015.2438639

Published in:
IEEE Systems Journal

Document Version:
Publisher final version (usually the publisher pdf)

Link:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:18. Jan. 2016

http://pure.qub.ac.uk/portal/en/publications/network-connectivity-proxy-architecture-implementation-and-performance-analysis(547877c8-d084-4dd0-8023-edcd6f1e6999).html


1

Network Connectivity Proxy: Architecture,
Implementation, and Performance Analysis

Raffaele Bolla, Member, IEEE, Maurizio Giribaldi, Rafiullah Khan, and Matteo Repetto

Abstract—Several studies in the last decade have pointed out
that many devices, such as computers, are often left powered on
even when idle, just to make them available and reachable on the
network, leading to large energy waste. The concept of network
connectivity proxy (NCP) has been proposed as an effective means
to improve energy efficiency. It impersonates the presence of
networked devices that are temporally unavailable, by carrying
out background networking routines on their behalf. Hence, idle
devices could be put into low-power states and save energy. Several
architectural alternatives and the applicability of this concept to
different protocols and applications have been investigated. How-
ever, there is no clear understanding of the limitations and issues of
this approach in current networking scenarios. This paper extends
the knowledge about the NCP by defining an extended set of tasks
that the NCP can carry out, by introducing a suitable commu-
nication interface to control NCP operation, and by designing,
implementing, and evaluating a functional prototype.

Index Terms—Energy efficiency, green networking, home gate-
way, network connectivity proxy (NCP), Universal Plug and Play
(UPnP).

I. INTRODUCTION

S EVERAL studies about usage patterns have shown that
computers are only used for a small fraction of the time that

they are switched on; often, they are powered even if nobody is
attending to them [1], [2]. The main reason behind this behavior
is to leave computers present and available on the network, in
order to carry out background network activity (responding to
discovery protocols such as NetBIOS and Universal Plug and
Play, renewing soft states such as for Dynamic Host Config-
uration Protocol, confirming “online” status for Voice-over-IP
and chat applications, etc.). The worst implication of this fact is
that they waste a lot of energy, which sums up to several TWh
worldwide [2], [3].

Computers can be in different working states, which corre-
spond to different power consumption and different operational
latency. Table I shows a simple abstraction of the main working
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TABLE I
TYPICAL WORKING STATES FOR COMPUTERS. INDICATIVE

POWER CONSUMPTION WAS TAKEN FROM

THE ENERGY STAR PROGRAM

states1 [5]. A computer is active when it is performing some
tasks (e.g., CPU processing, seeking data from storage, mem-
ory, or cache). When idle, the device is not performing any
useful operation, but the hardware is fully functional and ready
to start. In standby, part of the hardware is powered off, and
resuming it to full operation will take a little time (usually of
the order of a few seconds). Finally, off means that the device
was shut down and bringing it back to the active mode will need
a complete boot sequence (taking several seconds).

Table I also includes indicative power consumption for each
state (real values change significantly with the hardware type:
desktop, laptop, workstation, server). Clearly, idle is a very
ineffective state, because much energy is drawn to do nothing.
Standby is specifically designed for reducing the energy con-
sumption when the device has nothing to do and for quickly
resuming to full operation. Standby states are already available
in most computers; however, these features are seldom used
because computers lose their network presence in these states.

The concept of network connectivity proxy (NCP) has been
proposed for impersonating network presence of “sleeping”
devices [6]. Impersonating network presence means that the
NCP should carry on various networking tasks on behalf of
other devices, so that they appear as fully functional and
operational to other hosts [3], [7], and it should wake them up
when their involvement is unavoidable. Hence, the NCP enables
idle devices to enter standby, without losing their network
connectivity, and that reduces the energy wasted by idle states.

Generally, NCP goals include the following: 1) preserving
host reachability, e.g., responding to Address Resolution Pro-
tocol (ARP) requests and NetBIOS name queries, and sending
DHCP lease renewals; 2) preserving host manageability, i.e.,
answering control and management protocols such as the Inter-
net Control Message Protocol (ICMP) and the Simple Network

1In practice, computers are usually compliant with the Advanced Configu-
ration and Power Interface (ACPI) specification [4], which entails more power
states.
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Management Protocol (SNMP); 3) maintaining application
reachability, i.e., allowing new connections to be established;
and 4) preserving application state, i.e., maintaining transport
layer connections alive and sending/responding to application
and protocol specific periodic heartbeat messages.

Until now, most work has focused on responding to stateless
protocols (ARP, ICMP, NetBIOS) and to move entire applica-
tions or part of them between the NCP and its clients. Nobody
has still tackled how the NCP interacts with its clients, for the
purpose of registering what kind of behavior is requested and
of notifying when to start/stop the operation.

In this paper, we propose a framework that includes a set of
basic and general routines that the NCP carries out on behalf
of its clients and a suitable communication interface [8]–[10].
We also describe the current implementation of the framework,
which runs both on stand-alone devices and network equipment
(home gateway) and which also deals with practical matters
such as the presence of private addresses, i.e., it manages
Network Address Translation. The software is flexible enough
to exploit different protocols for the communication interface;
we have already integrated UPnP and have defined a specific
service template for the NCP. This paper enhances our previous
work on the same matter by extending the set of aforemen-
tioned routines and by presenting the relevant outcomes we
got from the functional and performance evaluation of the
framework.

The rest of this paper is organized as follows. Section II
reviews related work. Section III briefly describes the main
components of the NCP framework. Section IV gives an
overview of the current implementation. Section V lists some
of the most relevant issues that arose during the implementation
and evaluation of the software; it also reports performance
evaluation of the NCP software. Finally, Section VI gives our
conclusions and plans for future work.

