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Abstract

Background: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes.
The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in
order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of
genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach
for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.

Methods: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm
to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead
arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional
properties of GRNs for the identification of molecular targets associated to urothelial cancer.

Results: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are
associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and
translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions
5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently
deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the
individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/
metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level
between individual genes, but showed large similarities on the biological function level represented by subnetworks.
Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our
analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the
RNAseq and Oligo UC GRNs.

Conclusion: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene
expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification
of novel putative diagnostic targets for subsequent studies in bladder tumors.
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Background
Urothelial cancer (UC) is a heterogeneous disease with
risk factors that include smoking, contact to chemicals
and age [1]. Urothelial tumors originate from the epithelial
lining of the bladder and can progress from non-invasive
to more aggressive muscle-invasive subtypes which pen-
etrate the deeper tissue layers of the bladder. The non-
invasive tumor stages can be treated by transurethral
resection, chemo- and intravesical therapy, whereas for
invasive stages cystectomy, radiotherapy and chemother-
apy are preferred [1,2].Monitoring of UC is very expensive
as its recurrence rate is high [3]. An understanding of
the mechanistic interplay between individual genes and
proteins that drive the development and progression of
UC is therefore a high priority. System-based approaches
allow us to investigate the underlying network structure
associated with carcinogenesis and thus facilitate a novel
perspective for the identification of molecular targets that
drive urothelial carcinogenesis. The inference of gene reg-
ulatory networks (GRN) from large-scale gene expression
data of tumor samples from various grades and stages
is a promising approach for the identification of novel
putative targets in cancer [4-6].
A GRN is a mathematical description of the dependen-

cies within a gene expression dataset. Currently, a large
arsenal of gene regulatory network inference methods
have been developed [7-9]. Themost popular methods are
based on mutual information which is a dependency mea-
sure that can be estimated for all pairs of genes in a gene
expression dataset. In this study we infer GRNs by the
application of the BC3Net algorithmwhich is based on the
aggregation of an ensemble of C3Net gene regulatory net-
works [4]. The C3Net algorithm selects amaximum of one
gene neighbor for each gene on the basis of the strongest
mutual dependency that is statistically significant. For a
gene expression dataset with n genes we thus obtain a
sparse network with at most n interactions. The BC3Net
generates an ensemble of C3Net networks from bootstrap
datasets, i.e., by sampling a dataset with replacement, that
are subsequently aggregated to a weighted network. We
have reported that BC3Net was shown to produce biologi-
cal meaningful results [4-6,10,11]. The hub genes of GRNs
that were inferred from large-scale cancer gene expres-
sion data were observed to provide promising putative
novel target genes for cancer such as G-protein coupled
receptors and transmembrane proteins [10,12].

Methods
Preprocessing and sample information for the Illumina
RNAseq, Bead array and Affymetrix Oligo microarray gene
expression dataset
We preprocessed three large-scale urothelial cancer gene
expression datasets from a) Illumina RNAseq (179 sam-
ples) [13], b) Illumina Bead array (165 samples) GSE13507

[14,15] and c) Affymetrix oligo microarray (188 samples)
platform [16-19]. An overview of the tumor stage infor-
mation for the three datasets is shown in Table 1. In this
table we distinguish 6 tumor stages, namely, pTcis, pTa,
pT1, pT2, pT3 and pT4. For each of these stages we list
the number of available samples provided by the three
platforms.

RNAseq gene expression dataset from TCGA
The RNAseq gene expression dataset was retrieved from
The Cancer Genome Atlas bladder cancer TCGA project
[http://cancergenome.nih.gov/] [13]. We used the prepro-
cessed RNAseqV2 normalized count expression values
based on RSEM (RNA-Seq by Expectation-Maximization)
[20,21] as provided by TCGA and clinical information
such as the TCGA barcode identifier, sample type and
tumor histology by the bcr_aliquot_uuid identifiers. We
extracted gene expression data of primary solid tumors
for a total of 179 samples with histology stage informa-
tion (march 2014). A total of 177 of the 179 selected tumor
samples represent muscle invasive carcinoma stage pT2 or
above. We performed a log-transformation loge(1 + p) on
the count expression values. The resulting gene expression
matrix consisted of 20,161 entrez genes and 179 samples.
Genes with a zero standard deviation were removed from
the dataset.

Illumina Bead array gene expression dataset
We used the processed matrix series Illumina Bead
gene expression data from GEO GSE13507 [14,15]. The
dataset comprises 257 samples from the Illumina human-
6 v2.0 expression Beadchip microarray platform. The
dataset consists of tumor samples from 62 muscle inva-
sive, 104 non-muscle invasive, 23 recurrent non-invasive

Table 1 Tumor stages across the three datasets

Tumor stage RNAseq Bead Oligo
(# samples) (# samples) (# samples)

pTcis 5

pTa 1 24 35

pT1 1 80 16

pT2 57 31 22

pT3 91 19 51

pT4 29 11 29

pT2-4 30

Total 179 165 188

NMI 2 104 56

MI 177 61 132

Genes 20,161 18,956 12,495

The RNAseq dataset consists mainly of muscle-invasive UC tumor samples. 30
samples of the Oligo dataset corresponded to the muscle invasive stages pT2 to
pT4 and were not assigned a specific stage.

http://cancergenome.nih.gov/
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bladder cancer and samples that we excluded for the
network inference representing 58 mucosae surrounding
cancer and 10 normal mucosae. We assigned Illumina
identifiers to entrez gene id and gene symbols using
the illuminaHumanv2.db annotation bioconductor pack-
age. From the 43,148 Illumina identifiers for a total of
20,481 an entrez identifier was available. The remaining
22,667 features were not considered for the analysis. In
total, we selected 165 primary bladder cancer samples
(Table 1).

Affymetrix Oligomicroarray gene expression dataset
We used a third UC dataset from Affymetrix gene
expression data comprising 183 samples from 4 differ-
ent datasets. We extracted 93 (U133plus2) samples from
GSE31684 [16], 46 (U133A) samples from GSE3167 [17],
30 (U133A) samples from GSE5287 [18] and 19 (U133A)
samples from GSE37317 [19]. We considered only probe
sets that were present in both array types U133a and
U133plus2. We combined the U133plus2 samples and
the U133a samples using the matchprobes bioconduc-
tor package [22]. We normalized the microarray samples
using RMA and quantile normalization [23] using log2
expression intensities for each probe set. As a summary
statistic for multiple probesets that match to the same
entrez gene identifiers we used the median expression
value. Entrez gene ID to Affymetrix probe set annotation
was obtained from the hgu133plus2.db and hgu133a.db
R package. We excluded all probe sets from our analysis
that remained unmapped to entrez identifiers. The result-
ing expression dataset consisted of 12,495 genes and 188
samples.

