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Abstract: Lap joints are widely used in the manufacture of stiffened panels and influence local panel 

sub-component stability, defining buckling unit dimensions and boundary conditions. Using the Finite 

Element method it is possible to model joints in great detail and predict panel buckling behaviour with 

accuracy. However, when modelling large panel structures such detailed analysis becomes 

computationally expensive. Moreover, the impact of local behaviour on global panel performance 

may reduce as the scale of the modelled structure increases. Thus this study presents coupled 

computational and experimental analysis, aimed at developing relationships between modelling 

fidelity and the size of the modelled structure, when the global static load to cause initial buckling is 

the required analysis output. Small, medium and large specimens representing welded lap-joined 

fuselage panel structure are examined. Two element types, shell and solid-shell, are employed to 

model each specimen, highlighting the impact of idealisation on the prediction of welded stiffened 

panel initial skin buckling. 
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1. Introduction 

Lap joints are widely employed in aerospace stiffened panels to assemble the skin and 

stiffener sub-components together. The assembled panels are required to resist in-service 

loading conditions without loss of joint integrity for a successful structural design. For large 

zones of aircraft structure, for example the lower fuselage or upper wing, the extreme loading 

is compressive and the buckling collapse performance of the panel governs structural design. 

What is more to increase structural efficiency for panels in insensitive aerodynamic zones, for 

example elements of the rear fuselage, panels may be designed so that local skin buckling 

between the stiffeners occurs below the ultimate collapse load. Thus for ‘post-buckling’ 

panels, initial skin buckling and panel collapse are key static strength characteristics which 

must be calculated. These panel stability characteristics are strongly influenced by initial 

geometric imperfections [1], typically exhibited in a structure due to sub-component 

manufacturing and panel assembly processes. 

 

To determine the initial buckling, post-buckling and collapse response of a stiffened panel 

empirical and semi-empirical design formula [2-4] or the Finite Element (FE) method, 

employing non-linear material and geometric analysis procedures may be used [5-9]. The 

design formulas rely on applying simplifying assumptions, modelling the panel structure as a 

series of plates and columns. Using the FE method it is possible to model panel joints in great 

detail and predict panel behaviour under loading with a high level of accuracy. However, 

when modelling large wing and fuselage panel structures such detailed analysis becomes 

computationally expensive. Moreover, when modelling large structures the impact of local 

joint behaviour on global static strength performance may be weakened, creating a link 

between appropriate panel and joint idealisation and the size of the modelled panel structure. 

Thus this study presents coupled computational and experimental analysis, aimed at 
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developing modelling guidelines for lap joined stiffened panel structure which accounts for 

the size of the structure being modelled. Three varying size panel structures, representing lap-

joined fuselage panels, are investigated. Two levels of modelling fidelity are employed to 

model each panel specimen with the analysis results used to develop idealisation guidelines. 

 

The article is organised as follows: the first section briefly summarizes key background 

literature. The following sections then detail the validating experimental work, present the 

computational analysis of the experimental specimens and document the results from the 

coupled computational and experimental analysis. The final section concludes the work with 

a summary of the developed idealisation guidelines  

 

2. Background 

There has been a significant volume of research on the modelling of stiffened panel buckling 

and collapse behaviour. A vast range of analysis methods are available, including Finite Strip 

[10-12] and Finite Element [5-9]. Focusing on FE analysis, the  analysis method to be used 

herein, recent examples which demonstrate the current state-of-the-art include studies which 

examine the influence of manufacturing assembly methods on panel strength, for both marine 

[13-14] and aerospace structures [15-18]. Further examples demonstrate analysis to 

understand the impact of panel configuration on buckling and post-buckling behaviour [19- 

20], and the development of efficient design rules for specific panel configurations [21-22]. 

 

Further focusing on literature which specifically considers the modelling of lap joined 

stiffened panels, Lynch et al. [7] and Murphy et al. [8] examine single and multi stiffener 

fuselage panels under compression and shear loading. Each panel is manufactured using 

riveted lap joints, with the specimens modelled using shell elements to predict ultimate 
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collapse loads. The computational analysis indicates the impact of joint idealisation can be 

significantly greater for small single stiffener panels [7] than for larger multi stiffener panel 

structures [7-8]. However the individual paper conclusions relating to idealisation do not 

reference the size or the extent of joints within the modelled panel structure.  

 

Welding is a novel and promising technology for aircraft wing and fuselage assembly 

processes. Especially the Friction Stir Welding (FSW) process has superior performance 

compared to other types of welding. It has the ability to weld alloys that are difficult to weld 

and allows the creation of both butt and lap joints [23]. FSW also has the potential to 

significantly reduce some undesirable welding effects such as high residual stresses and 

distortions derived from material melting which occurs in traditional welding processes [24].  

Recent work has examined the compression performance of integral wing stiffened panels 

assembled using FSW butt joints through numerical analysis [18, 25].  Research by Murphy 

et al. [26] has expanded on this knowledge using numerical and experimental studies, 

attempting to characterize the impact of individual welding process effects on panel 

behaviour under compression loading. 