II. RELATED WORK

The topic of managing connectivity on behalf of sleeping de-
vices has been covered by researchers with a focus on different
aspects.

Most implementations have focused on the Transmission Con-
trol Protocol (TCP) and management protocols such as ARP,
ICMP, and the Internet Group Management Protocol (IGMP):
they usually answer ICMP echo-request messages and ARP
requests and wake hosts up on incoming TCP SYN segments
or NetBIOS name queries [1], [2]. The first attempt to manage
on-going TCP sessions was limited to inhibit the remote peer
from sending any data during sleep periods, by advertising a
“zero-window” condition. The addition of a new option in the
TCP header to advertise the next power state (standby or active)
was also envisioned [11], as well as the use of a “shim” layer
between applications and the legacy socket interface, which sets
up and closes TCP connections at each power transition and
hides this behavior to applications [3]; both of these approaches
require the remote peer to be aware of the power state of the
device. The use of an external SOCKS proxy was envisioned for
splitting TCP connections at the proxy and for keeping the peer
unaware of power state transitions [6]. However, this forces

the proxy to relay data between the two connections when the
device is active, posing scalability and performance constraints.

There have also been a few proposals for proxying both high-
level protocols such as UPnP [12] and specific applications as
Gnutella [13] and Jabber [14]. A further step was done in Som-
niloquy, where “stubs” for specific applications can be added to
the base framework [15]. An evolution of this approach consists
in running virtual machines that load the images of sleeping
devices and impersonate them during the sleeping periods
[16]; this allows virtually supporting any application, without
requiring specific implementations. However, it requires large
processing power and memory to the NCP, and this solution is
unlikely to scale for many clients.

Another interesting matter concerns architectural design.
NCP functions can be deployed in smart Network Interface
Cards (NICs), in network equipment (such as switches, ac-
cess points, home gateways, and routers), and in stand-alone
devices, with different considerations about additional power
consumption and processing capabilities [17]. Many implemen-
tations targeted smart NICs because they are directly connected
to the host (hence simplifying configuration of the NCP), draw
very low current, and are traversed by all traffic intended to
the host [2], [13], [15]. However, onboard processors have
limited memory and processing capability. Placing the NCP on
network equipment or stand-alone devices allows sharing its
consumption and processing capability among several clients,
with additional benefits in terms of energy savings [1], [6], [7].
In this case, more issues arise about the communication inter-
face with the NCP and the interaction with current networking
protocols.

Finally, the question about energy savings achievable by
implementing the NCP concept has been also tackled [1], [2].
Traffic and use patterns of devices in different environments
(office, home, dormitory) were analyzed; furthermore, an esti-
mation about energy saving was carried out by considering four
different types of NCPs, with different capabilities in terms of
applications and/or protocols that could be managed.

Currently, no in-depth analysis has ever been conducted
about the impact that proxying may have on networking op-
eration and performance constraints that the NCP may face.
Furthermore, nobody has considered the need and implications
for a communication interface to control NCP operation.

III. NCP ARCHITECTURE

The design of an NCP entails the presence of several com-
ponents. Here, we provide an insight into NCP operation and
point out the main architectural components that are needed to
build the whole framework. We also analyze in detail the most
relevant of them.

A. Overview of NCP Operation

The role of the NCP and the interaction with its clients are
shown in Fig. 1. Devices on a subnet know an NCP service
is present either by manual configuration or by a discovery
protocol. They instruct the NCP about the tasks it should handle
on their behalf (1). This operation includes the indication of
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Fig. 1. Overview of NCP operation.

Fig. 2. NCP conceptual architecture.

when the tasks should be run (on the reception of specific
packets or periodically), the action to be carried out (e.g.,
waking up the host, building and sending a packet), and any data
that could be necessary to implement the tasks (IP addresses,
port numbers, timeout values, etc.).

As soon as the internal policies decide to switch to the low-
power mode, a device notifies the NCP that it must start to cover
for it (2). From now on, the NCP catches all packets addressed
to that client; this implies that network traffic intended to such
device must be diverted toward the NCP by suitable network
hooks (traffic diversion). The NCP carries out periodic tasks
and handles incoming packets (3) according to the behavior
previously settled. It keeps on covering for it until either the
host autonomously wakes up (4) or a packet is received that
needs specific processing by the host (5); in the last case, the
NCP is in charge of waking up the host and forwarding the
packet.

Every time a device wakes up, it notifies the NCP to stop
covering for it. Traffic diversion is canceled, and the NCP
forwards any buffered packet.

B. NCP Architecture

According to the operation described in Section III-A, the
design of an NCP service entails several matters: the abstraction
and representation of the tasks it can carry out, the communica-
tion protocol between the NCP and its clients, and the diversion
of network packets intended to sleeping devices.

Fig. 2 shows a simplified view of the NCP framework.
It consists of four main components: 1) behavioral rules,
2) traffic filter, 3) wake-up mechanisms, and 4) communication
protocols.

Behavioral rules are the abstractions of the background
routines that the NCP is able to carry out. They are roughly
classified as Network Connectivity (responding to network
protocols such as ARP), Packet Management (handling net-
work packets), and Heartbeating (sending periodic messages
on behalf of applications). Packet management encompasses
several operations.

1) Buffering packets: The NCP buffers packets to avoid any
loss or to delay client wake up.

2) Sending predefined packets: A packet that is known in
advance and does not depend on any variable parameter
is sent.

