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Abstract

New techniques are presented for using the medial axis to generate decompo-
sitions on which high quality block-structured meshes with well-placed mesh
singularities can be generated. Established medial-axis-based meshing algo-
rithms are effective for some geometries, but in general, they do not produce
the most favourable decompositions, particularly when there are geometric
concavities. This new approach uses both the topological and geometric in-
formation in the medial axis to establish a valid and effective arrangement
of mesh singularities for any 2-D surface. It deals with concavities effec-
tively and finds solutions that are most appropriate to the geometric shapes.
Resulting meshes are shown for a number of example models.

Keywords: medial axis, quad mesh, multiblock decomposition,
block-structured, mesh singularities, cross-field.

1. Introduction

An assessment of the relative performances of multiblock structured meshes
of turbomachinery that were generated by medial-axis-based methods, Carte-
sian grid methods and by manual interactive work was made in a recent pa-
per [1]. Adjoint error analyses in CFD simulations showed that the medial-
axis-based methods generated higher quality meshes and this can be at-
tributed to their boundary-sympathetic block configurations. But despite
their relative effectivenesses, there are still some obvious improvements to be
made, such as more natural treatment of concavities and responsiveness to
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geometric shapes. Addressing these limitations by employing the neglected
geometric information in the medial axis is the objective of this work.

1.1. Medial axis definition

For a 2-D surface, the medial azis is defined as the set of points where
each point, p, has a centred inscribed circle, U, that touches the boundary
entities at more than a single point. Distinct parts of the medial axis are
characterised by the number of touching points of U(p).

Medial edges connect subsets of the points with two touching points and
they usually make up the majority of the medial axis. The radius of U(p)
is called the medial radius, r,,, and the subtended angle between the radii of
U(p) to the touching points is called the medial angle, 0,,. A special type of
medial edge feature that frequently occurs is termination at a convex corner
where 1, shrinks to zero. The corresponding medial edge is called a flare or
flange. These are all illustrated in Fig. 1.

boundary X flare/| "m =0
U g — medial vertex

touching point medial edge

L.

Figure 1: Medial edge features and terminology (left) and medial axis for simple surface
(right).

Medial vertices represent the meeting points of medial edges as U(p) tran-
sitions from one boundary pair to another. In standard cases three touching
points are involved. In special cases a medial vertex is equidistant to more
than three touching points. There are two other special cases, the first being
a medial vertex at the centre of a circular arc with U(p) in finite contact.
The other is a curvature contact scenario, such as near the end of the ma-
jor principal axis of an ellipse. There, the curvature of U(p) equals that of
the boundary at the touching point, which results in a single touching point
belonging to a medial vertex with 6,, equal to zero (cf. Fig. 10).

1.2. Review of established medial-axis-based decomposition algorithms
Quad meshing by medial axis decomposition was first conceived by Nack-
man and Srinivasan [2]. They noticed that the medial axis presented a well-
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defined natural decomposition of the surface and used it without alterations
to split the surface into blocks. Some additional rules for merging the pro-
duced blocks were devised to improve the suitability of the decomposition
for meshing.

A better method was proposed by Tam and Armstrong [3] that pro-
duces higher quality decompositions. They developed a strategy for using
a Constrained Delaunay Triangulation (CDT) of a set of boundary points,
whose circumcenters approximate the medial axis to an acceptable accuracy,
to assemble ‘shape molecules’ characterising a mesh topology. By inserting
cuts between the medial vertices the shape molecules are reduced to ‘shape
atoms’ which are topological 4-, 5- and 6-sided polygons. Each of these are
meshable by midpoint subdivision [4] and an integer programming method
can be used to find allowable division numbers on the subblock edges [5, 6].
An augmented algorithm with this approach has been implemented in the
commercial software of Abaqus [7], offering automatic high-quality meshing
capability.

More recently, Rigby [8] proposed an algorithm called ‘TopMaker’. It
consists of a few simple rules for creating suitable cuts at medial vertices and
along the medial axis and it is surprisingly effective in generating pleasing
decompositions for a certain class of geometries.

Additional related methods include [9] which is less general and has rules
specifically tailored for managing circular holes. The ‘d-MAT’ method used
by Xia and Tucker [10, 1] has similar rules to the TopMaker method and it
produces comparable decompositions.

1.3. Other quad mesh generation methods

Mapped meshing [11] is the most long-established method for generating
quad meshes. The standard method involves solving for a boundary-fitted
curvilinear coordinate system on the surface. The range of surfaces for which
it is effective is limited to near rectangular simply connected surfaces and
regular annuli. Mapped meshing with other simple mesh topologies has also
been developed for triangular and polygon surfaces [12]. Submapping [13]
extends the range of applicable surfaces to include those with ‘blocky’ profiles,
not necessarily with convex corners but which allow logical mappings of the
boundaries to a Cartesian coordinate system. The decomposition strategy
for quad meshing, such as the aforementioned medial-axis based methods,
is to subdivide complex domains into quadrilateral, polygon and ’blocky’
subregions on which mapped meshing methods can be used.



The advancing front or paving method [14] involves building layers of el-
ements in stages, working inwards from the boundaries. When layers overlap
the element connectivities are readjusted to produce a valid mesh. This often
results in the creation of many irregular valence nodes, or singularities, along
the collision zones of layers, which is typically around the medial axis. Un-
constrained paving [15] achieves more regular mesh patterns by identifying
common configurations in the local geometry and topology before resolv-
ing the mesh connectivities in the collision zones, although there are some
heuristic parameters that must be fine tuned for each geometry.