 

Considering welded panels with lap joints, Murphy et al. [15-17] examine initial buckling 

and collapse of Friction Stir Welded (FSW) stiffened panels under compression loading. In 

this work the computational and accompanying experimental analysis examines the impact of 

varying welding effects on panel initial skin buckling and ultimate collapse loads. The 

computational analysis indicates that the impact of joint and weld effect idealisation can be 

significantly different for small single stiffener panels [15] and larger multi stiffener panel 

structures [16-17]. Here again the individual paper conclusions drawn from the work on joint 
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and weld effect idealisation do not reference the size of the modelled panel structure or the 

extent of joints within the structure.  

 

Clearly significant knowledge exists on FE modelling of stiffened panels to predict buckling 

and post-buckling behaviour. However, there exists limited literature and guidance on 

selecting an appropriate panel idealisation with consideration of the size of the stiffened panel 

to be modelled. A further worthy note is that only a small number of the available studies 

consider initial skin buckling. When considering panels assembled with lap joints the selected 

joint idealisation directly impacts the outer dimensions of any buckling unit and creates the 

buckling unit edge boundary conditions. Thus panels assembled with lap joints and designed 

to function within the post-buckling domain may be particularly sensitive to joint idealisation 

and thus particularly appropriate for investigation.  

 

3. Panel experimental analysis 

To develop relationships between panel idealisation and the size of the modelled panel 

structure three coupled experimental and simulation case studies are presented. Each case 

study considers a similar panel design but a different size specimen, with each having 

validating experimental results to benchmark the simulation predicted static strength 

behaviour. Three panel specimen designs already available in the literature are examined [15-

17]. Each design is representative of compression critical aircraft fuselage structure. The 

panel specimen designs are presented in Figure 1 and Table 1.  The smallest specimen 

consists of a single longitudinal stiffener plus attached skin (S1) [15], the middle size 

specimen consists of three longitudinal stiffeners (S3) [16] and the largest specimen consists 

of five longitudinal and two lateral stiffeners (S7) [17]. 
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Each specimen was manufactured using standard aerospace materials (stiffeners AA7075 

extrusions, skin AA2024 sheet). The longitudinal stiffeners of specimens S1 and S3 were 

assembled to the skin using FSW. The central three longitudinal stiffeners for specimens S7 

were assembled to the skin using FSW, with the edge longitudinal stiffeners and the lateral 

stiffeners assembled to the welded skin-stiffener structure using standard aerospace 

countersunk rivets and a standard manual riveting process. Each specimen was tested under 

uniform compression loading. Before testing the specimen ends were cast in cerrobend or 

epoxy tooling resin, allowing simultaneously the uniform compression loading of the 

specimens and clamped loading edge boundary conditions. During the tests specimen 

loading, end-shortening and strain data from key specimen locations were recorded at short 

load intervals.  

 

For all specimens additional supplementary measurements and tests were undertaken to 

determine the basic specimen material properties. As the specimens were welded further 

experimental measurements were undertaken to capture the size of the degraded material 

zone around the weld joint (typically called the Heat Affected Zone – HAZ), and its 

associated material properties. In order to understand the residual stress magnitudes present 

within the specimen a series of measurements via the hole-drilling method [27] were 

performed on similar scale specimens which were fabricated from the same batch of 

materials and using the same welding process parameters. These measurements along with 

welding process FE simulations were used to approximate the residual stress state present 

within the tested specimens. Further information on the case study specimens, individual test 

setups and experimental results can be found in the individual references [15, 16, 17]. 
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4. Panel computational analysis 

For any analysis the structure must be idealised with appreciation of the possible structural 

behaviour as the computational model must accurately represent such behaviour. Optimised 

stiffened panels are susceptible to local skin and stiffener buckling behaviour as well as 

global stiffener buckling behaviour. An appropriate idealisation is therefore to represent the 

stiffener individual web and flange components along with the panel skin as an assemblage of 

shell or solid elements [5]. This approach is essential to enable both the local and global 

buckling modes of the structure to be predicted. In the literature the vast majority of 

preceding works have used shell elements [5-9, 13-17], generating acceptable panel strength 

predictions. Herein each case study specimen will be modelled twice, in the first instance 

using the well practised shell element idealisation, and then using the more novel solid-shell 

element idealisation. For each case study and each idealisation the accuracy of the predicted 

panel static strength performance along with the computational expense of the analysis will 

be presented and analysed, thus enabling the advantages and disadvantages of both element 

type idealisations to be understood. Solid elements are not considered in the study as they 

would naturally result in either poor aspect ratio elements and potentially poor/inappropriate 

predictions, or a significantly large number of elements with appropriate aspect ratios but 

with a simulation that would be very costly to build, run, post-process and store. 