BC3Net gene regulatory network inference
We inferred our bladder cancer GRN using C3Net and
the “B”agging version of the C3Net [24,25] algorithm
called BC3Net [4]. The BC3Net infers an ensemble of
C3Net gene regulatory networks from bootstrap gen-
erated datasets that are subsequently aggregated to a
weighted GRN. We defined an ensemble of B = 100 inde-
pendent bootstrap datasets {Db

k}Bk=1 that were generated
from a given gene expression dataset D. For each boot-
strap data set Db

k a GRN Gb
k was inferred using C3Net

[24,25]. Edges with non-significant mutual information
values were subsequently rejected using a non-parametric
test with a Bonferroni multiple testing correction for
a significance level α = 0.05. The null distribution
of mutual information is generated from sample-gene
label permutations of the original gene expression matrix.
For the network inference we used a Pearson Estimator
[8,26]

I(X,Y ) = −1
2
log(1 − ρ2), (1)

where ρ denotes the Pearson correlation coefficient. The
inferred ensemble of GRNs {Gb

k}Bk=1 was aggregated into a
weighted network Gb

w. The weights of the inferred inter-
actions give the frequency how often an interaction was
observed in the C3Net network ensemble and are denoted
as ensemble consensus rate (ECR). For each inferred
weighted edge in the network the statistical significance
was estimated by a Binomial test. For multiple testing
correction Bonferroni was used with a significance level
α = 0.05.

Relevance networks
For the inference of relevance networks [27] we used the
WGCNA R Package [28] and the CLR [29] implementa-
tion provided in the minet R-Package [30]. Interactions
were defined for WGCNA by hard thresholds on the
absolute Pearson correlation matrix and for CLR by hard
thresholds on the z-score transformed mutual informa-
tion matrix that was estimated using a Pearson Estimator
[8,26].

Cancer census genes
The Cancer Gene Census (CGC) [31] (version down-
load 10-01-2014) [http://www.sanger.ac.uk/genetics/CGP/
Census/] provides information about genes with somatic
mutations that are associated to different types of cancer.
We used the entrez identifiers of the defined cancer census
genes.

Gene ontology gene sets
For our analysis, we obtained the Gene Ontology [32]
annotation for entrez gene IDs from Bioconductor [22]
annotation packages org.Hs.eg.db and GO.db.

Gene family gene sets
We retrieved gene family protein tag information and
entrez identifiers of the genes in the HGNC database
[http://www.genenames.org/genefamilies]. We defined
gene family gene sets for groups of genes that shared
the same HGNC protein family tag. From the HGNC
database we gathered a total of 587 gene family gene sets
comprising a total of 16,722 entrez genes.

Gene sets of co-localized adjacent genes
For the identification of genomic regions with enriched
subnetworks of interacting genes we defined gene sets of
genes that were adjacently located within a chromosomal
region (co-located) from overlaping sliding windows along
the human chromosomes.We defined gene sets from 1Mb
(mega bases) sliding windows along the human chromo-
somes with a 500Kb (kilo bases) overlap between adjacent
windows. The gene sets of co-located genes were defined
for chromosome regions of 1Mb with 500Kb overlap to
mimic the extend for co-expressed gene clusters [33].

http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.sanger.ac.uk/genetics/CGP/Census/
http://www.genenames.org/genefamilies
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Gene pair enrichment analysis (GPEA)
The GPEA facilitates the identification and ranking of
significant subnetworks of defined gene sets for a given
network. For p genes there is a total of N = p(p − 1)/2
different gene pairs. If there are pS genes for a particular
gene set (S) then the total number of gene pairs for this
gene set ismS = pS(pS−1)/2.When a networkG contains
n interactions, of which k interactions are among genes
from the given gene set S, then a p-value for the enrich-
ment of gene pairs of this gene set S can be calculated from
the following hypergeometric distribution

p(k|S) =
mS∑

i=k
P(X = i|S) =

mS∑

i=k

(mS
i
)(N−mS

n−i
)

(N
n
) (2)

This p-value gives an estimate for the probability to
observe k or more interactions between genes from a
given gene set S.
We performed a GPEA analysis for the inferred GRNs

for ∼ 8,000 gene sets of GO biological process (≥ 3 and <

1000 genes), ∼ 500 gene sets of gene families (≥ 3 genes)
and ∼ 4,000 gene sets of co-located genes (≥ 3 genes). For
the analysis the inferred networks are expected to show a
strong association to gene sets of a biological functional
and spatial context. Therefore, we considered a more
stringent significance level of α = 0.001 (10−3) relative to
the number of performed test in the range of 103. Further,
we considered a Bonferroni multiple testing correction.

Network centrality measures
For the network analysis we measured the degree cen-
trality and edge density [34]. The degree centrality was
defined as the total number of direct neighbors of a gene gi
of an undirected gene regulatory network. The edge den-
sity of a network was the number of edges divided by the
maximal number of possible edges. For an undirected net-
work this number was given by n(n − 1)/2, whereas n is
the total number of genes.

Protein interaction databases
We gathered and processed interactions from Biogrid
[35] (15,337 genes, 135,732 interactions; version
biogrid.3.2.11), Intact [36] (10,029 genes, 63,968 inter-
actions; version intact.230314), Mint [37] (7,106 genes,
26,834 interactions; version mint.2013-03-26), Hprd [38]
(9,672 genes, 39,233; version hprd.072010), String [39]
(20,770 genes, 4,850,628 interactions, version 9.1). Further,
we considered the largest manually curated human sig-
naling network [40] (6,306 genes and 57,090 interactions,
version 6) which we denote in the text as SingNet (http://
www.cancer-systemsbiology.org/dataandsoftware.htm), a
pathway protein interaction network extracted from the
bioconductor package graphite [41] (6,243 genes, 78,201

interactions; KEGG, Reactome, NCI and Spike) and the
integrative network from ConsensusPathDB (CPDB) [42]
(16,619 genes, 485,277 interactions; version Dec 2014).
We assigned their entrez gene identifiers mapping when
available from the interaction database or converted the
identifiers (e.g. uniprot identifiers) to entrez identifiers
using the annotation from the bioconductor package
org.Hs.eg.db and uniprot database [43].

Quantitative comparison of experimental interactions in
RNAseq, Bead and Oligo UC GRN
We used the interactions from the Biogrid, Intact, Mint,
Hprd, CPDB, SingNet, graphite and String database seper-
ately as global reference networks for the GRN and
measured the number of true, false positive (TP, FP),
true, false negatives (TN, FN) and F-score to compare
the performance of the three inferred gene regulatory
networks. The F-score measure F = 2 PR

P+R gives a
weighted average of the precision P = TP

TP+FP and recall
R = TP

TP+FN .
For the local subnetwork based network inference per-

formance comparisons we used the String network as
a reference network. We compared the cumulative log
transformed F-score distribution separately for commonly
significant GO Biological Process, genomic co-located
genes and gene family subnetworks between the Oligo,
Bead and RNAseq UC GRNs.
For all subnetworks and pairwise network comparisons

we performed a hypergeometric test for the number of
shared interactions between two networks is not larger
than expected by random chance. For the subnetwork
analysis we consider FDR multiple testing correction
[44].