Traditional Cartesian grid methods [16] comprise overlaying regular grids
on the geometry. Elements that intersect with the boundary are removed
and then the remaining outer elements are adapted and added to generate
a boundary conformal mesh. While this approach generates meshes that are
predominately structured, the mesh on the boundaries is inevitably irregular
and of poor quality. Much better meshes can be produced by new methods
which first seek a transformed representation of the surface where every edge
follows a Cartesian coordinate system before applying a Cartesian grid [17] .
This is similar in principal to the submapping method. The grid transformed
back to the original surface has regular connectivities and generally has good
element qualities . However, the transformation may unavoidably have unde-
sirable singularities on the boundary which cause poor mesh quality locally.
A simple example of a geometry where the problem arises is a triangle. Ide-
ally, the necessary singularities should occur in the interior to keep boundary
element quality high and to minimise the overall mesh distortion.

The newest most advanced algorithms for quad mesh generation include
Morse-Smale complex methods [18] and cross-field methods [19, 20, 21, 22].
Both approaches solve scalar and or vector fields on the surface from which
quadrangular charts are extracted and meshed by parametrisation methods.
Impressive high-quality quad meshes with target size and direction sensitivity
can be produced by these methods. Their downside is that they are complex,
quite expensive and require a suitable triangulation of the surface.

A method with some similarities to the presented method is LayTracks [23].
Its strategy for mesh generation is fundamentally different to decomposition
based methods — it uses the medial axis to generate a mesh directly as op-
posed to of using it to infer mesh properties and with that information create
a decomposition. The algorithm creates regularly spaced thin strips between
medial radii pairs from medial axis points to touching points. These strips
are then divided up into quadrilateral pieces. In common with the presented
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method, the mesh singularities are pushed out to the interior and high qual-
ity elements are produced at the boundaries. In contrast to the presented
method, at concavities the mesh rows curl around the sharp tips and elements
tend to degenerate to triangles, similar to the TopMaker method.

1.3.1. Strengths and weaknesses of TopMaker and Tam and Armstrong (TEA)
methods

In comparison to other widely used general quad meshing algorithms, such
as paving or Cartesian grid methods, the TopMaker and T&A algorithms can
usually generate superior block-structured meshes; they have fewer mesh sin-
gularities and simpler topologies than paved meshes and have higher quality
elements on the boundaries than Cartesian meshes. However, they are in
fact only effective for certain types of surfaces.

Neither handles concavities particularly well. The TopMaker algorithm
makes the assumption that all corners are flat except those connected to flares
which have one element. Using the definitions given in Sec. 3 (Fig. 6 (right)),
these translate as n. = 2 and n, = 1 type corners respectively. Whilst
this makes the decision making in the algorithm very straightforward, it
doesn’t always lead to serviceable decompositions. Consider the decompo-
sition shown in Fig. 2 (top right). The mesh is forced to wrap around the
trailing edges which leads to highly distorted blocks. Therefore, in general,
acceptable quality decompositions are only created for geometries with corner
angles <~ b7 /4.

The T&A method performs slightly better with concavities as borne out
in Fig. 2 (bottom right). In the first stage the surface is split by the best
candidate CDT edges that fit most closely with the assigned mesh patterns
at the corners, which are chosen based on corner angles. The splitting edges
for concavity removal are shown in Fig. 2 (bottom left). This strategy can
at least produce n. = 3 and 4 type corner patterns but it often does not lead
to the best overall mesh topology. For example, the method always creates a
split between concave vertices that share an inscribed circle and this results
in the sub-optimal decomposition shown in Fig. 3 (centre) for the indents
surface. But the most obvious and best quality decomposition is shown in
Fig. 3 (right).

Another limitation is the almost exclusive use of topological informa-
tion in the medial axis and the disregard of important embedded geomet-
rical shape information. For example, each of the three surfaces shown in
Fig. 4 (top row) are the same as far as the TopMaker and T&A algorithms are
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Figure 2: Multi-element aerofoil surface decomposed by TopMaker and T&A algorithms.

Medial axis T&A decomposition Preferred
decomposition

Figure 3: Indents surface decomposed by T&A algorithm and its preferred decomposition.
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Figure 4: Three surfaces with an identical medial axis topology but quite different geo-
metric shapes (top row) and suggested good quality decompositions (bottom row).

concerned because the medial axis topologies are identical. Thus, they are
all treated as rectangular blocks for which a regular grid can be used in their
interiors. This is appropriate for the first surface but a regular grid mapped
to the second and third will be highly distorted. Preferably, they would be
decomposed, or more specifically, the block topology solutions should contain
some positive-negative singularity pairs, to give the block structures sketched
in Fig. 4 (bottom row — middle and right).

1.4. Contributions

Herein, a new approach is described which combines the medial-axis-
based decomposition algorithms and the frame-field decomposition approaches
24, 19, 25]. It makes use of the valuable and hitherto neglected geometric
information in the medial axis, namely the medial angle, which leads to the
development of a simple well-reasoned method for finding a suitable configu-
ration of mesh singularities on the medial axis. This is essentially the critical
step in a mesh generation problem, as explained briefly in the next section.
It also gives a basic description of element orientation over the whole surface.

Based on this information, a new medial-axis-based decomposition method
is presented. It provides a general way of handling concavities and is pre-
cisely responsive to important geometric shapes so that preferred solutions
like those shown in Fig. 3 (right) and Fig. 4 (bottom row) are found auto-
matically.