 

Modelling with the two structural element types the local idealisation of the skin-stiffener lap 

joints may be modelled with two unique high fidelity idealisations.  In the shell model rigid 

link MultiPoint Constraints (MPCs) [28] are used to represent the connected zones (that is to 

say the panel stiffener and skin zones which have been welded together (Figure 2), and in 

addition for specimen S7 the panel zones which represent where edge stiffeners have been 

riveted to the panel skin (Figure 1)) of the skin-stiffener interfaces. The remaining interface 
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zones are modelled using contact gap elements. To represent the connected zones of the skin-

stiffener interfaces in the solid-shell element models, the upper nodes of the panel skin and 

the lower nodes of the stiffener flanges are merged along all weld lines, Figure 2. For the 

solid-shell model of specimen S7 merging is also done along all rivet lines joining the skin to 

the edge stiffeners.  In the remaining interface zones surface to surface contact elements are 

used. Figure 2 depicts a schematic of the two local lap joint idealisations. The shell elements 

are located at the mid-plane thickness of each segment of specimen skin, web or flange. 

Using solid-shell elements there is no need for such mid-plane idealisation. The total model 

cross-sectional area of both FE models is equal and corresponds exactly to the individual test 

specimen cross-sectional areas. 

 

For any FE analysis an element and mesh convergence study must be performed to determine 

an appropriate model mesh for a particular element formulation. When examining the 

buckling collapse behaviour of stiffened panels the aim is the definition of the minimum 

mesh density required to accurately represent the structures possible buckling waveforms. 

Based on a series of element and mesh convergence studies, which examined the buckling 

behaviour of rectangular plates with geometries and boundary conditions designed to 

represent those of specimen individual skin, flange and web units, appropriate element 

formulations and mesh densities were initially defined. This preliminary analysis employed 

the element selection and mesh convergence procedures outlined in Murphy et al. [29], 

generating comparable results with those presented within the reference. For the shell models 

a four noded element, Shell181 [28], with six degrees of freedom at each node along with a 

mesh density of the order of 5.0 mm (Figure 3-5) was determined most appropriate for this 

study.  To represent contact and sliding at the shell model skin-stiffener interfaces a two 

noded contact element, Conta178 [28], with three degrees of freedom at each node was 
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coupled with the developed shell mesh. For the solid-shell models an element with continuum 

solid element topology and featuring eight node connectivity with three degrees of freedom at 

each node, Solsh190 [28], was found most appropriate.  For the solid-shell models an 

identical mesh to the shell models was determined most appropriate for this study (Figure 3-

5) along with Conta173 and Target170 elements [28] selected to represent panel interface 

contact. 

 

Shell181 and Solsh190 elements are suitable for analysing thin to moderately thick shell 

structures and well suited for non-linear applications [28]. Also, the formulations of both 

elements are based on logarithmic strain and true stress. In the element domain by default 

Shell181 uses a reduced integration scheme for improved performance. The default number 

of integration points through the thickness is three; however when plasticity is present the 

number of integration points is changed to be five. On the other hand, unlike shell elements, 

Solsh190 is fully compatible with 3-D constitutive relations and has the continuum solid 

element topology. Moreover, the Solsh190 element uses two integration points through the 

thickness by default. In order to alleviate shear locking both elements utilize the assumed 

strain method. Moreover the Solsh190 element employs an enhanced strain formulation to 

improve in-plane bending behaviour [28]. Although both elements allow modification to their 

formulation properties, no effort was made to change default parameters.  

 

Material curves were incorporated into the simulations using a multi-linear isotropic strain 

hardening material model [28]. Skin and stiffener material properties were generated 

experimentally using coupons taken from the same material batches used for specimen 

manufacture. Specimen weld degraded material properties were also experimentally 

determined and again incorporated into the simulations using a multi-linear isotropic strain 
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hardening material model. Lynch et al. [7] outlines the detailed procedures used for testing 

the material coupons and Murphy et al. [16] defines the detailed procedures used to process 

the test data for inclusion within the FE simulations. 

 

As initial geometric imperfections can lead to widely varying initial buckling and collapse 

behaviour great care was taken when generating initial imperfections. In considering the case 

study specimen design and manufacture, the main source of specimen geometric 

imperfections results from the thermal and mechanical stresses developed during the welding 

assembly processes. Using the FE method it is possible to represent weld induced geometric 

imperfections [17]. To do so, a simplified residual stress state is introduced into an initial FE 

model of the as-designed perfect specimen structure. When the residual stresses are 

introduced to the model, the structure is no longer in equilibrium, and a non-linear geometric 

analysis is carried out to establish static equilibrium. The equilibrium calculation generates a 

distorted structure, and a slightly modified stress state. This step represents the unclamping of 

the assembled structure from any fixturing required during the welding process [30]. A 

second stage simulation is then required to represent additional manufacturing processes, for 

example attaching the riveted stiffeners of specimen S7 and test preparation processes such as 

clamping and casting specimen ends. To model these processes the stressed and deformed 

mesh output of the first analysis has appropriate nodes (for example the skin nodes along 

rivet lines or the skin nodes within clamped and cast areas) displaced back to a zero out-of-

plane location before a second non-linear geometric analysis is carried out to establish static 

equilibrium. 