Results
Urothelial cancer (UC) gene regulatory networks (GRN)
For the identification of molecular targets for UC from
a network-based perspective we inferred BC3net GRNs
from RNAseq, Bead and Oligo UC gene expression
datasets. The giant connected component of the inferred
RNAseq UC GRN consisted of 18,952 genes, the Bead
UC GRN of 20,140 genes and the Oligo UC consisted
of 12,492 genes (Figure 1A). In the following we com-
pared the global network and local structural properties
between the three networks.
The global network properties among the three net-

works were highly similar. The edge density (d ∼ 0.001)
of the Oligo has a slightly higher edge density compared
to the RNAseq and Bead UC GRN. The degree distribu-
tion of the UC GRN follow a power law distribution with
exponents αRNAseq = 4.09, αBead = 4.16 αOligo = 3.73.
The average shortest path length for all three networks
was pRNAseq = 4.17, pBead = 4.45, pOligo = 4.43 genes
(measured with the Dijkstra distance [45]).

http://www.cancer-systemsbiology.org/dataandsoftware.htm
http://www.cancer-systemsbiology.org/dataandsoftware.htm
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Figure 1 Overview of the comparisons between the inferred RNAseq (A), Bead (C) and Oligo (E) UC GRN. The pairwise comparisons of the three
networks are shown in (B, D, F) and triple comparison in (G). We compared the networks on the gene interaction level and gene set subnetwork
level for Gene Ontology biological processes, gene families and co-located gene sets of 1 Mb genomic regions.

On the local structural level of individual interactions
we observed that the three networks are highly dissimilar.
We performed a pairwise comparison and joint compari-
son of all three networks to quantify the number of shared
interactions. The percentages of shared interactions were
quantified from the union of all interactions of two net-
works and for the joint comparison from the union of all
interactions of the three networks. The GRN networks
shared only a total of 6,676 (2.17%, RNAseq/Bead), 5,321
(2.04%, RNAseq/Oligo) and 2,648 (1.22%, Bead/Oligo)
interactions which corresponded to subnetworks among
3,312 to 7,361 genes. In total, we found that only 1,002
(0.25%) interactions were shared across the three GRNs
and corresponded to a subnetwork among 1,539 genes. An
overview of our gene expression data and inferred gene
regulatory networks on the interaction level is shown in
Figure 1.

Functional analysis of the inferred Oligo, Bead and RNAseq
UC GRN
In this section we highlighted the key biological processes
of the three UCGRNs and their association to known can-
cer genes and performed a comparative analysis between
inferred GRN, relevance and PPI networks. We identi-
fied the most prominent subnetworks for known biolog-
ical processes of the inferred Oligo, Bead and RNAseq
UC GRN by a functional enrichment analysis for gene
pairs (GPEA). The association of the identified biologi-
cal processes to known cancer hallmarks was quantified
by a subsequent enrichment analysis of cancer census
genes.

The GPEA analysis was performed for Gene Onotology
(GO) biological process for all terms with ≥ 3 and < 1000
genes. For the RNAseq UC GRN we observed a total of
10.3% significant GO terms. In contrast, for the Bead and
Oligo UC GRN only 4.94% and 5.38% of all tested GO
terms were significant Figure 1. For all GRN networks we
observed that 50% of the identified significant GO terms
were also enriched by cancer census genes. A total of
91% (RNAseq), 88% (Bead) and 93% (Oligo) of the cancer
genes were present in the selected set of significant Gene
Ontology biological processes.
From all significant GO terms that we identified 299

(∼ 55.4%) GO terms were common across the three UC
GRNs. We observed a wide variety of common biological
processes with a pronounced representation of immune
related processes, cell cycle, catabolic processes such
as proteolysis, chromatin organization, metabolism, cell
adhesion, cell migration, cell differentiation and develop-
ment including keratinization and angiogenesis. A com-
plete list of the significant terms for the individual analyses
is given in the Additional file 1: Tables S1, S2 and S3.
An overview of the functional landscape of the common
significant terms among the GRN networks is shown in
Additional file 1: Figure S1.
In order to evaluate our results we compared the frac-

tion of cancer associated biological processes between
the BC3Net and C3Net GRN, WGCNA and CLR rele-
vance networks and PPI networks from graphite, SingNet
and CPDB. The analysis was performed separately for
the Oligo, Bead and RNAseq gene expression data. For
the analysis we generated relevance networks by hard
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thresholds for 0.1 to 0.9 percentiles of the absolute cor-
relation matrix (WGCNA) and the z-score transformed
matrix (CLR). C3Net inferred interactions were weighted
by the respective mutual information value and for
BC3Net by the ensemble consensus rate (ECR). For C3Net
and BC3Net the analysis was performed on the entire
network and for an ensemble of hard thresholds ranging
from 0.1 to 0.9 percentiles. Figure 2 shows the fraction of
biological processes that were identified from the GPEA
analysis (α = 0.001, Bonferroni) with a significant enrich-
ment of cancer census genes. For all 3 datasets the BC3Net
showed the largest fraction of cancer associated signif-
icant biological processes (∼ 50%). CLR and WGCNA
showed a low performance on the Oligo gene expression
dataset (25% to 35%) that is comparable to PPI net-
works. We also observed that CLR shows a prominently
improved performance compared to WGCNA.

Gene pair enrichment analysis of gene subnetworks of
co-located genes
Gene expression profiles that are influenced by genomic
and epigenomic alterations can elucidate dependency
structures of co-located genes and link to novel genomic
target regions which are specific to urothelial cancer. In
order to identify genomic cancer target regions with sig-
nificant subnetworks in the RNAseq, Bead and Oligo
GRNs we perfromed an enrichment analysis for gene pairs

in gene sets from genome-wide 1 Mb genomic regions of
co-located genes.
We observed 11.68% significantly co-located gene sub-

networks for the RNAseq UC GRN. In contrast, for
the Bead and Oligo UC GRN we identified only 2 −
3%. Figure 3 shows the most prominent co-located
gene subnetwork for the GRNs of the RNAseq, Bead
array and Oligo UC dataset. For the three GRNs the
top 50 chromosomal regions with a significant GRN
subnetwork are shown in Tables 2, 3 and 4 (for full
tables see Additional file 1: Tables S4, S5 and S6). We
reviewed the literature for the most prominent iden-
tified genomic region and their association to UC for
each GRN. For the RNA-seq UC GRN the most promi-
nent gene subnetwork was located on chromosome locus
5q31.3 and represents a protocadherin gene cluster. In
UC, the loci 5q31.2 − q32 has been associated with
losses in a low fraction of UC tumors [46,47]. In [48,49]
an epigenetic analysis was performed on free DNA
derived from blood serum samples from UC patients
of the protocadherin PCDH10 an PCDH8. The stud-
ies of [48,49] showed that the methylation patterns of
PCDH10 and PCDH8 were significantly associated with
stage, grade, recurrence and tumor size. The 5q31.3
locus was also described in Wilms tumor to be epigen-
tically silenced [50]. For the Bead UC GRN the most
prominent co-located gene subnetwork was located on