The method is applicable to all surfaces with computable medial axes,
which are non-closed surfaces with boundaries. The more curved the surface
is the less worthwhile the idea becomes that boundary alignment constraints
should govern its mesh solution. For this reason the presented method, and
indeed all medial-axis-based methods, are most suited to near-planar surfaces
or small patches of curved ones.

2. Theoretical properties of quad meshes

2.1. Introduction

The new techniques are reasoned in terms of a rigorous theoretical de-
scription of unstructured quad meshes with infinitesimal properties that was
described by Bunin [26]. The theory gives insight into the fundamental prop-
erties of quad meshes and explains the crucial role played by mesh singular-
ities, which are nodes where the regular grid connectivities are disrupted.

2.2. Owverview of the theory

The key results of Bunin’s theory are:

e The governing equation of an orthogonal mesh is
Yoo
Astp =K + ;k@&m . ki €Z>—4. (1)

This is a Poisson equation and it describes stationary heat conduction
amongst other physical phenomena. Ay is the Laplace-Beltrami oper-
ator where the subscript S indicates that it is measured with respect
to the parametric space of the surface and not the 3-D space that the
surface is embedded in. ¢ is a scalar field on the surface that controls
the mesh, K is the Gaussian curvature of the surface, k; is the type
of a mesh singularity and dp, is a Dirac delta function centred at the
point on the surface where the singularity occurs, p;.

e The type of a mesh singularity is given by an integer, k, which es-
sentially denotes the number of additional elements above four at a
node.

e The variable ¢ corresponds to —In A, where h is the edge length of an
infinitesimal square element.



e The curvatures of the mesh edges are related to the variation in the
¢-field by
_ 99 _

Kg e - <VS¢7 e>7 (2>

where r, denotes the geodesic curvature of the edge and its intrinsic
normal, e, is defined by € = n x t where n and t are the surface normal
and the edge tangent vector respectively.

e A cross-field describing the mesh directionality (see [27, 28, 29, 24, 19])
is closely related to the ¢-field. The total change in angle of a cross
along a curve, a, (in a parallel-transport sense) is given by

_ [99
A = aaeds' (3)

With regard to the problem of mesh generation, a continuum description of a
mesh can be obtained by solving a heat conduction type problem (by FEM for
example) once a valid arrangement of mesh singularities have been specified.
But finding the positions of mesh singularities is not trivial. Indeed, this
theory shows that it falls into the category of Inverse Poisson problems which
are known to be ill-posed and difficult to solve effectively [30].

3. Resolving mesh singularities using the medial axis

3.1. Optimum mesh-flow indicated by the medial angle

The medial axis supplies a link between nearby boundaries and provides
a means to assess the geometry locally. An intuitive idea is that the relative
orientations of the boundaries indicate preferred patterns of the mesh in the
intermediate areas. It is convenient to use a cross-field representation of the
mesh to demonstrate this.

Given two points with assigned crosses, the total change in angle of any
cross-field between them is unique up to a multiple of 7/2. The multiplying
integer, call it n, essentially specifies the number of 7/2 turns made by a cross
moving between the points. With reference to Bunin’s continuum theory, the
total flux through a curve linking the points is given by

_ (99

a = a_
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with the symbol definitions as indicated in Fig. 5 (left). A smooth regular

6,, range [7,37/4) [3n/4,7/4) [7/4,0]

nlnplimum 0 1 2

(plylnptimum

7T/2 bl 0,,, _Hm

Medial axis | Vo )
appearance / @ /
Cross-field

: @,
behaviour
Colour —

Figure 5: Curve between two boundary-aligned crosses of nearby boundaries (left) and a
table summarising the optimum mesh-flow types for medial angle ranges (right).

cross-field is the most reasonable default target in the absence of supplemen-
tary information on the local target size and orientation of the mesh. This
equates to looking for a mesh with minimal element distortion. With this
target the total flux should be minimised and the optimum integer for n can
be computed by

(5)

|optimum

d 0, — 0,
:round(faﬁg ST % )

/2

For the particular case of a planar surface with the curve a composed of the
medial radii (traversed so that r, is positive), then [ x,ds =7 —0,,. If the
touching points are on boundary edges then 6, and 6, are zero, therefore

T—06,,
n|optimum = round ( 71'/2 ) . (6>

The three basic mesh-flow types between boundary edges linked by the medial
axis and their preferred medial angle ranges are summarised in the table in
Fig. 5 (right). It may be helpful to think of the medial axis being aligned
with the cross-field for n. = 0 and n, = 2 and running diagonally through
the cross-field for n, = 1.
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If the touching points are on concave vertices 6, and 6, are not zero in
general. To determine the optimum mesh-flow type in these cases the cross
directions from which 6, and 6, are measured are chosen so that their values
are minimised, and the non-zero entry 6, — 6, is included in the calculation
of @,. Alternatively, the medial radii directions can be adjusted by 6, and
0, before 6, is measured as shown in Fig. 6 (left).

The optimum mesh patterns at boundary corners can be decided by min-
imising the associated total flux radiating from the corner in the ¢-field.
Bunin gives an analytic expression for the strength of a point source nec-
essary at a corner which involves the corner angle, 6., and an integer, n.,
that specifies how many elements occur there. Choosing n. to minimise the
strength gives the optimum ranges shown in Fig. 6 (right).