 

An initial state command, INISTATE [28], is used to define the initial stress state in both 

model types. For each specimen the same magnitude of stress is applied over the same 
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volume of specimen material for each idealisation. Table 2 presents the longitudinal and 

lateral tension stress magnitudes and their application areas for each specimen. Applying a 

single approach to generate specimen imperfections will enable the assessment of panel size 

on the prediction of buckling for each model type (shell and solid-shell) when applying a 

single simulation route. However, interpreting and comparing the predictions between model 

types (shell and solid-shell) will be more challenging as the element type will influence the 

predicted geometric imperfections and the element type along with the predicted 

imperfections will in combination influence the panel strength behaviour. Care must therefore 

be taken when comparing predicted buckling behaviour between the two model types (shell 

and solid-shell) if their predicted imperfections are significantly different. Further detail on 

the applied approach used to introduce the residual stress state into the models is available in 

reference 17.  Assessment of simulation strength prediction accuracy using this approach is 

also available for a range of panel geometries [17, 26]. Figure 6 illustrates a flow diagram of 

the FE analysis steps undertaken to include the residual stress based imperfections within the 

simulation models. 

 

Having created an imperfect specimen model a final analysis is performed representing the 

compression test. The analysis applies the test loads and boundary conditions to the imperfect 

model, Figure 6. To represent specimen loading, a uniform axial displacement is applied to 

the nodes at the lower end of the model, while the axial displacement of the nodes at the 

opposite end of the model are restrained in the same direction. To represent the specimen cast 

ends and the stiffener flanges which are constrained within edge guides during test (specimen 

S7), the out-of-plane displacements of the nodes within these zones are restrained. For the 

shell models each mid-plane node in the boundary condition zone is constrained against out-

of-plane displacement. Rotations are not constrained at the individual nodes, matching the 
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test conditions, however as there are multiple nodes in each zone the individual node out-of-

plane constraints combine to constrain specimen rotations, again matching the real test 

conditions. Considering the solid-shell models, the nodes through the thickness of the skin, 

web or flange are constrained from out-of-plane displacements resulting in the same effect on 

specimen rotations. However as the out-of-plane constraints are applied at multiple nodes 

through the thickness an additional constraint is applied to the solid-shell models (compared 

to the shell model with only one node through the thickness). As multiple adjacent 

longitudinal and lateral nodes are restrained within all the cast and edge guide zones the 

impact on the specimen behaviour due to two slightly different boundary conditions may be 

hard to quantify. Were a greater impact may be seen is in the modelling of the lateral 

stiffeners of specimen S7. Experimentally the lateral stiffeners were constrained from out-of-

plane displacements using a series of tie rods connected from the lateral stiffeners to remote 

anchor points [17]. In the simulations the lateral stiffeners are not modelled but represented 

using displacement boundary conditions. Within the shell models the skin nodes along the 

lateral stiffener rivet lines are constrained from out-of-plane displacements. To represent the 

lateral stiffeners within the solid-shell models all nodes through the skin thickness along the 

rivet lines are constrained from out-of-plane displacements. In this case the different 

boundary conditions will impact on panel behaviour as only a single line of multiple adjacent 

lateral nodes are restrained from out-of-plane displacements, resulting in different levels of 

rotational constraint about the lateral rivet lines. Thus when examining the simulation results 

for S7 it will be important to recognise that the shell and solid-shell models have different 

lateral stiffener boundary conditions and that both are approximate idealisations of the real 

experimental setup. Figure 7 illustrates the boundary conditions applied in the present study. 
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For all simulation stages a displacement controlled incremental-iterative Newton-Raphson 

solution procedure was used [31]. During the implicit FE analysis the end-shortening load is 

applied monotonically in small increments representing the test conditions. During loading 

the instability of the skin develops depending on the initial imperfection pattern across the 

skin segments, and with marginally different initial conditions at different locations 

marginally different buckling loads will be calculated. Where possible to allow direct 

comparison between the experimental and computational results initial skin buckling is 

determined using the average strain method [32]. The method plots the load against the mid-

plane strain at a selected location, with initial buckling defined to have occurred when a sharp 

break is seen in the data. Based on early simulation observations in which a range of initial 

buckling locations where observed a number of locations were selected to calculate initial 

buckling for each specimen. A total of six locations are examined for specimen S1, ten 

locations for S3 and fourteen locations for S7, Figure 1. For specimen S7 initial buckling is 

expected within the specimen central zone as the test boundary conditions stabilise the outer 

skin bays. Finally, the ultimate specimen collapse load is defined as the maximum 

experimental or computational load carried by the specimen or model. 