3) Building packets: The NCP understands the specific
protocol/application and builds the response packets on
its own.

4) Building packets by template: The NCP builds packets
using predefined templates. The templates are filled in
according to the instructions contained in the rule.

The execution of background routines also involves waking
sleeping devices up, if they are requested to directly handle
incoming packets. Wake-up mechanisms specify the methods to
resume sleeping devices to full operation; currently, the de facto
standard technology is Magic Packet, also known as Wake-on-
LAN (WoL) [18].

Traffic filtering is the process of “sniffing” and inspecting
packets addressed to sleeping devices, in order to trigger the
execution of background routines. The traffic filter must only
detect packets that are relevant for the set of registered rules
and must discard any other.

Finally, communication protocols are meant to control NCP
operation; they are used by client devices to register and to with-
draw behavioral rules. In addition, communication protocols
may also provide additional features such as automatic discov-
ery and soft states. There might be more than one communi-
cation protocol present, in order to support different kinds of
devices (e.g., standard PCs, sensors, and industrial equipment).

C. Behavioral Rules

The set of behavioral rules defined so far provides specific
operations for basic connectivity protocols and generic tasks.
The rest of this section briefly reviews them.

1) ARP Rule: The ARP rule answers ARP requests. The
NCP provides its own MAC address in the response, in order
to catch all packets intended to sleeping devices (we refer to
this operation as “traffic diversion”).

2) PING Rule: The PING rule answers ICMP echo requests.
This is a diagnostic tool used by several applications (e.g.,
traceroute). The PING rule is only a simple example; further
rules should be defined for other ICMP operations.

3) DHCP Rule: The DHCP rule periodically renews IP
address leases with the DHCP server.

4) Wake-on-Connection Rule: The Wake-on-Connection
(WoC) rule wakes devices up when a packet addressed to
a given transport port is seen. This rule works both for
connection-oriented (i.e., TCP) and for connectionless (i.e.,
UDP) protocols.
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Fig. 3. Packet handling for heartbeating. (a) Pattern matching ignoring opaque
fields. (b) Dynamic message generation by bit template and variable fields.

5) TCP Keep-Alive Rule: The TCP Keep-Alive (TCP-KA)
rule maintains a given TCP session active by answering pe-
riodic TCP keep-alive messages. This rule also manages the
reception of new data on the session, either by waking the
client up immediately or after a given period or by advertising
a zero-window condition to prevent the peer from sending data.
This rule is not conceived to provide full TCP support for
sleeping hosts: in particular, it cannot send/acknowledge appli-
cation data.

6) HeartBeating Rule: The HeartBeating (HrtBt) rule pro-
vides a general framework to generate heartbeat messages
for any application. This rule allows generating both solicited
and unsolicited heartbeats: solicited heartbeats are triggered
by incoming messages, whereas unsolicited heartbeats are sent
periodically at predefined time intervals. For solicited heart-
beating, incoming messages are compared against a given filter
pattern. Fig. 3(a) shows how the pattern is sought in incoming
messages, starting from the beginning of the application data,
with the possibility of ignoring some “opaque” fields that
change in every packet. The generation of heartbeat messages
follows a template-based approach, which allows the clients to
specify variable fields that should be computed and inserted
dynamically by the NCP [see Fig. 3(b)]. The definition of
variable fields includes the following: 1) position of the field
within the template, i.e., the offset from the beginning of data;
2) length of the field; 3) type of the field, which establishes
how its data are computed for each packet; and 4) data, specific
for the field type. Currently, our NCP framework supports the
following field types:

1) Counter: The datum is a sequence number; an initial
value is incremented by a given step for each packet.

2) Timestamp: The datum is computed by adding the elapsed
time to the reference clock provided by the client at
registration.

3) RandomNumber: The datum is a random number.

D. Network Traffic Diversion

Traffic diversion redirects packets intended to sleeping de-
vices toward the NCP. Network traffic diversion is always
required, but the case the NCP is deployed on board the
device’s NIC.

In LANs, traffic diversion simply implies binding the NCP’s
MAC address with the IP address of the sleeping clients. This

Fig. 4. Software architecture for the NCP agent.

objective is achieved by answering ARP requests on behalf of
sleeping clients (as described by the ARP rule) and by sending
unsolicited “gratuitous ARP” packets, in order to update ARP
caches on the other devices. Obviously, ARP caches must be
updated again to the original MAC when the covered device
wakes up. This solution is compliant with RFC 826 [19] and
RFC 5227 [20].

IV. IMPLEMENTATION

The implementation of the NCP framework encompasses
two software agents, one for the NCP service and one for
clients. Both agents interact by the communication proto-
col, as outlined in the description of the entire framework
(see Section III-A).

A. NCP Agent

The software architecture for the NCP agent is shown in
Fig. 4. It includes the database of behavioral rules, packet
processing, scheduling, packet filtering, and raw sockets. In
addition to that, there is the communication interface to receive
commands from clients (registration of their rules and notifica-
tion of their power state transitions) and the main NCP logic
that orchestrates all the components.

Each rule contains the description of one specific task for the
NCP. Rules are made of two parts: the condition and the action.
The former specifies the event that triggers the execution of the
latter. Conditions consist of either matching criteria on packet
content or time intervals. Actions implement the routines that
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the client has delegated to the NCP (e.g., ignore the packet,
buffer the packet, generate/respond to the packet, or wake up the
sleeping device). The NCP maintains a database of behavioral
rules, which are dynamically registered and withdrawn by its
clients. Rules are inactive as long as the corresponding client
is awake and are activated once it enters into low-power mode.
Activation of behavioral rules for a client implies three tasks:
1) traffic addressed to the client is diverted toward the NCP;
2) the filtering engine is set to match traffic patterns contained
in those rules (e.g., source/destination IP addresses and port
numbers and protocol); 3) any periodic operation is scheduled
at the appropriate time; and 4) any preliminary operation is
carried out, e.g., to infer parameters as remote servers (DHCP),
sequence numbers (TCP), and so on.