’ .Mr
0, after
adjustments
net 0 1 ) 3 4
9a Optimum 0.z A N o N
fc range: 0.9 GO FH 9 1§24

Figure 6: Adjustments at concave vertices (left) and optimum mesh patterns at corners
(right).

The cross-field degenerates at a corner vertex in the same way as it does
at a mesh singularity. At a corner vertex the cross-field has a number of
directions which are always evenly distributed angularly. Except for n. = 0
(which is especially degenerate), the cross-field has two directions pointing
along the edges forming the corner and (n. — 1) directions pointing into the
surface.

3.2. Identifying mesh singularities

If the optimum mesh-flow behaviour is selected for every position of the
medial axis the positions of mesh singularities are in effect decided. A general
method for identifying these positions involves a flux balance calculation.
Supposing the surface is sliced into a series of thin regions by medial radii as
shown in Fig. 7, 8 and 9. Treating each sliver as a control area, a flux balance
analysis can be carried out using the medial angle-dependent values for the
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O = 51/6 = @ - negative singularity
(k=-1)

@ - positive singularity
k=1

0, =~ 3n/4

Figure 7: Examples of flux balancing along medial edges between smooth boundaries.

<<s<<ccccskkkke oo me

Figure 8: Examples of flux balancing along medial edges between boundaries with concave
corners. Sketches of the implied mesh topologies are shown in the boxes.
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Figure 9: Examples of flux balancing at medial vertices (highlighted).
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total fluxes across pairs of medial radii as described above. The total fluxes
across the small boundary segments are given by the differences in angle of
the adjacent boundary-aligned crosses (which should be small). The flux
residual must equal k7 /2 where the integer k denotes the type of singularity
present. Most usually only simple singularities occur, i.e. k = 41 or ‘positive’
and ‘negative’ singularities. In some special cases higher-order singularities
can occur, an example of which is at the central medial vertex of a regular
hexagon, as shown in Fig. 9 (bottom right) where a k = 2 type singularity
occurs. This is identified in a general fashion.

At a medial vertex where the touching circle has a finite contact with
a boundary there are a range of medial angle values associated with the
medial vertex. These features can be equated to the limiting case where
the boundary curve tends to a circular arc from an elliptical arc. Thus, the
singularity type at the medial vertex is given by

k = —floor (%@) . (7)

For example, a semi-circular end of a rectangular block has a corresponding
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medial vertex with max(6,,) = . Therefore, a k = —2 singularity is placed
on the medial vertex. This is illustrated in Fig. 10.

'm =TT 3 On=m g ==
— » — m = g

max(6,)

Figure 10: Treatment of finite contact regions. A circular arc is equivalenced to an elliptical
arc whose curvature tends towards uniformity.

3.3. Algorithm

A basic algorithm was developed to use the principles just described to
find an effective arrangement of mesh singularities. Its general steps are
outlined in Alg. 1 below. It was implemented in a Python program using the
CADfix API [31].

Algorithm 1. Find mesh singularities using medial axis

1. Generate the medial axis for the surface. CADfix’s [31] medial axis
generation tool is used for this.

2. For each medial edge, assemble a sequence of analysis positions between
the start and end points of the edge. A suitable interval size will capture
the smooth change in 6, and ensure that a single critical switch point
of the optimum mesh-flow is contained in the interval.

3. Perform a total flux balance calculation for each sliver region bounded
between the interval positions on medial edges and medial vertices, to
determine appropriate singularity positions.

The essential output of the algorithm is a layer of information on the
medial axis detailing the mesh-flow type between associated boundaries and
the positions where singularities occur. Line geometry is also created purely
to illustrate the method which is shown in the next section.
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Figure 12: Result of singularity identification algorithm for test surface 1.

3.4. Singularity identification results

Some illustrative results of the algorithm are shown Figs. 11 and 12.
Two images are included for each example, one showing the medial axis and
artefacts representing the solution process, and the other showing a crudely
defined cross-field. When creating the crosses their overall turning behaviour
over the medial radii is taken from the assigned mesh-flow type and a smooth
and even rate of change of angle along the medial radii is assumed.

The geometries in Fig. 11 were seen previously in Figs. 2—4. The re-
sults match the ‘preferred decomposition’ topologies in each case. The addi-
tional positive and negative singularities appear in their natural positions in
the ‘squeezed’ and ‘pinched’ rectangle surfaces. And, the concavities in the
multi-element aerofoil and indents surfaces are managed nicely. The result
in Fig. 12 for test surface 1 contains some collections of singularities in close
proximity to each other. Depending on the target coarseness of the quad
mesh these should be merged together to cancel each other out (for positive
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Figure 13: Multiblock decomposition of multi-element aerofoil by [32].

and negative singularity pairs) or to create higher-order singularities (for sin-
gularities of the same sign). The proposed decomposition method described
in the next section achieves this.

One approach to generating a multiblock decomposition is to trace the
separatrices of a cross-field. This has been explored in [19, 32, 20] and ro-
bust and effective cross-field initialisation and streamline tracing on a tri-
angulation of the surface have been developed. A decomposition of the
multi-element aerofoil surface is shown in Fig. 13 that was created by the
method of [32] with a cross-field and singularities that correspond with those
in Fig. 11. In principle, these methods could be applied in the present method
(with some modifications to clean up the cross-fields) but it would eliminate
the niche that the medial axis decomposition methods fit into. Medial-axis-
based methods should be ‘lightweight’, cheap, fast and robust, otherwise
they offer no advantage over more sophisticated methods [20, 21, 22| that
can handle more general problems with target size and orientation fields. To
fulfil these objectives undemanding techniques are called for to split the ge-
ometry using the medial axis in a similar manner to the T&A and TopMaker
methods, but that can produce enhanced decompositions. The splits should
follow the implicit mesh solution already achieved.