 

5. Experimental and simulation results 

5.1 Specimen S1  

The performance of three test specimens is presented in reference 15, with one instrumented 

to capture initial skin buckling behaviour. This specimen experienced initial skin buckling at 

16.6 kN and failed in a crippling mode at 71.7 kN. The skin buckling load was calculated 

using strain gauge data from location P5, see Figure 1. The specimen skin segments initially 

buckled into single longitudinal half-waves before changing mode into two longitudinal half-

waves at 48.0 kN. At specimen collapse the skin segments rotated in the opposite direction to 



 

Page 14 of 46 

the stiffener web and free flange just below the mid-plane of the specimen. The specimen 

skin-stiffener weld remained intact up to and during specimen collapse. Figure 8 presents the 

measured load versus end-shortening curve. The results of the FE analyses will be discussed 

next. The figure also presents a final test image of the specimen at which stage the weld joint 

has failed due to post collapse end-shortening of the specimen.  

 

Considering the simulation predicted behaviour, Figure 9 presents the initial specimen 

geometric imperfection patterns induced by modelling the idealised welding residual stress 

state. Figure 10 presents the key magnitudes of the geometric imperfections once the test 

boundary conditions have been applied to the models. The simulations predict the same 

imperfection pattern with the shell model predicting marginally larger magnitudes. This 

highlights the potential impact of the two element type boundary condition idealisations, with 

the shell model only having the single mid-plane nodes constrained against out-of-plane 

displacements but the solid-shell models having at least two nodes through the thickness of 

the skin, web or flange constrained from out-of-plane displacements. Unfortunately for this 

specimen there is no experimental geometric imperfection data available. However if we 

examine the initial axial stiffness data in Figure 8 the solid-shell model predicts a 16.7% 

greater stiffness and the shell model a 12.8% greater stiffness than that measured during 

experimental specimen test. This suggests that the real specimen imperfection is larger in 

magnitude than that generated by the idealised residual stress state. 

 

The simulation predicted initial skin buckling loads are presented in Table 3. Both 

simulations predict initial asymmetric skin segment buckling with two longitudinal half-

waves, however the initial buckle waves of the shell and solid-shell models are in opposite 

directions, Figure 8. The shell model initially buckles at 17.5 kN at location P5, and the solid-
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shell model initially buckles at 16.2 kN at location P4. Unexpectedly, the shell model 

buckling loads are greater in magnitude despite greater geometric imperfection magnitudes 

and the less heavily constrained cast end boundary conditions.  

 

Comparing the minimum and maximum predicted skin buckling loads for different points 

within each model the range of calculated buckling loads for the shell model is marginally 

larger (13.1%) than that predicted by the solid-shell model (9.3%). This highlights the 

importance of location when calculating and comparing buckling behaviour. Variation in the 

predicted buckling load at a single location ranges from 1.1% at location P1 to 11.1% at 

location P3. 

 

Figure 11 presents average strain data at the six buckling calculation locations defined in 

Figure 1. It is evident from the strain data that the solid-shell model predicts a skin mode 

change at 32.7 kN, this results in a single longitudinal half-wave within each specimen skin 

segment, Figure 8. It is worth noting that it is not possible to detect this mode change in the 

predicted load versus end-shortening curve. 

 

The collapse load predictions are 68.5 kN and 73.3 kN for the shell model and the solid-shell 

model respectively. The shell model predicts a very similar collapse mode to the 

experimental behaviour, under predicting the experimental collapse load by 4.5%. The solid-

shell model predicts a different collapse mode and a higher collapse load (2.2%) than that 

measured experimentally. The mode change identified within the average strain data of the 

solid-shell model results in increased skin and stiffener flange buckle wave-lengths and 

ultimately this leads to larger skin and flange buckle-waves at specimen collapse, which was 

not seen in the physical testing. 
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Examining the computational cost, the solid-shell model took approximately 3.56 times 

longer to reach maximum load than the shell model. Also it is worth noting that the shell 

model experienced convergence difficulties after reaching the maximum load and could not 

achieve the ultimate target end-shortening of 1.6 mm. The solid-shell model experienced no 

such difficulty. 

 

In order to assess the impact of boundary conditions on simulation predictions a brief 

boundary condition sensitivity analyses is also undertaken employing a shell element model. 

Considering specimen S1 three different models are built and simulation results assessed 

against the available test results. The three boundary conditions considered are: 

• simple supported loaded edges (the nodes at the lower and upper ends are simply 

supported), 

• fixed loaded edges (the nodes at the lower and upper ends are clamped – rotations 

constrained), 

• and the test boundary conditions (this represents the boundary conditions employed 

through the paper). 

These different boundary conditions lead to major differences in the response of the panel, as 

shown in Figure 12. The post-buckling and failure behaviours change due to the applied 

location of the boundary conditions and the form of the constraints, Figure 12. Given the 

similarity between the experimental buckling and collapse behaviour and that predicted by 

the model with the test boundary condition – a solid level of confidence is generated in the 

applied modelling approach.  However it is worth remembering the model boundary 

conditions can have significant impact on the predicted numerical results. 
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5.2 Specimen S3  

The skin buckling load of specimen S3 was calculated to be 21.5 kN using strain gauge data 

from location P8, see Figure 1. The skin bays buckled with five approximately equal length 

half-waves with almost the equivalent asymmetric pattern in each bay. However, in one of 

the skin bays two of the buckle half-waves, in the region of P1 and P2, combined into a single 

half-wave. Specimen failure was measured at a load of 166.4 kN with the central stiffener 

buckling with combined global flexure and local stiffener flange and web buckling. Figure 13 

presents the measured load versus end-shortening curve for specimen S3. 