Figure 2 GPEA analysis of GO biological process gene sets for relevance networks, C3Net and BC3Net GRNs. Shown are the fraction of significant
GO biological process terms with significant enrichment of cancer census genes.
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Figure 3 Significant genomic UC GRN subnetworks defined from co-located genes of 1 Mb genomic regions. (A) Overview of the GPEA analysis
showing all significant genomic subnetworks for the RNAseq (yellow), Bead (blue) and Oligo (red) UC GRNs. (B-D) Shown are the most prominent
genomic subnetworks derived from the RNAseq (B), Bead (C) and Oligo (D) UC GRNs.

chromosome locus 8q24.3. The 8q24.3 locus is a com-
mon gain loci in multiple cancers and was also con-
firmed in multiple UC cell lines [51]. For the Oligo
UC GRN the chromosome locus 1q23.3 contained the
most prominent co-located gene subnetwork. In [52]
a gain of 1q23.3 was identified from free DNA in
urine samples from UC patients. Further, [52] vali-
dated a selected candidate PFND2 that is located in
1q23.3 in an independent set of urothelial cancer tumors.
PFND2 was significantly amplified and overexpressed
and showed association to increasing stage and tumor
grade.

Gene pair enrichment analysis of gene family subnetworks
A gene family is a group of duplicated genes with sim-
ilar biological functions or biochemical activities which
often form gene clusters of genes with chromosomal co-
location. In this section we performed a GPEA for gene
family gene sets and compared the results between the UC
RNAseq, Bead and Oligo GRNs.
We found a total of 20.44% (103) significant gene fam-

ily subnetworks in the RNAseq GRN (Additional file 1:
Table S7), but only 8.2% (40) for the Bead UC GRN
(Additional file 1: Table S8) and 9.1% (39) for the Oligo
UC GRN were significantly enriched (Additional file 1:
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Table 2 GPEA analysis of 1 Mb genomic regions gene sets for the RNAseq UC GRN

chr Locus Start Size Edges p-value Census

chr5 q31.3 140000001 74 159 3.6673e-222

chr17 q21.2 39000001 61 136 7.6570e-204

chr17 q21.2 38500001 49 119 1.1284e-194 RARA, SMARCE1

chr6 p22.2 25500001 50 105 1.0881e-163

chr6 p22.2/p22.1 26000001 48 98 2.9016e-153

chr5 q31.3 140500001 54 103 1.6926e-152

chr19 q13.43 57500001 41 90 3.9091e-150

chr8 q24.3 145000001 43 81 1.5314e-127 RECQL4

chr19 q13.43 58000001 46 75 8.4630e-111

chr16 p11.2 30000001 54 80 4.0300e-109

chr21 q22.11 31500001 38 67 5.2390e-107

chr1 q21.3 152500001 43 69 2.0553e-103

chr9 q34.3 139500001 67 83 7.6570e-99

chr17 q25.3 79500001 47 67 3.9091e-94 ASPSCR1

chr19 q13.31 44000001 37 60 4.0300e-94

chr16 p11.2 30500001 49 68 1.7329e-93 FUS

chr8 q24.3 145500001 37 58 4.8360e-90 RECQL4

chr11 q13.1/q13.2 65000001 46 64 8.8660e-90

chr3 p25.3 9500001 34 55 3.1837e-88 FANCD2, VHL

chr5 q31.3 139500001 42 60 3.1434e-87

chr6 p22.1 27000001 32 51 8.8660e-83 HIST1H4I

chr1 q21.3 152000001 34 52 5.2390e-82

chr16 p11.2 29500001 45 59 1.1687e-81

chrX p11.23 48500001 50 62 1.8941e-81 GATA1, TFE3, WAS

chr6 p21.33/p21.32 31500001 79 78 1.2896e-79

chr19 p13.3 500001 51 60 7.6570e-77 FSTL3, STK11

chr1 p36.33 1000001 48 58 1.7732e-76

chr19 p13.3 1000001 43 54 1.1687e-74 STK11, TCF3

chr1 q21.3 150500001 35 48 1.5314e-72 MLLT11, ARNT

chr1 q22 155000001 42 51 3.3852e-70 MUC1

chr8 q24.3 144500001 39 49 9.2690e-70

chr19 q13.41/q13.42 53000001 31 44 1.6926e-69

chr19 p13.11/p12 19000001 33 45 5.2390e-69

chr16 p13.3 1 52 56 5.6420e-69 AXIN1

chrX p11.23/p11.22 49000001 44 51 4.4330e-68

chr11 q13.1/q13.2 65500001 46 52 7.6570e-68

chr6 p22.1 27500001 36 46 2.1359e-67

chr19 q13.33 49500001 70 64 2.9822e-66

chr1 q23.3 161000001 36 45 1.8941e-65 FCGR2B, SDHC

chr19 q13.31/q13.32 44500001 36 45 1.8941e-65 CBLC, BCL3

chr3 p21.31 48500001 42 48 1.1284e-64 NCKIPSD

chr19 q13.43 58500001 30 41 1.4911e-64

chr16 p13.3 1500001 59 57 2.1762e-64 TSC2, TRAF7

chr1 q21.3 151000001 37 45 2.4583e-64 MLLT11

chr11 p15.5 1 50 52 5.2390e-64 HRAS
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Table 2 GPEA analysis of 1 Mb genomic regions gene sets for the RNAseq UC GRN (Continued)

chr1 q21.3/q22 154500001 42 47 7.6570e-63 MUC1

chr19 q13.12 36000001 48 50 1.9747e-62

chr11 q13.1 64500001 56 54 4.4330e-62 MEN1

chr19 p13.2 11500001 30 39 1.9747e-60

chr11 q13.2 67000001 36 42 1.1284e-59

For each significant genomic region the chromosome (chr), chromosome band (locus), nucleotide base start site of the genomic region (start), number of genes of the
gene set (size), number of edges of the significant subnetwork (edges), Bonferroni adjusted p-value of the subnetwork (p-value) and a list of genes in the significant
subnetwork that are present in the cancer census (census).

Table S9). However, we found a high agreement of the
gene family subnetworks between our GRNs with a total
pairwise overlap of 30 − 60% and among the three net-
works 25% of all identified gene family subnetworks
(Figure 1D). It is noteworthy that 97.5% of the gene fam-
ilies identified by the Bead and 82% of the gene families
identified by the Oligo network were also significantly
enriched in the RNAseq GRN. In total 28 gene families
were identified across all three UC GRNs which described
CD molecules, keratin proteins (KRT), protocadherins
(PCDHC), kalikrein proteins (KLK), zinc-finger transcrip-
tion factors, metallothioneins and the immunoglobulin
superfamily. An overview of the significant gene families
that were common across all three GRNs are shown in
Table 5.