3.5. Rethinking the algorithm design

The algorithm as laid out in Alg. 1 is simplistic and easy to understand.
Moreover, it is easy to program. However, a more streamlined algorithm is
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possible which does not use a fixed set of analysis positions on the medial
axis to define small control areas on which to compute flux balances. After
assigning optimum mesh flow across the medial axis, flux imbalances, hence
singularity occurrences, can only happen at three types of position on the
medial axis: (1) points with critical 6,, values of 7/4 and 37 /4 with touching
points on smooth boundary edges, (2) medial vertices and (3) points along
sections of the medial axis with a touching point on a concave corner where
the cross-field direction for measuring the adjusted 6,, switches from one
to another. This means that only these points really need to be assessed.
So, a more efficient algorithm would concentrate on identifying these impor-
tant analysis points on the medial axis and simply check them to find mesh
singularities.

4. Decomposition

The primary objective of the decomposition process is to create logi-
cally convex polygon subregions around the mesh singularities and for the
remaining subregions to be submappable. The adjective logical is used to
indicate a property that is distinguished after the mesh is locally mapped
to a Cartesian form with all edges along the coordinate directions. Logi-
cally convex m-sided polygons can be meshed using the simple templates
shown in Fig. 14. The 3+-sided polygon templates are the applications of
mid-point subdivision. The 0-sided template is a widely used topology for
meshing circles (see e.g. [33]) and 1- and 2-sided templates are proposed
simple candidates. Submappable regions can be meshed by a number of

DS OLADC

0-sided 1-sided 2-sided 3-sided 5-sided 6-sided

Figure 14: Mesh templates for logically convex m-sided polygons.

methods [13, 34, 35]. Two examples of submapped meshes are shown in
Fig. 15.

By not fixing the singularity positions they are free to be repositioned
inside their polygon subregions to suit the target element sizes and therefore
allow better quality meshes to be produced. However, the proposed method
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Figure 15: Submapped meshes (taken from [34]).

cannot always succeed in creating a polygon subregion around a mesh sin-
gularity. Sometimes, its position is fixed instead and it appears as a corner
vertex of adjacent subregions.

4.1. Decomposition splits

The medial axis links proximate boundaries and it makes available can-
didate splits between the boundaries. For two boundary edges coupled by
the medial axis, the medial radii spanning between them can be used as de-
composition splits. There are two standard types that are serviceable: n =0
and n = 1 medial radii pairs as shown in Fig 16. The n = 0 type split is

Q
9 . &
n=20 n=1

Figure 16: Decomposition splits between boundary edges.

preferable as it does not create a concave corner and medial angles closer to
7 and 7/2 are more favourable for each respectively.

For a logically concave vertex (i.e. n, = 3 or 4) there are a discrete number
of medial radii connected to the vertex that are allowed to be used as part of
a split. These radii are either exactly aligned with the cross-field directions
at the corner vertex, or are almost aligned and perpendicular to the edges
forming the corner. This is illustrated in Fig. 17.
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Ne =3 ne =4

Figure 17: Decomposition edges from concave corners.

The most complex scenario is when two concave vertices are on oppo-
site sides of the medial axis. In these cases, there are no legitimate splits
composed of pairs of medial radii generally. A simple work-around is to join
a splitting edge of one orthogonally to the most suitable opposite splitting
edge. This is illustrated in Fig. 18. These splits can be determined as follows:
--------- Edge to join a splitting

edge to an opposite one
orthogonally.

—————— Indicates change in mesh-flow

Figure 18: Ilustration of the construction of potential decomposition splits between two
concave corners.

e At a concave vertex, for one of its cross-field directions find the corre-
sponding point on the medial axis.

e [f the opposite touching point is on an edge then simply use the medial
radii as the second half of the split.

e If the opposite touching point is also a concave vertex:

— Ifn =0o0rn =1 find a projection to one of the opposite cross-field
directions along the adjusted medial radius direction.
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— If n = 2 find a projection to one of the opposite cross-field direc-
tions perpendicular to the adjusted medial radius direction.

4.2. Decomposition process details

A running example will be used to demonstrate the decomposition process
steps on test surface surface 1 as they are described.

Step 1. Potential splits are determined for concave corners. The splits
are named ‘CCi_j” where ¢ is a number identifier for the concave corner and
7 is the split number connected to it. These can be seen in Fig. 19 as labelled
dotted lines.

Figure 19: Potential decomposition splits from concave corners for test surface 1.

Step 2. A database is assembled for storing a list of neighbouring features
for each singularity. All singularities are named (‘Si’) and each is assessed
in turn (in a non-specific order) as the centre singularity with its name as
the key to the associative array or hash table. The medial axis is explored in
all directions from the centre singularity position. Once another singularity,
convex corner or concave corner split is encountered the exploration of that
medial axis branch is stopped and a descriptive identifier is added to the
neighbouring feature list:

e For a neighbouring singularity its name is added.

e For a convex corner an identifier — CX — followed by its n. type is
added.

e For a concave corner split its name is added.
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singularity | sign neighbouring features
S1 +1 (S2,0), (S8,0), (CX1, 1)
S2 +1 (S1,0), (S3,0)
S3 -1 (S2,0), (S4,0), (CX1, 1)
S4 +1 (S3,0), (S5,0)
S5 +1 (S4,0), (CC2.1,1), (CC2-2,1)
S6 +1 (CC22, 1), (S7,0)
S7 -1 (S6,0), (S8, 0), (CX1, 1)
S8 +1 (S7,0), (S1,0), (CX1, 1)
S9 +1 (CC21,1), (CC1-2,1)
S10 -1 | (CC1.1, 0), (CC3_1,1), (CC32,0), (CX1, 1)

Table 1: The initialised database for test surface 1.