 

Figure 14 presents the predicted initial specimen geometric imperfection patterns induced by 

modelling the idealised welding residual stress state and Figure 15 presents the imperfection 

magnitudes once the test boundary conditions have been applied to the models. The 

simulations predict the same imperfection pattern with again the shell model predicting 

marginally larger magnitudes. In this case it is not clear that the different shell and solid-shell 

cast end boundary conditions are responsible for the magnitude difference. Comparing with 

the available experimental imperfection data the maximum out-of-plane magnitude of the 

curvature parallel to the specimen stiffeners (measured from the specimen edge to the 

specimen centre) was 120% the skin thickness, with the shell model which predicts the larger 

imperfection having an equivalent imperfection magnitude of only 9.15%.  In this case the 

shell model predicts a 6.3% greater initial specimen stiffness and the solid-shell model a 

10.3% greater stiffness than the magnitude measured experimentally. Again this indicates 

that the real specimen imperfection is larger in magnitude than that generated by the idealised 

residual stress state. 
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Table 4 presents the calculated skin buckling loads and Figure 16 presents the interpreted 

strain data. The models predict very similar skin buckling modes consisting of five half-

waves within each skin bay, as shown in Figure 13. The predicted skin buckling modes are 

similar to the experimental buckling wave pattern except for the combined half-waves located 

at P1 and P2 as noted earlier. The shell model initially buckles at 23.2 kN calculated at 

locations P2, P4 and P8, and the solid-shell model initially buckles at 23.2 kN at P8. The 

maximum variation at a single location is 4.7% (at P7) and for the majority of the skin bay 

locations the shell model predicts greater or equal skin buckling loads when compared to the 

solid-shell model predictions. The variation in the predicted buckling loads over the ten 

sample points for the shell model is 27.2%. As seen in the specimen S1 results the scatter for 

the solid-shell model is marginally smaller in comparison to the shell model predictions with 

a 21.6% variation. In general the predicted buckling loads are not as close to the measured 

experimental behaviour as those predicted for specimen S1. 

 

Examining collapse behaviour both models predict similar central stiffener global flexure and 

local stiffener flange and web buckling as observed experimentally, Figure 13. The shell 

model is conservative; predicting collapse 0.4% below the experimental value, the solid-shell 

model over predicts the experimental collapse load by 4.8%. The predicted collapse loads are 

closer than those predicted for specimen S1. 

 

In this case the solid-shell model required 3.22 times more CPU time to reach a maximum 

specimen load when compared with the shell model. Again the Newton-Raphson solution 

method performs well for the solid-shell model but again convergence issues emerged for the 

shell model beyond the maximum specimen load. 
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5.3 Specimen S7  

Specimen S7 initially buckles with four approximately equal length half-waves within the 

specimen central skin bays. The central skin bays buckle with an asymmetric pattern. In this 

case only strain gauge data is available from a single side of the specimen skin at location 

P11 (Figure 1) to calculate a buckling load. The extracted load versus strain curve does not 

have a distinct behaviour to establish an initial buckling load, thus a mathematical curve 

fitting method was used to determine a buckling load level of 89.7 kN. 

 

For specimen S7 weld joint integrity was maintained through initial skin buckling, post-

buckling and overall specimen collapse. The specimen failed at 336.8 kN by combined 

stiffener global flexure and local free flange instability at the mid-plane of the specimen. 

Figure 17 presents the measured load versus end-shortening curve plus a post collapse image 

of the specimen. 

 

Figure 18 presents the predicted initial specimen geometric imperfection patterns induced by 

modelling the idealised welding residual stress state. Again both modelling approaches 

predict the same initial geometric imperfection patterns when the idealised welding residual 

stress state is introduced into the perfect geometry models. However once the lateral 

stiffeners and test boundary conditions have been applied larger differences in magnitude and 

the final direction of imperfections is evident, Figure 19. This is primarily due to the 

imperfection simulation used to represent the attachment of the riveted lateral stiffeners; in 

which the skin nodes along the lateral stiffener rivet lines are displaced back to their zero out-

of-plane location. For the shell model the single mid-plane nodes are displaced back to their 

zero out-of-plane location, and for the solid-shell model the nodes at the top and the bottom 

of the skin, through its thickness, are both displaced back to their zero out-of-plane locations. 
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This enforces reduced longitudinal rotations around the lateral stiffener rivet lines and this 

significantly impacts the final form of the panel imperfection. There is no experimental 

geometric imperfection data available for this specimen. However, comparing the initial 

stiffness predictions of the two FE models and measured test specimen stiffness, Figure 17, 

the solid-shell model predicts an initial stiffness 1.2% greater than the measured initial 

stiffness and the shell model predicts an initial stiffness 1.1% less than the measured initial 

stiffness. 