Packet filtering inspects packets and catches those that match
the conditions in active rules. The inspection process considers
header information (source and destination addresses, proto-
col, source and destination ports, protocol-specific flags and
options) and packet content (bit patterns, application-specific
headers and data).

Scheduling triggers routines as the time elapses. Triggering
is one shot (i.e., only one trigger occurs) or periodic (i.e., many
triggers are generated).

Packet processing performs the action entailed by each NCP
rule, when triggered by the relative condition.

Finally, raw socket is the application programming interface
(API) that enables to read and write network packets directly at
the lowest layer, thus bypassing the entire built-in networking
stack. Raw sockets are mostly needed to build network packets
on behalf of client devices (i.e., with a different IP address);
this operation would otherwise be prohibited by the operating
system (OS).

The orchestration logic is responsible for updating the
database of behavioral rules and for activating/deactivating
them every time a device enters/exits standby, respectively.

The software is entirely written in C++ and designed for
Linux; thus, it runs on off-the-shelf computers and on many
embedded devices. Packet filtering uses the Pcap library.2 Such
library provides a common interface to the specific underlying
packet capture facility implemented by the OS. It works in user
space and filters packets by optimized Berkeley Packet Filters,
which are derived from a text string in human-readable format.

Our implementation also supports migration of TCP sessions
[21], which is used for the Heartbeating rule. Clients push the
state of their TCP connections to the NCP just before entering
standby, and the NCP keeps on sending/receiving messages on
their behalf on the same connection in a totally transparent and
seamless manner.

In addition, when the agent runs on a box at the periphery of
a private domain (e.g., an home/access gateway), the software
manages network address translation. It retrieves information
about the current IP/port translation mappings and applies them
to raw packets sent and received on behalf of client devices on
the “public” interface.

2Tcpdump & Libpcap. Web site: http://www.tcpdump.org.

B. Client Agent

Client software is basically an agent conceived to provide the
applications with a common interface to interact with the NCP.
It offers a simple API to register and to withdraw behavioral
rules, freeing each application from the burden of managing
the details of the communication protocol and the abstraction
of rules. The agent automatically detects when the device is
going to standby and when it has resumed, and notifies the NCP
accordingly. Different mechanisms are used for this purpose,
depending on the OS. The client software also manages auto-
matic discovery of the NCP service in the network.

We built client software for both Linux and Windows; the
Linux version includes an API for TCP migration [21].

C. Communication Protocol

The communication protocol in the current implementation
is based on UPnP; the UPnP framework and operation are
described by the UPnP architecture [22]. Basically, it distin-
guishes between controlled devices (CDs) and control points
(CPs). CDs play the role of servers, responding to requests from
the CPs. The UPnP description for a CD describes the charac-
teristics of the device and its capabilities. The description is
made of two logical parts: device description, which describes
physical or logical containers, and service description, which
includes the list of commands (actions) the service responds to,
parameters (arguments) for each action, and variables that can
be subscribed by the CPs.

To define a standard UPnP communication interface for the
NCP, we have formalized a reference template for the “NCP
service” and have wrapped it into an Internet gateway device,
which is already standardized by the UPnP Forum.3 We have
introduced a service type of NetworkConnectionProxy:1 and a
service identifier of NetworkConnectionProxy1 for the NCP;
we have defined the full list of actions (name, arguments,
types of data, allowed values, and default values) needed to
implement the communication interface. Further details about
the usage of UPnP in the NCP framework are available in
previous papers [8].

V. EVALUATION OF THE NCP FRAMEWORK

Effective and seamless usage of the NCP faces a number
of issues that are difficult to take into account and to evalu-
ate during the design stage. Our implementation was indeed
conceived to find an answer to the many questions past studies
on this topic still leave open, particularly the ones concerning
performance matters and the estimation of the amount of energy
that could be saved in different scenarios.

Our analysis was conducted both in qualitative and quan-
titative terms. We investigated practical concerns that arise
when the NCP concept is applied to legacy networks. We also
carried out detailed measurements to point out technical and
performance constraints of the selected architecture and soft-
ware implementation, particularly when it runs on low-power

3Internet Gateway Device (IGD) V 1.0. URL: http://upnp.org/specs/gw/igd1/.

http://www.tcpdump.org
http://upnp.org/specs/gw/igd1/
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devices. Finally, we put together our findings to estimate how
much energy could be saved in home and office environments.

A. Impact of the NCP on Legacy Network Operation

A number of practical issues were noticed during the devel-
opment and validation phases that had never been considered in
previous studies. Most of them came from the fact that the NCP
runs in parallel to the main networking stack of the OS, but it
is not a part of it. We report a brief list of them, together with
discussion about possible countermeasures to solve them or to
mitigate their effects.