An additional Boolean attribute is added with these to mark whether the
neighbouring feature is ‘unresolved’ (0) or ‘resolved’ (1), indicating whether
or not a split needs to be created between it and the centre singularity in

order to produce a convex polygon. The possibilities are as follows:

e [f a neighbouring concave corner split creates a logically straight edge
or convex corner with respect to the centre singularity it is considered

resolved.

e If a neighbouring convex corner is of type n. = 0 (CX0) it is marked

unresolved, otherwise it is marked resolved.

e A neighbouring finite contact medial axis vertex without a singularity
is marked as resolved.

e A neighbouring singularity is marked as unresolved.

The initialised database for test surface 1 is shown in Tab. 1.

Step 3. Each singularity is dealt with in turn as the centre singularity
of the evaluation, with the objective of creating decomposition splits around
it to produce a logically convex polygon. If all the neighbouring features
are resolved then this has already been achieved. For each unresolved neigh-
bouring feature a split is searched for which would create a logically straight
corner (n = 0) across the intermediate portion of the medial axis, between
it and the centre singularity. If the unresolved neighbouring feature is not
a singularity then splits that create logically convex corners (from the per-
spective of the centre singularity) are also permitted. The candidate splits
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that are found are ranked in order to choose the best one where n = 0 types
are preferred over n = 1 and medial angles closer to 7 and 7/2 are more
favourable for each. If no permitted split can be found between the centre
singularity and a neighbouring feature then the centre singularity needs to
be fized, or if the neighbouring feature is a singularity then it may by fixed
instead.

Fixing a singularity involves putting a split through it with the result
that it appears as a corner vertex of subregion blocks in the decomposition,
as shown in Fig. 20. It is possible to create the complete decomposition by

il

Figure 20: Examples of fixing singularities by creating splits through them. (Logical
shapes of subregions are also shown in the two examples on the right)

fixing every singularity, thus generating submappable subregions. However,
this strategy would create a complex decomposition with a large number of
subregions. Also, it is more desirable to allow singularities to float around
inside m-sided polygons to suit even distributions of element sizes. For these
reasons singularities are only fixed when necessary.

If the central singularity has only unresolved neighbouring features which
are singularities, it is checked to see if all the neighbouring singularities can be
fixed to create a logically convex subregion around the centre singularities. If
so, then this is carried out. Otherwise the centre singularity is fixed. In every
case the database is updated to record whether the adjacent singularities can
be considered resolved.

4.2.1. Decomposition process example

The route by which the decomposition process is performed for test sur-
face 1 isillustrated in Fig. 21. The order in which singularities are dealt with
as the centre singularity follows the arbitrarily assigned numbering. There
may be slight variation in the decomposition that is created depending on
the arbitrary numbering. However, almost identical meshes should be able
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to be generated on the possible decompositions. The changes in the database
at each point in the process are shown in Fig. 22. The process is carried out
as follows:

1. With S1 as the centre singularity the two unresolved neighbouring fea-
tures are S2 and S8. Decomposition splits of type n = 0 are found
that can resolve these. Since n = 0 type decomposition splits create
logically flat edges, S1 can be considered resolved as a neighbouring
feature for S2 and S8.

2. With S2 as the centre singularity the only unresolved neighbouring
feature is S3. However, there is no permitted split between S2 and S3.
The first check is to see whether S3 can be fixed to create a logically
flat or convex corner from the perspective of S2. It is found that S3
can be fixed to create a logically convex corner for S2. Since S3 is at a
medial vertex it is prudent to see if additional decomposition edges can
be created so that it can be made resolved for its other neighbouring
features. Thus, the third edge is created to produce a logically convex
corner from the perspective of S4. S3 has been fixed so nothing remains
to be done for it.

3. With S4 as the centre singularity a logically flat (n=0) split is found
between it and S5.

4. With S5 as the centre singularity all neighbouring features are resolved
after setting the concave corner splits CC2_1 and CC2_2.

5. With S6 as the centre singularity the only unresolved singularity is S7.
S7 is fixed and is made resolved as a neighbouring feature of both S6
and S8. S8 now has only resolved neighbouring features so nothing
remains to be done for it.

6. With S9 as the centre singularity all neighbouring features are resolved
after setting the concave corner split CC1_2.

7. With S10 as the centre singularity a split cannot be found to resolve
CC_1. Therefore S10 is fixed.

The final decomposition and a mesh that is generated on it by a combination
of midpoint subdivision and submapping methods is shown in Fig. 21. Mesh
singularities are perceivable in the subregions following the implicit medial
axis mesh-flow solution but not necessarily in the exact same positions.