 

Figure 20 and Table 5 presents the skin buckling behaviour of the two FE models and the 

experimental specimen. The two FE models predict three longitudinal half-waves within the 

central specimen bays and two half-waves in the outer bays. The two models predict similar 

buckling loads, with the shell model predicting initial buckling 3.0% below the experimental 

value at 87.0 kN (P2-6 and P9-13) and the shell model predicting initial buckling 3.6% below 

the experimental value at 86.5 kN (P2-6 and P9-13). The variation in skin buckling load 

predictions between the fourteen analysis locations is 14.9 % and 14.5% for the shell model 

and the solid-shell model respectively. Variation at a single location between the two models 

is very small, with a maximum difference of just 1%. In general the predicted buckling loads 

are closer to the measured experimental behaviour than those predicted for specimen S3. In 

addition variation in skin buckling load predictions between the analysis locations and at a 

single location are consistently smaller than that seen for specimen S3. 

 

The employed displacement controlled Newton-Raphson method fails to converge before 

capturing the collapse of both FE models. Although both FE models fail to converge, the 

solid-shell model proceeds approximately 10% farther than the shell model. Re-examining 

the use of the displacement controlled loading conditions. Two of the three test series were 
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conducted under displacement controlled loading conditions. Hence a displacement 

controlled loading scheme is appropriate for the simulation studies. Also it can be desirable to 

see the behaviour of the specimen beyond collapse and such failure paths can be traced using 

such a solution procedure. However, the conventional force controlled Newton-Raphson 

method which evaluates displacement increments for a given load step falls short when the 

tangent stiffness matrix approaches zero. In a force controlled scheme when the limit point is 

reached the tangent stiffness matrix becomes perpendicular to the external force axis. At this 

point the tangent stiffness matrix takes a singularity form and convergence cannot be satisfied 

anymore [33]. This point may represent only a local limit point and beyond this point the 

structure may be capable of carrying greater load. When using the non-linear stabilisation 

method artificial dampers are added to the structural system. When buckling occurs large 

displacements occur over small load steps and the artificial dampers then generate resistive 

forces to stabilise the problem. Stabilisation can help with convergence problems, but it can 

also affect accuracy if the stabilisation energy or forces are too large [28]. Herein there are 

two reasons not to utilise the non-linear stabilization method in the present study. First the 

current specimen models are very large in terms of degrees of freedom therefore it is very 

difficult to control the non-linear stabilisation method over these models with an optimum 

energy dissipation ratio or damping factor. Secondly the models are developed to compare 

buckling predictions and artificial dampers would change the response of the individual 

models making comparisons of the two models more difficult.  

 

Examining the solution time, the solid-shell model required 2.84 times more CPU time to 

reach the maximum converged iteration compared to the shell model.  
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6. Conclusions 

This study examined the relationships between modelling fidelity and the size of the 

modelled structure, when the global static load to cause initial buckling is the required 

analysis output. Small, medium and large specimens representing lap-joined fuselage panel 

structure have been examined. Two element types, shell and solid-shell, have been employed 

to model each specimen.   

• For the examined specimens the predicted initial buckling loads are of a reasonable 

accuracy compared to the experimental results. 

• The variation between shell and solid-shell results appears to decrease with increasing 

specimen size. 

• The scatter in predicted initial buckling loads due to variation in measurement location 

also decreases with increasing specimen size; however the number and location of the 

data points are inconsistent between model sizes. 

• Element type impacts the format of model boundary conditions which can impact the 

buckling mode behaviour and thus can impact the predicted buckling loads.  

• The solid-shell models appear more robust within the post-buckling regions but are 

significantly more time consuming to execute.   
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Figure 1. Case study specimen plus locations at which strain data is used to calculate skin 

buckling. 

 

a)  Shell model b)  Solid-Shell model 

Figure 2. Lap joint idealisations. 
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a)  Shell model b)  Solid-shell model 

Figure 3. FE mesh for specimen S1. 

  

a)  Shell model b)  Solid-shell model 

Figure 4. FE mesh for specimen S3. 

  

a)  Shell model b)  Solid-shell model 

Figure 5. FE mesh for specimen S7. 
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Figure 6. Flow diagram of analysis steps undertaken to include a residual stress based 

imperfection within a simulation model 
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Figure 7. Applied test boundary conditions 
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Figure 8. Experimental and predicted load versus end-shortening curves for specimen S1. 
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a)  Shell model b)  Solid-shell model 

Figure 9. Specimen S1 predicted initial geometric imperfection patterns induced by 

modelling the idealised welding residual stress state. (all units in mm) 
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a) Longitudinal mid-length  

 

b) Lateral mid-length 

Figure 10. Predicted geometric imperfections of specimen S1 with test boundary conditions 

applied. 
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a) Shell model average strain data 

 

b) Solid-shell model average strain data 

Figure 11. Average strain versus load curves for specimen S1. 
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Figure 12. Boundary condition sensitivity analysis 
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Figure 13. Experimental and predicted load versus end-shortening curves for specimen S3. 
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a) Shell model b) Solid-shell model 