1) Host Unreachable Errors: Traffic diversion is conceived
to alter the path followed by packets on their way to the desti-
nation, but does not end them automatically at the NCP. Hence,
packets continue their trip once they have crossed the NCP and
inevitably trigger ICMP host unreachable errors. Therefore, the
NCP must take care of dropping packets intended to sleeping
clients. This can be easily accomplished by Netfilter.4

2) Spoofing of Caches in Network Switching Equipment:
The NCP sends ARP packets for traffic diversion. Sending
exactly the same packet that would be sent by the sleeping
device implies using its MAC address as the source of the
packet; however, this spoofs the learning database of switching
equipment, which now believes that the device is on the same
port as the NCP. This way, when that device wakes up, its
packets will be switched on the wrong port, thus delaying its
restoring full network connectivity. Hence, the MAC address
of covered devices must never be used as source address of
network packets the NCP sends. This trick works well, as the
resolution process only considers the information carried by the
ARP packet and safely ignores the datalink header.

3) Conflicts in Transient Periods: The transition to and from
the sleeping state requires some time. The NCP is notified of the
transition slightly before the host goes to sleep and slightly after
it resumes its operation, but it cannot exactly know when the
device stops and when it starts again to use the network. This
means there is a short transient where operation of both the NCP
and the covered host might potentially conflict. However, since
the NCP only intervenes when the host is idle, the likelihood of
both getting the same packets is almost negligible; indeed, we
did not notice any such problem in our evaluation.

4) Sequence of Operations: There are several operations that
the NCP must undertake to start and to stop covering a de-
vice: diverting traffic, starting packet processing and dropping,
and sending buffered packets. The order of these operations
should be carefully selected to avoid side effects such as lost
packets and host unreachability errors. For instance, if packets
are diverted and reach the NCP before it has activated the
corresponding rules, they are processed by the OS networking
stack, and they trigger one of the undesired behaviors listed
earlier.

5) Answering Local Applications: The operation of the NCP
requires sending raw packets outside of the standard network-
ing stack. Raw sockets are explicitly designed to send packets
out of the box: they deliver packets created by the user to the

4The netfilter.org project. URL: http://www.netfilter.org/.

TABLE II
HARDWARE PLATFORMS USED FOR EVALUATION OF THE NCP

NIC and do not check the destination. Packets addressed to the
same box are transmitted on the medium but are not received
locally. This means that applications running on the same host
as the NCP cannot receive answers from the NCP. The current
implementation provides a “raw loopback” function based on
the Linux tun/tap driver, which sends back packets to the same
host they are generated from.

6) Local Address Resolution: ARP cache entries on the
device hosting the NCP are not updated by responses sent by
the same NCP. Even with the raw loopback workaround (see
Section V-A5), the kernel still does not receive ARP responses.
To overcome this issue, the NCP must add static cache entries
and set them back to dynamic when such clients get awake.

7) Early Wake-Up Detection: When a covered device wakes
up, it must notify the NCP. If the notification is carried by
UDP, there are no particular problems. If TCP is used, the
three-way handshake should take place, but no packet reaches
the client because the NCP is still covering that host. As a
result, the TCP connection fails. A simple workaround is “early
wake-up detection,” which infers the current status of a covered
host by its network activity. When a packet is seen that comes
from a sleeping device, the latter is inferred as “awake.” Early
detection checks for the source MAC address, to avoid getting
confused by IP packets sent on behalf of the covered host and
maybe reflected by some other device.

8) Duplication of Buffered Packets: To improve perfor-
mance, the NCP buffers packets that have triggered host wake
up. As soon as the NCP receives the wake-up notification, it
sends such packets to the covered device. These packets may
be caught by the NCP filtering engine and queued again; in
this case, every time the host wakes up, all previous packets
are captured, and the queue grows indefinitely. The solution
is rather simple: disable packet processing before sending out
buffered packets.

B. Performance Analysis

Performance analysis was carried out to assess how many
devices and behavioral rules our architecture can support. Note
that the implementation mainly targets small sites (e.g., homes
and small offices), where the number of client devices is usually
limited (laptops, desktops, smartphones, network printers, etc.).
Nevertheless, scalability is an important issue to maximize
energy savings, since the NCP is expected to run on very low
power devices, which are constrained in terms of available
processing power and memory. As a matter of fact, hardware
of such kind should support a reasonable number of devices
simultaneously, each of which can register several behavioral
rules.

http://www.netfilter.org/
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Fig. 5. Latency in processing registration requests for different behavioral rules on different hardware. The lower bands of values come from NCP processing,
whereas the higher bands also include UPnP latency. (a) Jetway. (b) Lantiq. (c) Raspberry.

Our analysis considered three different platforms that are
suitable to run the NCP software: one compact PC with a low-
power CPU (Jetway), a home gateway (Lantiq), and a credit-
card-sized computer (Raspberry). Table II provides a summary
of the main characteristics of these devices, both in terms
of processing power and energy consumption. These devices
are interesting targets for NCP deployment: they represent
network equipment (Lantiq) and stand-alone devices, even with
negligible power consumption (Raspberry).

Our analysis involved several aspects, raising concerns about
latency of operation, processing power, and memory require-
ments. In particular, we took into account the registration of
behavioral rules (see Section V-B1), CPU and memory require-
ments to store and to process the rules (see Section V-B2),
activation of behavioral rules (see Section V-B3), the execution
of routines on behalf of sleeping clients (see Section V-B4), the
overhead of the communication protocol (see Section V-B5),
and the device transition to/from standby (see Section V-B6).

Performance evaluation was conducted in a synthetic sce-
nario, where fake clients registered a set of behavioral rules
with the NCP and notified power state transitions. This way,
we could emulate the presence of different devices, each with
its own networking parameters (IP and MAC addresses) and
opened connections, even if they were not really set up. We
could not carry out our trials with real clients because of the
large number of devices considered, which makes unfeasible
the setup of all the simulated connections. NCP performance is
not affected by the synthetic scenario; indeed, we will see that,
for certain parameters, the synthetic scenario is a worst case
emulation.