Bladder cancer GRN degree centrality and hub genes
The identification of highly interactive central genes, i.e.,
hub genes of inferred and experimental network can pro-
vide promising targets for urothelial cancer. In this section
we described individual hub genes of the gene regulatory
network and review their functional role and relevance for
the study of UC.
In order to compare the global structural properties of

individual genes we performed a pairwise comparison of
the degree centrality for 11,700 genes that are present
among the three networks. The pairwise comparisons
of the gene degree centrality across the three networks
showed only a weak correlation. The degree ranks showed
a slightly higher correlation between the RNAseq and
Bead GRN of r = 0.22 (RNAseq-Bead, p ≤ 2.2e − 16)
compared to r = 0.16 (Bead-Oligo, p ≤ 2.2e − 16) and
r = 0.16 (RNAseq-Oligo, p ≤ 2.2e − 16).
Hub genes of gene regulatory networks were observed

to be highly dataset specific. Table 6 A, B, C shows
the six most frequently observed hub genes for each
of the inferred UC GRNs. In the following we describe
the hub genes for which there is strong evidence for
their relevance to cancer related properties. For exam-
ple, the transmembrane protein HID1 that was observed
as a major hubgene in the RNAseq GRN is reported
to be downregulated in multiple cancers [53]; FER1L4
is a lncRNA reported to be prominently downregulated

in gastric cancer [54], TTLL3 is described as a candi-
date cancer gene [55], RIF1 has been described to have
anti-apoptotic properties in DNA repair [56] and SBNO1
(strawberry notch homolog 1) was reported in lung cancer
[57]. For the UCBeadGRN, RNF17 (TDRD4) is a potential
liver cancer CT antigen [58] and TMED7 was observed
to be upregulated in a nasopharyngeal carcinoma cell line
and described to act as a major immune system switch
[59]. The Oligo GRN hubgene CYP4A11 was shown to
promote angiogenesis and metastasis in lung cancer [60]
and SLC38A3 (SNAT3) is a glutamine transporter and
has been described as a marker for malignant glioma
[61].
Overlapped only for a single term, i.e., for the reg-

ulation of neuron differentiation (GO:0045664). For the
RNAseq and Oligo GRNwe observed nine terms in agree-
ment, e.g., G-protein coupled receptor signaling pathway
(GO:0007186), ion transport (GO:0006811) and sensory
perception (GO:0007600). We observed that the aver-
age degree centrality of the networks with randomized
gene labels was similar across the gene sets and inde-
pendent of the number of genes of a gene set. However,
our RNAseq dataset mostly considered muscle-invasive
UCs and shows terms associated to invasiveness. The
Bead data comprised terms that were nuclear while the
terms predicted from the Oligo data were predominantly
extracellular membrane associated.

Quantitative comparison of experimental interactions in
RNAseq, Bead and Oligo UC GRN
In this section we quantified the extend of local and glob-
ally shared interactions between the inferred GRNs and
ppi networks. We assessed the global extent of interac-
tions from PPI databases that were present in the UC
GRNs by comparing the entire GRNs networks to String,
Biogrid, Hprd, Intact, Mint, Graphite, CPDB and SingNet
(Additional file 1: Table S10).
As observed on the subnetwork level using all String

interactions the F-scores between the RNAseq and the
Oligo UC GRN were similar. In contrast the Bead UC
GRN showed a lower F-score for all PPI databases com-
pared to the RNA-seq GRN and Bead GRN (Additional
file 1: Table S10).
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Table 3 GPEA analysis of 1 Mb genomic regions gene sets for the Bead UC GRN

chr Locus Start Size Edges p-value Census

chr8 q24.3 145000001 43 60 2.08131e-90 RECQL4

chr6 p22.2/p22.1 26000001 48 54 2.23839e-73

chr6 p22.2 25500001 50 54 2.00277e-71

chr1 q21.3 152500001 43 46 1.76715e-63

chr17 q25.3 79500001 47 41 4.31970e-51 ASPSCR1

chr6 p22.1 27000001 32 34 7.06860e-51 HIST1H4I

chr8 q24.3 145500001 37 35 2.51328e-48 RECQL4

chr8 q24.3 144500001 39 30 1.02102e-37

chr8 p11.23/p11.22 37500001 20 21 3.49503e-35 WHSC1L1

chr1 q23.3 161000001 36 27 2.04204e-34 FCGR2B, SDHC

chr11 q13.2 67000001 36 25 7.06860e-31

chr17 q21.32 46000001 31 23 1.80642e-30

chr17 q21.32/q21.33 46500001 31 23 1.80642e-30

chr1 q21.3 153000001 43 27 3.29868e-30

chr11 p15.5 1 50 29 1.06029e-29 HRAS

chr16 p13.3 1 52 29 1.02102e-28 AXIN1

chr19 q13.43 57500001 41 25 5.10510e-28

chr1 q23.3 160500001 34 22 7.85400e-27 SDHC

chr1 p34.3/p34.2 40000001 23 18 2.74890e-26 MYCL1

chr6 p22.1 27500001 36 22 1.02102e-25

chr1 p34.2 40500001 22 17 5.89050e-25

chr1 q21.3 150500001 35 20 7.46130e-23 MLLT11, ARNT

chr1 q21.3/q22 154500001 42 22 9.42480e-23 MUC1

chr6 p21.32/p21.31 32500001 42 22 9.42480e-23 DAXX

chr9 q34.3 139500001 67 28 2.98452e-21

chr19 q13.43 58000001 46 22 4.71240e-21

chr1 q21.3 151000001 37 19 2.82744e-20 MLLT11

chr16 p13.3 500001 48 22 3.10233e-20

chr3 p21.31 49500001 38 19 7.85400e-20

chr1 q22 155000001 42 20 1.09956e-19 MUC1

chr11 q13.2 66500001 35 18 1.49226e-19

chr5 q31.3 140000001 74 28 5.89050e-19

chr22 q13.33 50000001 30 16 1.68861e-18

chr4 q13.2/q13.3 69500001 9 9 2.67036e-17

chr6 p21.1 42500001 33 16 3.69138e-17

chr12 q15 69000001 15 11 3.76992e-17 MDM2

chr12 q13.3/q14.1 57500001 37 17 3.92700e-17 CDK4, DDIT3

chr17 q11.2 26500001 49 20 4.71240e-17

chr19 p13.2 7500001 42 18 1.02102e-16

chr9 q34.3 140000001 35 16 2.43474e-16

chr20 q13.12 43500001 39 17 2.43474e-16 SDC4

chr22 q13.33 50500001 32 15 5.89050e-16

chr5 q31.3 140500001 54 20 2.04204e-15

chr1 q21.3 152000001 34 15 3.76992e-15

chr7 p15.2/p15.1 27000001 22 12 3.76992e-15 JAZF1, HOXA11, HOXA13
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Table 3 GPEA analysis of 1 Mb genomic regions gene sets for the Bead UC GRN (Continued)

chr16 q12.2/q13/q21 56500001 34 15 3.76992e-15 HERPUD1

chr2 q35 219500001 47 18 5.49780e-15 FEV

chr17 p13.1 7000001 68 23 5.89050e-15 TP53

chr11 q13.1 64500001 56 20 8.24670e-15 MEN1

chr8 p11.21 41500001 12 9 1.02102e-14 KAT6A

For each significant genomic region the chromosome (chr), chromosome band (locus), nucleotide base start site of the genomic region (start), number of genes of the
gene set (size), number of edges of the significant subnetwork (edges), Bonferroni adjusted p-value of the subnetwork (p-value) and a list of genes in the significant
subnetwork that are present in the cancer census (census).