Figure 14. Specimen S3 predicted initial geometric imperfection patterns induced by 

modelling the idealised welding residual stress state. (all units in mm) 
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a) Longitudinal mid-length  

 

b) Lateral mid-length 

Figure 15. Predicted geometric imperfections of specimen S3 with test boundary conditions 

applied. 
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a) Shell model average strain data 

 

b) Solid-shell model average strain data 

Figure 16. Average strain versus load curves for specimen S3. 
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Figure 17. Experimental and predicted load versus end-shortening curves for specimen S7.  
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a) Shell model b) Solid-shell model 

Figure 18. Specimen S7 predicted initial geometric imperfection patterns induced by 

modelling the idealised welding residual stress state. (all units in mm) 
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a) Longitudinal mid-length  

 

b) Lateral mid-length 

Figure 19. Predicted geometric imperfections of specimen S7 with test boundary conditions 

applied. 
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a) Shell model average strain data 

 

b) Solid-shell model average strain data 

Figure 20. Average strain versus load curves for specimen S7. 
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Table 1. Cross sectional dimensions 

 Specimen S1 Specimen S3 Specimen S7 

 Stiffener 

(mm) welded 

Edge stiffeners 

(mm) welded 

Central stiffener 

(mm) welded 

Edge stiffeners 

 (mm) riveted 

Central stiffeners 

(mm) welded 

hs 25.4 25.4 25.4 25.4 25.4 

bff 20.32 20.32 7.3 22.86 10.16 

baf 22.86 22.86 22.86 20.32 20.32 

tw 1.6 1.6 1.6 3.175 2.032 

tff 1.6 1.6 1.6 3.175 2.032 

taf 1.6 1.6 1.6 3.175 2.032 

tskin 1.2 1.2  2.032  

 

 

Table 2. Specimen residual stress magnitudes and application areas. 

Specimen 
Longitudinal and lateral tension stress magnitudes plus 

application area 

S1 
204.5 MPa are applied to all skin and stiffener elements 

within 3.048 mm laterally of the weld centre line 

S3 
204.5 MPa are applied to all skin and stiffener elements 

within 3.048 mm laterally of the weld centre line 

S7 
245.4 MPa are applied to all skin and stiffener elements 

within 2.032 mm laterally of the weld centre line 
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Table 3. Local skin buckling load results for specimen S1 

 Skin local buckling load (kN)    

 Shell181 Solsh190 % difference a b 

P1 17.9 17.7 1.12 7.83 6.63 

P2 17.9 17.1 4.47 7.83 3.01 

P3 19.8 17.6 11.11 19.28 6.02 

P4 18.2 16.2 10.99 9.64 -2.41 

P5 17.5 16.3 6.86 5.42 -1.81 

P6 17.6 16.7 5.11 6.02 0.60 

a,b
Percentage differents based on experimental data (16.6 kN)  for Shell181 and Solsh190 models 

 

Table 4. Local skin buckling load results specimen S3 

 Skin local buckling load (kN)    

 Shell181 Solsh190 % difference a b 

P1 29.5 28.2 4.41 37.21 31.16 

P2 23.2 23.4 -0.86 7.91 8.84 

P3 23.9 23.9 0.00 11.16 11.16 

P4 23.2 23.4 -0.86 7.91 8.84 

P5 29.5 28.2 4.41 37.21 31.16 

P6 28.7 27.4 4.53 33.49 27.44 

P7 25.5 24.3 4.71 18.60 13.02 

P8 23.2 23.2 0.00 7.91 7.91 

P9 25.5 24.3 4.71 18.60 13.02 

P10 28.7 27.4 4.53 33.49 27.44 

a,b
Percentage differents based on experimental data (21.5 kN)  for Shell181 and Solsh190 models 
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Table 5. Local skin buckling load results for specimen S7 

 Skin local buckling load (kN)    

 Shell181 Solsh190 % difference a b 

P1 
100.0 99.0 1.00 11.48 10.37 

P2 
87.0 86.5 0.57 -3.01 -3.57 

P3 
87.0 86.5 0.57 -3.01 -3.57 

P4 
87.0 86.5 0.57 -3.01 -3.57 

P5 
87.0 86.5 0.57 -3.01 -3.57 

P6 
87.0 86.5 0.57 -3.01 -3.57 

P7 
100.0 99.0 1.00 11.48 10.37 

P8 
98.0 98.5 -0.51 9.25 9.81 

P9 
87.0 86.5 0.57 -3.01 -3.57 

P10 
87.0 86.5 0.57 -3.01 -3.57 

P11 
87.0 86.5 0.57 -3.01 -3.57 

P12 
87.0 86.5 0.57 -3.01 -3.57 

P13 
87.0 86.5 0.57 -3.01 -3.57 

P14 
98.0 98.5 -0.51 9.25 9.81 

a,b
Percentage differents based on experimental data (89.7 kN)  for Shell181 and Solsh190 models 

 