1) Registration of Actions by Clients: We sequentially reg-
istered a set of rules (1 Ping, 1 DHCP, 1 WoC, 1 TCP-KA,
1 HrtBt) with the NCP for an increasing number of devices
and measured the time taken for each registration. Fig. 5 shows
both the NCP processing time and the total time seen by the
clients (the latter includes the delay introduced by the UPnP
protocol). The registration procedure only takes few dozens of
milliseconds, independently of the rule type; the dependence on
the number of registered client devices is quite limited. Clearly,
latencies depend on the processing capability of the platform:
as a matter of fact, the Jetway introduces much lower delay than
the Lantiq home gateway and the Raspberry Pi. Small latencies

mean that the NCP software can deal with multiple concurrent
registrations.

2) CPU and Memory Requirements: Target platforms under
consideration are equipped with low-power processors; some of
them have a few hundred megabytes of memory only. Hence,
the NCP software should run with minimal CPU and memory
requirements.

To assess memory usage, we registered an increasing number
of devices with the NCP. We collected the amount of memory
assigned to the NCP process after each device had registered
its set of rules. We considered four different scenarios: basic
Network Presence (1 PING rule) for dynamically or statically
configured hosts (namely, with/without 1 DHCP rule, respec-
tively), Reachability (1 PING, 1 DHCP, and 1 WoC rule), and
Each-Rule-Once (1 PING, 1 DHCP, 1 WoC, 1 TCP-KA, and
1 HrtBt rules).

Fig. 6 shows the memory usage versus increasing number of
client devices. Our experiment was done under two conditions:
all devices remain active and every device switches to standby
after the registration. In the second case, we did not generate
traffic toward the sleeping devices, in order to provide a base-
line assessment. As expected, the memory usage depends on the
number of rules requested by each client. While the memory
usage increases almost linearly when devices stay awake, the
rise is a bit faster when they sleep, due to the need to catch and
inspect packets. The Lantiq home gateway was able to register
up to 120 client devices (for Each-Rule-Once), beyond which
the latency became too large. Apart from this limitation, the
differences in the amount of memory consumed on different
hardware are negligible. Furthermore, we observed that CPU
usage was very low during registration of rules.

The CPU is mostly used when the NCP is covering for
devices. We registered a PING rule for a device, and we put
it into standby. Then, an increasing number of ICMP packets
intended to the sleeping client was generated, until the CPU
of the platform hosting the NCP reached 100% utilization. To
better understand the impact of NCP operation on the CPU
usage, we carried out another experiment. We injected the same
ICMP traffic load in the same hardware platforms, without
running the NCP.

Fig. 7 shows how CPU usage rises with the traffic load; the
difference between the two experiments changes substantially
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Fig. 6. Memory used by the NCP software on the different hardware platforms versus increasing number of registered client devices. Memory was measured
both when all covered devices were active (NCP had nothing to do) and when all covered devices were in standby (NCP was filtering packets). (a) Jetway: awake
clients. (b) Lantiq: awake clients. (c) Raspberry: awake clients. (d) Jetway: sleeping clients. (e) Lantiq: sleeping clients. (f) Raspberry: sleeping clients.

Fig. 7. CPU usage with increasing traffic load on different hardware platforms. Dashed lines (No NCP) indicate the CPU usage when the traffic is received but
the NCP service is not running. Solid lines (With NCP) indicate the CPU usage when the NCP service is running and processing the received packets. (a) Jetway.
(b) Lantiq. (c) Raspberry.

for the three hardware platforms. The main indication from
these trials is that the NCP can manage a large number of
packets, well beyond that expected in realistic scenarios.

3) Activation of Behavioral Rules: We measured the NCP
latency to start to cover for a device after the notification of
power state transitions. In this experiment, we initially regis-
tered a given set of rules for a large number of devices (1 PING,
1 WoC, 1 TCP KeepAlive, 1 HrtBt); then, we put to standby one
device at a time, and we measured the latency at each step.

There are two different factors contributing to the overall
latency: the time taken to activate the behavioral rule (i.e., to
carry out any preliminary task for the specific action), shown
in Fig. 8(a), and the time to set up the filtering engine (i.e., to

instruct the Pcap library to pick up specific packets intended to
covered devices), shown in Fig. 8(b).

We clearly see that the setup of the filtering engine is the
most critical issue, as it raises up to many seconds as the
number of devices increases; platforms with small process-
ing capability are mostly affected. As shown in Fig. 8(b),
the latency has a sharp exponential increase with more than
100 devices. The poor behavior is ascribable to the Pcap library:
Berkeley Packet Filters are not conceived neither for handling
very long filtering strings (as what happens with many devices
and/or many behavioral rules) nor for frequently changing the
filter parameters (as what happens every time a device suspends
or resumes).
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Fig. 8. NCP latency to start to cover for a device, for an increasing number of already-covered devices. Every device registered 1 PING, 1 WoC, 1 TCP KeepAlive,
and 1 Heartbeating. (a) Activation of rules. (b) Setup of the filtering engine. (c) Breakdown of latency for each rule.

Fig. 9. Average RTT for ICMP echo-request packets addressed to sleeping
hosts.

Latencies larger than a few seconds are not compatible with
NCP operation, because packets intended to sleeping hosts are
lost in this interval. The graph in Fig. 8(b) can be used to
assess the maximum number of clients the NCP is able to cover
simultaneously; by accepting a delay of up to 1 s, this number
is approximately 40–50, depending on the platform.