Further, we compared the relative quantity of PPI inter-
actions for the identified significant subnetworks of the
gene sets for biological processes, genomic co-located
genes and gene families. To avoid the comparison to sub-
networks with no known protein-protein associations we
used String as reference as it was the largest collection of
PPI interactions that we considered in our study. For each
gene set we computed F-scores by comparing the corre-
sponding subnetwork of the GRN to the subnetwork of
the String network reference. Figure 4 shows the cumula-
tive F-score distributions between the RNAseq, Bead and
Oligo GRN separately for the 299 GO terms, 28 gene fam-
ily subnetworks and 40 chromosomal 1 Mb regions. In
addition, we repeated the analysis for each GRN 25 times
using a reference subnetwork where the gene labels were
randomized (Figure 4).
The average F-scores were highest for the subnetworks

of genomic co-located genes (FRNAseq = 0.26, FBead =
0.18 and FOligo = 0.26) and for the gene family gene
sets (FRNAseq = 0.15, FBead = 0.12, FOligo = 0.15). The
Gene Ontology gene sets had the lowest average F-scores
compared to the genomic and gene family subnetworks
(FRNAseq = 0.044, FBead = 0.029, FOligo = 0.039) (Figure 4
and Additional file 1: Table S11). The observations are in
agreement with the global analysis for RNAseq and Oligo
GRN, where the Bead UC GRN has the tendency to per-
form worse. However, the RNAseq UC GRN shows the
tendency for smaller p-values over the Bead and Oligo UC
GRN (Figure 4D).
The reference network with randomized gene labels

were significantly lower compared to the GRN for all
comparisons. The Bead GRN had the tendency to show
a significantly lower mean F-score compared to the
RNAseq and Oligo GRN for the Gene Ontology (t-test,
pRNAseq−Bead = 0.000007, pBead−Oligo = 0.002390) and
the genomic 1Mb window subnetworks (pRNAseq−Bead =
0.000675, pBead−Oligo = 0.001697). For the gene family
subnetworks we did not observe a significant difference
among the three GRN.

Discussion
In this paper, we have presented novel perspectives and
applications for the identification of UCmolecular targets

using GRNs. Specifically, we performed a structural, func-
tional and comparative analysis across three UC GRNs
that were independently inferred from three large-scale
RNAseq, Bead and Oligo gene expression datasets. Our
objective was to identify putative prognostic UC targets
for a subsequent investigation in UC tumors on the basis
of their enrichment in functional subnetworks and hub
gene analysis. Our results demonstrate that GRNs are
highly dataset specific on the gene interaction level and
showed large similarities across the functional subnet-
work levels. The RNAseq based GRN showed the most
prominent functional enrichment and is thus the data type
of choice for a network inference. The RNAseq and Oligo
GRN showed a similar inference performance based on
public interaction databases and outperformed the Bead
based GRN.
On the structural level, the three inferred GRNs were

observed to follow a power law distribution [62] that is
common for inferred and experimental biological net-
works [63-65]. Our results demonstrated that the network
structure at the gene level of GRNs are highly depen-
dent on the individual gene expression dataset. On the
gene interaction level the pairwise comparison between
the networks showed only an overlap of 2% and only
0.25% of all interactions are common among the three
networks (Figure 1). There are three main explanations
for this observation. The first reason is that the BC3Net
algorithm considers only the strongest interaction neigh-
bors for each gene and is thus highly dependent on the
search space of the genes that are included in the dataset.
The second reason is that the variations caused by con-
cordance differences of the expression are dependent on
technical properties of the individual gene expression
platforms and platform dependent data processing pro-
cedures. The third reason is that the datasets represent
varying proportions of different tumor grades and stages
from individual patients that represent a complex condi-
tion phenotype. Further, gene expression profiles of tumor
tissues are highly heterogeneous on the molecular and tis-
sue level, i.e., tumor clonal variation within and between
different patient samples [66].
In [67] a guilt-by-association approach was devel-

opped to predict molecular roles of genes with unknown
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Table 4 GPEA analysis of 1 Mb genomic regions gene sets for the Oligo urothelial cancer GRN

chr Locus Start Size Edges p-value Census

chr1 q23.3 161000001 36 27 4.82850e-30 FCGR2B, SDHC

chr17 q25.3 79500001 47 30 5.15040e-28 ASPSCR1

chr1 q21.3 150500001 35 25 1.80264e-27 MLLT11, ARNT

chr11 p15.5 1 50 25 8.36940e-20 HRAS

chr8 q24.3 145000001 43 22 8.04750e-19 RECQL4

chr1 p34.3/p34.2 40000001 23 15 6.11610e-18 MYCL1

chr1 q23.3 160500001 34 18 3.86280e-17 SDHC

chr19 q13.2/q13.31 43000001 20 13 4.18470e-16

chr9 p21.1/p13.3 32500001 17 12 4.50660e-16

chr16 p13.2 8000001 7 8 1.41636e-15

chr6 p21.1 42500001 33 16 1.25541e-14

chr1 q21.2/q21.3 150000001 27 14 3.54090e-14 ARNT

chr8 p11.21 42000001 17 11 4.18470e-14

chr16 p13.2 8500001 9 8 2.06016e-13

chr16 q21/q22.1 66500001 42 17 1.31979e-12 CBFB

chr17 q12/q21.1/q21.2 37500001 31 14 1.67388e-12 ERBB2, CDK12, RARA

chr4 q13.3 74500001 14 9 5.47230e-12

chr6 p21.1 43000001 26 12 1.80264e-11

chr1 q21.3/q22 154500001 42 16 2.44644e-11 MUC1

chr4 q13.3 74000001 16 9 7.40370e-11

chr8 p11.23/p11.22 37500001 20 10 9.65700e-11 FGFR1, WHSC1L1

chr11 q13.2 67000001 36 14 1.03008e-10

chr9 p21.3 20500001 24 11 1.06227e-10 MLLT3

chr1 p34.2 40500001 22 10 6.75990e-10

chr11 p11.2 47000001 22 10 6.75990e-10 DDB2

chr13 q34 113500001 18 9 6.75990e-10

chr2 p22.1 39000001 11 7 1.22322e-09

chr13 q14.2 48500001 11 7 1.22322e-09 RB1

chr19 p13.12 15000001 27 11 1.41636e-09 BRD4

chr17 q25.3 80000001 23 10 1.67388e-09

chr17 p13.3 500001 19 9 1.83483e-09 YWHAE

chr1 p34.3 37500001 20 9 4.82850e-09

chr1 q22 155000001 42 14 6.75990e-09 MUC1

chr9 p21.3 21000001 25 10 9.01320e-09 CDKN2A

chr3 p25.3 9500001 34 12 1.06227e-08 VHL

chr16 q12.2/q13/q21 56500001 34 12 1.06227e-08 HERPUD1

chr19 q13.33/q13.41 51000001 49 15 3.21900e-08 KLK2

chr1 p34.3 38000001 18 8 3.86280e-08

chr11 q13.1/q13.2 65000001 46 14 7.40370e-08

chr11 q13.1/q13.2 65500001 46 14 7.40370e-08

chr19 q13.31 44000001 37 12 7.72560e-08

chr20 p13 3000001 28 10 8.69130e-08

chr6 p21.32/p21.31 32500001 42 13 9.97890e-08 DAXX

chr12 q15 69000001 15 7 1.31979e-07 MDM2

chr20 q11.22/q11.23 33500001 24 9 1.35198e-07
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Table 4 GPEA analysis of 1 Mb genomic regions gene sets for the Oligo urothelial cancer GRN (Continued)