24



=
4 8»»)»8), =

MRS
=

¢
ko cC1_2 1510
i A
i SO
Vi 2
Al ||
ﬁ" CC3 1

=

S
52

=17
IS T

=7

= =
MM =%
S = ="
s6.CC2 %7
Y | =7
7 (£
- (‘ ) 1510
Z b
:§ K :kfr((,
s Hlli 2
& W), 2
1

= S
=

y ccl_3
2\ i
2\ S,
3 A
& |

=77
=l

= 17
=2
=l

=i

7 Final decomposition and mesh

Figure 21: Demonstration of decomposition process on test surface 1.
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singularity | sign neighbouring features singularity | sign neighbouring features
S1 +1 (S2,1), (S8,1), (CX1,1) S1 +1 (S2,1), (S8,1), (CX1, 1)
S2 +1 (S1,1), (S3,0) S2 +1 (S1,1), (S3.1)
S3 -1 (S2,0), (S4,0), (CX1, 1) S3 -1 (S2,1), (S4,1), (CX1, 1)
S4 +1 (S3,0), (S5,0) S4 +1 (S3,1), (S5,0)
S5 +1 | (S4,0), (CC2.1,1), (CC2:2,1) S5 +1 | (S4,0), (CC2.1,1), (CC22,1)
S6 +1 (CC22, 1), (S7,0) S6 +1 (CC2:2, 1), (S7,0)
S7 -1 (S6,0), (S8, 0), (CX1, 1) S7 -1 (S6,0), (S8, 0), (CX1, 1)
S8 +1 (S7,0), (S1,1), (CX1,1) S8 +1 (S7,0), (S1,1), (CX1, 1)
S9 +1 (CC2.1,1), (CC12,1) S9 +1 (CC2,1,1), (CC1-2,1)
S10 -1 (CC1.1, 0), (CC3-1,1), S10 -1 (CC1., 0), (CC3,1,1)7
(CC32,0), (CX1,1) (CC32,0), (CX1,1)
1 2
singularity | sign neighbouring features singularity | sign neighbouring features
S1 +1 (S2,1), (S8,1), (CX1, 1) S1 +1 (S2,1), (S8,1), (CX1, 1)
S2 +1 (S1,1), (S3.,1) S2 +1 (S1,1), (S3.1)
S3 -1 (S2,1), (S4,1), (CX1,1) S3 -1 (S2,1), (S4 1), (CX1, 1)
S4 +1 (S3,1), (S5,1) S4 +1 (S3,1), (S5,1)
S5 +1 | (S4,1), (CC2.1,1), (CC2.2,1) S5 +1 | (s4,1), (C C2 1,1), (CC2.2,1)
S6 +1 (CC22, 1), (S7,0) S6 +1 (CC2:2, 1), (S7,0)
S7 -1 (S6,0), (S8, 0), (CX1, 1) S7 -1 (S6,0), (S8 0) (C'X]7 1)
S8 +1 (S7,0), (S1,1), (CX1,1) S8 +1 (S7,0), (S1,1), (CX1, 1)
S9 +1 (CC2.1,1), (CC12,1) S9 +1 (CC2 1,1), (CC12,1)
S10 -1 (CC1.1, 0), (CC3-1,1), S10 -1 (CC1.1, 0), (CC3.1,1),
(CC32,0), (CX1,1) (CC3. 2 0), (CX1,1)
3 4
singularity | sign neighbouring features singularity | sign neighbouring features
S1 +1 (S2,1), (S8,1), (CX1, 1) S1 +1 (S2,1), (S8,1), (CX1, 1)
S2 +1 (S1,1), (S3,1) S2 +1 (S1,1), (S3.1)
S3 -1 (S2,1), (S4.1), (CX1, 1) S3 -1 (S2,1), (S4,1), (CX1, 1)
S4 +1 (S3,1), (S5,1) S4 +1 (S3,1), (S5.,1)
S5 +1 | (S4,1), (CC2.1,1), (CC2:2,1) S5 +1 | (S4,1), (CC2.1,1), (CC22,1)
S6 +1 (CC22, 1), (S7,1) S6 +1 (CC22,1), (S7,1)
S7 -1 (S6,1), (S8, 1), (CX1,1) S7 -1 (S6,1), (S8, 1), (CX1, 1)
S8 +1 (S7,1), (S1,1), (CX1,1) S8 +1 (S7,1), (S1,1), (CX1, 1)
S9 +1 (CC2.1,1), (CC12,1) S9 +1 (CC2.1,1), (CC1-2,1)
S10 -1 (CC1.1, 0), (CC3-1,1), S10 -1 (CC141, 0), (CC3-1,1),
(CC32,0), (CX1,1) (CC32,0), (CX1,1)
5 6
singularity | sign neighbouring features
S1 +1 (S2,1), (S8,1), (CX1, 1)
S2 +1 (S1,1), (S3.,1)
S3 -1 (S2,1), (S4,1), (CX1,1)
S4 +1 (S3,1), (S5,1)
S5 +1 | (S4,1), (CC2.1,1), (CC2-2,1)
S6 +1 (CC22, 1), (S7,0)
S7 -1 (S6,0), (S8, 0), (CX1, 1)
S8 +1 (S7, 0), (S1,1), (CX1, 1)
S9 +1 (CC21,1), (CC1-2,1)
S10 -1 (CC1.1, 0), (CC3-1,1),
(CC32,0), (CX1,1)
7

Figure 22: Database changes during the decomposition process on test surface 1.
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Figure 23: Merging of singularities for test surface 1

singularity | sign neighbouring features

S1 +1 (52-3-4,0), (S8,0), (CX1, 1)

S2-3-4 +1 (S1,0), (CX1, 1), (S5,0)
S5 +1 (S2-3-4,0), (CC2_1,1), (CC22,1)

S6-7 0 (CC22, 1), (S8,0), (CX1, 1)
S8 +1 (S6-7, 0), (S51,0), (CX1, 1)
S9 +1 (CC2.1,1), (CC12,1)

S10 -1 | (CC1.1, 0), (CC3_1,1), (CC32,0), (CX1, 1)

Table 2: The initialised database for test surface 1 after singularities are merged.