Coming back to the activation latency, the breakdown in
Fig. 8(c) shows that most of the time is taken by the TCP
KeepAlive rule. This kind of rule infers TCP sequence numbers
at activation; however, in our emulation, we did not really have
active TCP sessions, and thus, a timeout of 500 ms expires
before giving up. In real situations, TCP-KA takes the same
time as other rules (a few milliseconds).

4) NCP Operation: We are interested in evaluating how
the presence of the NCP impacts the rest of the network. We
expect the performance to get worse when a larger number
of devices are involved; thus, we again considered how our
implementation scales with an increasing number of covered
devices. We carried out our analysis for PING, WoC, and
Heartbeating rules.

For PING and WoC, we evaluated the latency seen by re-
mote hosts when the NCP processes packets. We registered an
increasing number of client devices, put all of them in standby,
and generated a large number of ICMP echo requests and TCP
SYN packets addressed to one of the sleeping devices.

Fig. 9 shows the average round-trip time (RTT) for ICMP
echo requests. It slightly increases with the number of covered
devices. Furthermore, we can argue that the RTT is about
one order of magnitude larger than typical values measured in

Fig. 10. Latency measured between the TCP SYN segment of an incoming
connection addressed to a sleeping host and the WoL packet sent by the NCP.
The curve for Lantiq ends at 200 devices because of the limited memory
available on that platform.

LANs (a few hundred microseconds). This time, too, the reason
is ascribable to the Pcap library, which returns packets to the
processing engine after a short timeout.

For WoC, we measured how much time the NCP takes
to send out the WoL packet after an incoming connection is
seen. Fig. 10 shows that the latency slightly increases with
the number of covered devices. In this case, we argue that the
delay experienced by the user is indeed the sum of the latency
shown in Fig. 10 plus the time the device takes to resume to
full operation. The latter does not depend on NCP operation,
but only on the device’s hardware and OS. We verified that the
overall latency is well tolerated by a human that is trying to
connect to a sleeping host (see Section V-B6).

For what concerns Heartbeating, assuming that the typical
time intervals are within the range of hundreds of seconds
or dozens of minutes, performance does not matter. How-
ever, heartbeating over TCP requires transparent and seamless
migration of the session between the client device and the
NCP; this operation must be complete before the client falls
into standby. Hence, we measured the time taken to suspend
the TCP session and to transfer its current state to the NCP
(see Table III). Latency includes the time to freeze the TCP
session, to save its status, and to transfer the status to the NCP
through the UPnP interface. The time to resume the session
is not taken into account because the session is only restored
after the notification that the host is entering the standby state.
Nevertheless, the latency to resume the session is only a few
milliseconds [21].
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TABLE III
PERFORMANCE ANALYSIS FOR TCP MIGRATION

Fig. 11. Traffic overhead brought by the UPnP protocol for advertisement,
registration of new devices, invocation of behavioral actions, update of state
variables, and deregistration of devices.

Figures shown in Table III are small; however, they must be
related to the mechanism implemented to go to standby. Indeed,
if applications are simply notified once this process is initiated,
such values are not sufficient to guarantee that the procedure
completes before the network interface and the host are shut
down. Instead, if applications could slow down such process,
there would be no problems.

5) Communication Overhead: Latencies entailed by UPnP
are implicitly included in the analysis in Section V-B1 and
amount to few dozen milliseconds. One major drawback of
UPnP is the large amount of overhead introduced to transmit
even few bytes of data. In our case, actual data are parameters
such as device identification, IP and MAC addresses, device
description, service identifiers, and state variables; this infor-
mation is formatted in XML and encoded. Then, UPnP-specific
and other network (e.g., TCP and IP) headers are added to build
the packet. Finally, additional information may be exchanged
to implement the UPnP semantics. Hence, we evaluated the
efficiency of UPnP communication by breaking down the whole
bunch of data transmitted over the network into the following
terms: real data/information carried by packets, XML format-
ting, UPnP and other network headers, and overhead due to
additional semantic packets. Results are summarized in Fig. 11.
The overhead of the registration phase is quite large due to the
retrieval of UPnP device and service descriptions. However,
the overhead is small during the notification of state variable
changes, which corresponds to power state transitions.

6) Transition Times: Transition between idle and standby
is a critical factor for two reasons. First, optimal strategies to
put devices in standby are rather difficult to design, given the
large number of short idle intervals and the substantial unpre-
dictability of the network requests [2]. Second, the transition

TABLE IV
SWITCHING TIMES AND ESTIMATION OF THE MINIMAL STANDBY

PERIOD FOR SOME LAPTOPS

TABLE V
ESTIMATED STANDBY TIME UNDER DIFFERENT NCP

BEHAVIORS FOR OFFICE (FIRST FIGURE) AND

HOME (SECOND FIGURE) ENVIRONMENTS

from standby to active affects the responsiveness of the device;
despite the hardware improvement, this transition still takes up
to a few seconds. These considerations raise the worry that
frequent power state transitions may result in larger power
consumption than the idle state, in addition to all concerns
about the latency to return to normal operation.

We measured the energy and the time taken for state transi-
tions (from idle to standby and vice versa) on some computers
available in our laboratory. We also computed the minimum
standby period to achieve a positive energy balance for the
whole cycle. A positive balance means that the energy con-
sumed to enter and to exit the standby is no more than the
energy that would have been spent in idle for the same period
of time.