chr1 q21.3 153000001 43 13 1.80264e-07

chr9 p21.1/p13.3 33000001 20 8 2.12454e-07

chr22 q11.21 20500001 20 8 2.12454e-07

chr8 q24.3 144500001 39 12 2.60739e-07

chr11 q13.2 66500001 35 11 3.86280e-07

For each significant genomic region the chromosome (chr), chromosome band (locus), nucleotide base start site of the genomic region (start), number of genes of the
gene set (size), number of edges of the significant subnetwork (edges), Bonferroni adjusted p-value of the subnetwork (p-value) and a list of genes in the significant
subnetwork that are present in the cancer census (census).

functions. The “guilt-by-association” property of genes
that are connected in a defined network can also be
used for a functional enrichment analysis for gene pairs
which have known functions and are involved in the
same biological processes. We identified significant func-
tional GRN subnetworks by performing a gene pair
enrichment analysis (GPEA) for defined gene sets. We
used the terminology gene pair enrichment analysis
to distinguish the latter from the terminology for a
gene-based enrichment analysis which has no structural
constraint. The concept for the analysis was introduced
from graph theory [68] and has been developped and
applied for the identification of significant protein com-
plex and ontology gene sets in PPI and inferred networks
[69-72].
A total of 5 to 10% of all tested Gene Ontology Biologi-

cal process terms, 2 to 10% of gene sets of co-located genes
and 9 to 20% gene family gene sets showed a significant
subnetworks by the enrichment of inferred interactions
(Figure 1). RNAseq based network showed more than
twice the proportion of significant subnetworks compared
to the Bead and Oligo microarray based GRN. Our results
showed in a quantative manner that RNAseq is beneficial
for GRN inference compared to Bead and Oligo microar-
ray based data. Themajor advantages of RNAseq aremore
accurate measurement of the dynamic range of low and
highly expressed genes [73] and thus gives a better reso-
lution of the underlying functional dependency structure
between the genes.
In contrast to the low similarity that was observed

between the GRNs on the structural interaction level, we
observed high similarities on the functional subnetwork
level (Figure 1). The fraction of significant biological pro-
cess Gene Ontology terms that were common across the
three UC GRN was above 55%. For the gene family sub-
networks we observed a similarity for 25.45% and the low-
est percentage for genomic co-located gene subnetworks
6.8% (Figure 1).
The networks described a prominent enrichment for

known cancer hallmarks [74] with significant GO subnet-
works related to immune response, cell cycle, signal trans-
duction, DNA repair, translation, proteolysis, metabolic
terms such as respiration and cell morphogenesis,

adhesion and migration. Further, over 50% of the signif-
icant GO subnetworks were highly enriched by known
cancer genes defined by the cosmic cancer census [31]
across the three UC GRNs. We observed that the fraction
of cancer associated subnetworks is prominently lower
in relevance network inference methods. This may result
from low dependency measures of relevant interactions of
genes in a more complex context being excluded from a
relevance network by a global threshold. For other GRN
inference methods we expect similar results to the results
presented by the BC3Net that is based on the C3Net. A
C3Net infers a core structure of a GRN and thus infers
only a subnetwork of other GRN inference methods based
on mutual information [10]. For each gene in a C3Net
at most one gene neighbor with strongest mutual depen-
dency is selected, which results in a highly reduced time
complexity for multiple testing of mutual information.
The C3Net and BC3Net GRNs inference method is there-
fore less time consuming which makes the inference of
very large GRNs (> 20K genes) feasible in a reasonable
time.
On the genomic level, the GRNs were investigated for

genomic UC targets, where we identified genomic regions
with known diagnostic and prognostic properties for
urothelial cancer such as 1q23.3 [52] (Oligo GRN), 8q24.3
[51] (Bead GRN) and 5q31.3 [48-50] (RNAseq GRN).
The identified genomic regions can link to chromosomal
aberrations, histone modifications, changes in epigenetic
regulation (methylation), regulatory elements and spatial
chromosome organization in the nucleus. These processes
are commonly deregulated in cancer. For example the
impairment of DNA repair mechanisms leads to an accu-
mulation of chromosomal aberrations that are frequently
observed in the progression of UC [75]. The identifica-
tion of subnetworks of genomic regions from co-located
genes therefore provided a powerful tool to identify puta-
tive novel genomic targets from cancer gene expression
datasets.
In the analysis of gene families we found CD molecules

as the most prominent gene family. CD molecules are
promising targets for novel cancer immunotherapies such
as CD47 [76]. Some popular UC biomarkers target pro-
teins of an entire gene family and not a single gene product
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Table 5 GPEA analysis of gene family gene sets for the UC RNAseq, Bead and Oligo GRN