4.3. Merging singularities

In the previous example the decomposition has been carried out with the
intention that all singularities that are not exactly superimposed should be
separated. However, it is usually preferable if they are merged together when
they are below a minimum distance tolerance of each other. Ideally, the local
target mesh size should dictate the tolerance. A geometry-based alternative
is to use a fraction of the local medial radius to set the local tolerance value.
A reasonable range for the tolerance is [r,, /4, ry,].

4.4. Decomposition example with merging of singularities

The singularities which are to be grouped together and merged for the
tolerance setting of 3r,,/4 are illustrated in Fig. 23. The database is mod-
ified by treating the grouped singularities as a single combined singularity
and updating the affected entries to register that, as shown in Tab. 2.

Since S6 has a sign of +1 and S7 has a sign of —1, the combined singu-
larity, S6-7, has a net sign of 0. Therefore, it is a regular grid point and it
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singularity | sign neighbouring features
S1 +1 (52-3-4,0), (S8,0), (CX1, 1)
S2-3-4 +1 (S1,0), (CX1, 1), (S5,0)
S5 +1 (S2-3-4,0), (CC2.1,1), (CC22,1)
S8 +1 | (S6-7, 0), (S1,0), (CC2_1,1), (CX1, 1), (CX1, 1)
S9 +1 (CC2.1,1), (CC12,1)
S10 -1 (CC1.1, 0), (CC31,1), (CC3-2,0), (CX1, 1)

Table 3: The database for test surface 1 after singularities are merged and S6-7 is removed.

Figure 24: Final decomposition and mesh after treating proximate singularities as merged.

doesn’t need to be treated as a singularity in the decomposition process. It
is removed from the database and the entries for adjacent singularities are
updated, as shown in Tab. 3.

There are now fewer singularities to deal with and consequently the de-
composition process requires fewer steps and the decomposition that is pro-
duced following the same procedure described previously is simpler. The
final decomposition with an example mesh is shown in Fig. 24.

4.5. Decomposition examples

Some examples showing the decomposition and example meshes thereon
for a selection of surfaces are shown in Fig. 25. The quality of the meshes
could be boosted by applying smoothing methods, but this has not been done
in order to preserve the decomposition edges in the mesh for clarity.

The ‘preferred decompositions’ which were introduced in Sec. 1.3.1 are
achieved for the ‘squeezed’ rectangle and ‘pinched’ rectangle surfaces.

A decomposition is not shown for the indents surface (Fig. 3) because the
solution given by the method does not contain any singularities (Fig. 11),
which corresponds with its ‘preferred decomposition’. Therefore, submap-
ping can be applied directly to generate a mesh.
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ellipse circle

mesh using 0-sided
mesh template

Figure 26: Ellipse and circle decomposition examples

A decomposition is created for the multi-element aerofoil which facilitates
a more smoothly varying mesh than that created by the TopMaker and TA
algorithms (seen previously in Fig. 2).

The test surface 2 case is a relatively simple geometry but it contains a
number of holes and concavities which can cause issues with other decompo-
sition methods. The proposed method produces a pleasing decomposition.
The degenerate mesh at the lower right hand corner of the surface may draw
disapproval but, theoretically speaking, it is the best way of meshing such
an osculating corner.

Other decomposition examples for an ellipse and a circle surface are
shown in Fig. 26. Singularities are found at critical angles of 7/4 and 37 /4
with a short distance between them on the ellipse. Using a low tolerance set-
ting, a decomposition is generated with a topology according to the inferred
medial axis solution (left). But with a higher tolerance the ellipse is divided
into two 2-sided subregions (right).

The medial axis for a circle is a single point at its centre with a touching
circle in complete finite contact. This means that there are four superimposed
negative singularities in the solution. No decomposition is necessary and the
circle is meshed using the 0-sided template.
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4.6. Additional final splitting of multiply connected subregions

In some cases where the surface contains holes additional splits may be
required in order to produce submappable regions which are topological discs
with a single closed loop of boundary edges. An example would be an annulus
which the proposed method would leave as is since a ‘radial grid’ of concentric
mesh rows is a good solution. However, if only mapping and submapping
algorithms are available then it should be decomposed into a rectangle by
creating a decomposition split between the inner and outer boundary loops.
It is not difficult to add an extra step to the end of the procedure to check if
such splits are required to convert multiply connected subregions to simply
connected subregions and to find appropriate splits across the medial axis.

5. Conclusion

A novel approach has been described for using the medial axis to first
identify an effective configuration of mesh singularities, and secondly, to de-
compose the surface for block-structured meshing. The weaknesses of existing
medial axis based methods due to assumed mesh behaviour in relation to the
medial axis which is inappropriate around concavities are avoided. The pro-
posed methods offer more capable handling of 2-D surfaces of all types for
generating high-quality decompositions. And yet, the increased generality
does not entail a large increase in complexity.

Future work involves refining the implementation details of the singularity
identification and decomposition algorithms. This is not trivial work and
substantial effort will be required to develop a reliable and efficient method.
However, because the presented methods are based on a solid theory and the
rationale is clear for every step of the described algorithms, there should be no
major problems lurking in the practical details of a general implementation.
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