Table IV reports the outcomes for different devices. Ti2s and
Ts2i are the average transition times from idle to standby and
vice versa, respectively; Ts,min is the minimum sleeping time
to achieve a positive energy balance. We note that very short
intervals are necessary to guarantee a positive energy balance,
despite the long times taken by the hardware under examination
to enter/exit standby; hence, it is almost always convenient to
switch to standby.

Although our estimation is far to be accurate and complete, it
gives a clear indication about the order of magnitude of the vari-
ables we are seeking for. The results confirm the convenience
to switch to standby even for very short periods of time.

C. Expected Energy Savings

The usage of the NCP saves energy, because covered devices
draw less power for the time they spend in low-power states.
However, the NCP consumes energy as well, and this must
be taken into account as a pejorative factor. We can write the
expression for the overall power saving as

PSaving = N(PIdle − PSleep)fSleep − PNCP (1)

where PSaving is the overall estimation for the power that could
be saved, PIdle is the average power consumption in idle state,
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Fig. 12. Expected energy savings for a typical desktop PC in home and office environments, considering different sets of capabilities for the NCP. (a) Jetway.
(b) Lantiq. (c) Raspberry.

PSleep is the average power consumption in standby mode, N
is the total number of devices covered by the NCP service
(its maximum value depends on the hardware hosting the NCP
service), PNCP is the power drawn by the device hosting the
NCP (see Table II), and fSleep is the fraction of time the devices
can remain in low-power mode.

Meaningful estimation of energy saving relies on how long
the devices can sleep, which mainly depends on their usage
pattern, the set of covered applications, and the network traffic
profile. To simplify the analysis, we consider four kinds of
behaviors in two representative environments [1]. The behav-
iors correspond to plausible capabilities for an NCP: 1) B-1:
wake up the device on any packet, except ignorable traffic
(HSRP, PIM, OSPF, etc); 2) B-2: wake up the device on any
packet, except with those requiring simple mechanical response
(ARP, ICMP, IGMP, etc.); 3) B-3: proxy a small set of ap-
plications such as telnet, ssh, vnc, file sharing, and NetBIOS;
and 4) B-4: proxy all kinds of traffic, except scheduled tasks,
such as regular network backups, antivirus, or software updates.
The current stage of our implementation roughly corresponds to
B-3, which was shown to be one of the most effective solutions
[1]. Representative environments for application of the NCP are
homes and offices.

We use previous surveys on usage patterns to estimate the
fraction of time that devices can spend in standby [1]. Table V
shows such figures, assuming that devices are idle 60% of the
time (a reasonable value inferred by figures shown in those
surveys) and a transition time5 of 10 s (rather conservative for
modern devices). We assume 41 and 2.3 W as average idle and
standby power consumption, respectively.6 For the hardware
platforms hosting the NCP service, we consider full load power
consumption as a worst case analysis (see Table II). It is worth
noting that, in case of network equipment (such as the home
gateway), the power consumption of such devices might not
be considered, as these devices would be anyway active, even
without the presence of the NCP.

The setup of the filtering engine limits the number of devices
that can be covered simultaneously by the NCP, as shown in

5The transition time is defined as the shortest time the device remains active
after a wake up [1]. It consists of the time to switch from standby to active and
vice versa.

6Values taken from Energy Star office equipment calculator: http://www.eu-
energystar.org/en/en_008.shtml.

Fig. 8(b); we take into account this constraint in the computa-
tion of the expected energy savings. Considering 1-s delay as a
likely threshold to avoid any packet loss, up to 52, 36, and 39
devices can be covered simultaneously by the Jetway, Lantiq,
and Raspberry platforms, respectively.

Fig. 12 shows the expected savings under the aforementioned
hypotheses. It rises up quickly to several hundred watts for
ten devices. We also observe the large difference between B-3
and B-1, which justifies the interest in our NCP architecture.
Finally, we remark that the power budget may be negative for
a small number of devices, even if this cannot be appreciated
immediately by the scale in Fig. 12. In particular, there must
be at least two to five devices when the Jetway platform is
used, depending on the specific environment and behavior
considered; that is clearly due to its larger power consumption.
In addition, the Lantiq home gateway must cover for at least
two devices in the B-1/office scenario; however, one single
covered device provides a positive energy budget in all other
situations.

VI. CONCLUSION

We have discussed an architecture to realize the concept of
NCP and its software implementation. Our work has focused
on a set of generalized behavioral rules, rather than tackling
specific applications and protocols. We have extended previous
work on this topic by investigating practical and performance
matters in implementing the NCP and by considering the energy
budget in realistic scenarios.

Our work has pointed out some scalability concerns that limit
the number of devices that can be covered simultaneously by
the NCP. However, we have also shown that the NCP could be
exploited with great energy saving in practice; its architecture
is thin enough to run on low-power and embedded devices, and
it leads to positive energy budgets even with few devices. Hard-
ware platforms to run this software must be chosen according to
the number of devices to be covered. The possibility to run the
NCP on home gateways makes its application convenient even
with only a single host (such as in home scenarios).

We plan to carry on our work by a more thorough perfor-
mance evaluation for each single behavioral rule, looking for
additional scalability constraints. Furthermore, we also aim at
conducting additional estimations of the energy budget under

http://www.eu-energystar.org/en/en_008.shtml
http://www.eu-energystar.org/en/en_008.shtml
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different conditions (e.g., by considering other usage and traffic
profiles) and at developing analytic models to this purpose.
Finally, it would be interesting to have some form of prediction
for incoming traffic, in order to reduce the wake-up latency for
delay-sensitive applications.
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