Tag Name RNAseq Bead Oligo

CD CD molecules 380/591/0 365/319/1.1e-140 351/319/8.9e-106

ZKRAB Zinc fingers, C2H2-type
with KRAB domain

338/764/0 306/289/5.3e-155 143/108/5.6e-64

RPL L ribosomal proteins 59/119/1.2e-175 55/49/2.2e-59 44/72/3.4e-102

ZNF Zinc fingers, C2H2-type 697/1307/0 641/515/4e-114 362/242/2.3e-53

HIST Histones/Replication-
dependent

67/236/0 61/154/5.7e-252 26/32/1.3e-48

HLA Histocompatibility
complex

24/46/1.1e-85 25/33/2.9e-57 19/22/9.1e-36

C1SET Immunoglobulin
superfamily/C1-set
domain containing

38/51/1e-75 38/34/1.5e-46 37/26/1.1e-28

KLK Kallikreins 17/26/1.2e-49 16/15/2.8e-26 14/14/1.7e-23

MT Metallothioneins 14/12/3.5e-20 12/12/7.1e-23 10/10/3.5e-18

PCDHC Cadherins/Protocadherins
: Clustered

57/150/7.8e-242 56/24/6.6e-21 22/14/1.3e-17

IGD Immunoglobulin
superfamily/Immunoglobulin-
like domain
containing

233/175/3.6e-85 221/77/5.1e-22 177/67/2.6e-17

KRT Keratins 55/87/1.4e-121 51/20/2.8e-17 35/20/1.5e-20

HOXL Homeoboxes/ANTP class :
HOXL subclass

52/54/1.6e-66 50/39/1.8e-46 43/20/5.2e-17

COLLAGEN Collagens 46/37/3.4e-43 43/21/1.1e-21 33/17/5.5e-17

RPS S ribosomal proteins 34/40/7.2e-59 32/14/3.1e-15 29/28/6.1e-38

PSM Proteasome (prosome,
macropain) subunits

45/25/4.1e-25 43/15/5e-13 42/26/7.7e-26

RBM RNA binding motif (RRM)
containing

209/114/2.6e-46 186/50/1.6e-12 151/72/2.3e-28

ENDOLIG Endogenous ligands 230/77/7.9e-16 221/62/3.3e-13 192/62/2.8e-11

VSET Immunoglobulin
superfamily/V-set domain
containing

161/95/1.4e-50 150/42/5.2e-14 110/33/9e-11

comI Mitochondrial respiratory
chain complex/Complex I

38/14/3.9e-12 38/12/2.6e-10 31/15/7.3e-15

UGT UDP glucuronosyltrans-
ferases

20/15/4.8e-22 20/17/2.3e-27 7/5/1.4e-08

IFF2 Intermediate filaments
type II, keratins (basic)

26/23/2.6e-33 24/8/3e-08 15/7/1.8e-08

comIV Mitochondrial respiratory
chain complex/Complex
IV

16/13/8.5e-21 15/6/1.3e-07 12/7/6.3e-10

S100 S100 calcium binding pro-
teins

21/12/1.1e-15 21/7/1.8e-07 17/7/1.1e-07

LNCRNA Long non-coding RNAs 548/407/1.2e-78 468/168/2e-14 107/25/5.4e-06

complement Complement system 35/18/3.8e-19 33/7/1e-04 30/9/9.6e-07

CYP Cytochrome P450s 62/37/1.1e-33 56/10/0.00019 48/22/1.2e-17

SERPIN Serine (or cysteine) pepti-
dase inhibitors

36/21/2.1e-23 35/8/1.2e-05 30/7/0.00031

Shown are the commonly significant gene family subnetworks of the RNAseq, Bead and Oligo UC GRN, number of genes of the gene family subnetwork, the number
of interactions and the Bonferroni adjusted P-value (Genes/Interactions/P-value).
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Table 6 The six major hub genes for the RNAseq, Bead and Oligo UC GRN

A) RNAseq UC GRN

Gene Degree Locus Description/GO Cancer association Cancer Ref

HID1 (DMC1) 139 chr17q25.1 Transmembrane Downregulated Breast, cervix, liver, lung, [53]
thyroid, stomach, kidney

FER1L4 135 20q11.22 lncRNA Downregulated Stomach [54,81]

TTLL3 128 3p25.3 Tubulin-tyrosine Downregulated Colon [55,82]
ligase activity

RIF1 126 2q23.3 DNA repair Anti-apoptotic Breast [56]

KLHDC7A (FLJ38753) 116 1p36.13 Transmembrane - - -

SBNO1 110 12q24.31 DNA binding Proliferation Lung [57]

B) Bead UC GRN

Gene Degree Locus Description/GO Cancer association Cancer Ref

MGC15885 119 15q22.2 ncRNA - - -

RNF17 (TDRD4) 107 13q12.12 Spermatid development Potential cancer CT antigen Liver [58]

OR6S1 105 14q11.2 G-protein coupled - - -
receptor signaling pathway

ACTR3BP5 104 10p11.1 Pseudogene - - -

TPTE2P3 98 13q14.3 Pseudogene - - -

TMED7 90 5q22.3 Protein transport Upregulated Nasopharynx carcinoma [59]
cell line

C) Oligo UC GRN

Gene Degree Locus Description/GO Cancer association Cancer Ref

CYP4A11 184 1p33 Monooxygenase activity Promotes angiogenesis Lung [60]
and metastasis

GJC2 162 1q42.13 Gap junction channel - - -
activity

GPATCH4 147 1q23.1 Nucleic acid binding - - -

ADAM5 141 8p11.22 Metalloendopeptidase - - -
activity, pseudogene

DKFZP434A062 120 9q34.3 Uncharacterized protein - - -

SLC38A3 (SNAT3) 118 3p21.31 Symporter activity malignancy marker Glioma [61]

Shown are the gene symbols of the hub genes of the (A) RNAseq, (B) Bead and (C) Oligo UC GRN, their number of interactors (Degree), chromosomal location (Locus),
functional description when available from GO or gene description, literature-based evidence or property for a cancer association, cancer types (Cancer) and literature
citation (Ref) when available.

such as Keratins [77] and Kalikrein proteins [78] which
are popular tumor markers for UC. Gene families are
crucial in cancer research [79] because they represent
groups of genes that are functionally highly redundant
and represent potential targets of the underlying molec-
ular heterogeneity that is observed for malignant pro-
cesses. We showed that the identification and ranking
of functional and co-located gene sets and gene fami-
lies using our GPEA on GRNs is a versatile approach
for the generation of novel targets and molecular under-
standing of the properties of urothelial cancer from the
perspective of large-scale tumor tissue gene expression
data.
Hub genes of GRNs reflect the most prominent depen-

dencies of the expression profile to a large number

of genes. We identified hub genes such as HID1 [53]
(RNAseq) RNF17 (TDRD4) [58] (Bead), CYP4A11 [60]
(Oligo) for the individual GRNs which show in the
literature strong evidence for cancer related diagnos-
tic and prognostic properties. Further, we performed a
degree centrality analysis of the GRNs that showed that
the degree centrality of the genes allow to target promising
mediators of cancer related cellular activities and signaling
processes.
In addition, we performed a quantitative comparison of

protein interactions for the RNAseq, Bead and Oligo UC
GRNs. We note that the overlap for protein interaction
data and GRNs is expected to be low and non-random.
For example the most prominent PPI interactions that
can be found in a GRNs are physical interactions of
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A) Functional level (299 GO BP terms) B) Genomic level (40 gene clusters)

C) Gene family (28 gene families)
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Figure 4 Network inference performance using interactions from the STRING database. Shown are the F-score distributions for commonly
significant GRN subnetworks of the GPEA analysis for A) 299 Gene Ontology Biological Process terms; B) co-located genes of 1 Mb genomic regions;
C) 28 gene families; and D) p-value distribution (FDR) estimated for all gene sets.

genes corresponding to large protein complexes (e.g. ribo-
some biogenesis and proteasome) in contrast to more
transient protein interactions [11,80]. A GRN is inferred
from gene expression data and thus can only detect
indirect association to the protein level of a gene net-
work. However, the analysis allowed to compare network
properties between the Oligo, Bead and RNAseq data
and pointed to the tendency that Oligo expression data
should be prefered over Bead expression data for a GRN
inference.

Conclusion
On the functional and structural level our results demon-
strated that RNAseq based data is the preferred data type
for a GRN inference. GRNs are highly dataset-specific at
the interaction level, while at the global functional level
they are highly similar. GRN inference is a powerful tool
to provide a database of novel UC targets that can be
studied for prognostic and diagnostic clinical applications
[48,49,52,58,60].
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