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SUMMARY 27 

Klebsiella pneumoniae is an important cause of community-acquired and nosocomial 28 

pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a 29 

vacuolar compartment. This study was designed to investigate the interaction between 30 

Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host 31 

cytoskeleton, cell plasma membrane lipid rafts and the activation of PI 3-kinase (PI3K). 32 

Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the 33 

Klebsiella containing vacuolae (KCV), which traffics within vacuoles associated with the 34 

endocytic pathway. In contrast to UV-killed bacteria, the majority of live bacteria did not 35 

colocalize with markers of the lysosomal compartment. Our data suggest that K. pneumoniae 36 

triggers a programmed cell death in macrophages displaying features of apoptosis. Our 37 

efforts to identify the mechanism(s) whereby K. pneumoniae prevents the fusion of the 38 

lysosomes to the KCV uncovered the central role of the PI3K-Akt-Rab14 axis to control the 39 

phagosome maturation. Our data revealed that the capsule is dispensable for Klebsiella 40 

intracellular survival if bacteria were not opsonized. Furthermore, the environment found by 41 

Klebsiella within the KCV triggered the downregulation of the expression of cps. Altogether, 42 

this study proves evidence that K. pneumoniae survives killing by macrophages by 43 

manipulating phagosome maturation which may contribute to Klebsiella pathogenesis. 44 

45 
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INTRODUCTION 46 

 In the late nineteenth century, Eli Metchnikoff appreciated phagocytosis as a key process in 47 

the battle against pathogens. Phagocytosis can be conceptually divided into phagosome formation 48 

and its subsequent evolution into a degradative compartment, a process termed phagosome 49 

maturation. This is important because the nascent phagosome is not microbicidal. Maturation not 50 

only aids clearing infection, but also generates and routes antigens for presentation on MHC 51 

molecules in order to activate the adaptive immune system (Trombetta and Mellman. 2005). 52 

Phagosome maturation involves the sequential acquisition of different proteins, many of them of the 53 

endocytic pathway (Vieira et al. 2002,Flannagan et al. 2012). Thus, during and/or immediately after 54 

phagosome closure, the phagosome fuses with early endosomes, acquiring Rab5 and early 55 

endosome antigen 1 (EEA1). The phagosome rapidly loses the characteristics of early endosome 56 

and acquires late endosome features. The late phagosome is positive for Rab7, the mannose-6-57 

phosphate receptor, lysobisphosphatidic acid, lysosome-associated membrane proteins (Lamps) and 58 

CD63. Ultimately, the organelle fuses with lysosomes to form the phagolysosome, identified by the 59 

presence of hydrolytic proteases, such as processed cathepsin D, cationic peptides and by an 60 

extremely acidic luminal pH which is regulated primarily by the vacuolar (V-type) ATP-ase 61 

complex. In the course of maturation, an oxidative system formed by the NADPH oxidase and 62 

ancillary proteins is also activated. 63 

 Many pathogens have developed strategies to counteract the microbicidal action of 64 

macrophages (Flannagan et al. 2009,Sarantis and Grinstein. 2012). Some pathogens inhibit 65 

phagocytosis. For example, the role of capsule polysaccharides in preventing opsonophagocytosis 66 

has been appreciated for many pathogens including Neisseria meningitidis, Staphylococcus aureus 67 

and streptococci. Others, such as enteropathogenic Escherichia coli, inhibit engulfment by blocking 68 

PI 3-kinase (PI3K) signaling whereas Yersinia species inhibits phagocytosis by injecting type III 69 

secretion effectors. Conversely, Salmonella typhimurium induces its own uptake and, once inside a 70 

modified phagosome, triggers macrophage death by a caspase-1 dependet process called pyroptosis  71 
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(Fink and Cookson. 2007). Brucella spp. resist an initial macrophage killing to replicate in a 72 

compartment segregated from the endocytic pathway with endoplasmic reticulum properties (von 73 

Bargen et al. 2012).  74 

    Klebsiella pneumoniae is a Gram negative capsulated pathogen which causes a wide range 75 

of infections, from urinary tract infections to pneumonia, being particularly devastating among 76 

immunocompromised patients with mortality rates between 25% and 60% (Sahly and Podschun. 77 

1997). K. pneumoniae is an important cause of community-acquired pneumonia in individuals with 78 

impaired pulmonary defences and is a major pathogen for nosocomial pneumonia. Pulmonary 79 

infections are often characterized by a rapid clinical course thereby leaving very short time for an 80 

effective antibiotic treatment. K. pneumoniae isolates are frequently resistant to multiple antibiotics 81 

(Munoz-Price et al. 2013), which leads to a therapeutic dilemma. In turn, this stresses out the 82 

importance of pulmonary innate defense systems to clear K. pneumoniae infections. 83 

 Resident alveolar macrophages play a critical role in the clearance of bacteria from the lung 84 

by their capacity for phagocytosis and killing. It has been shown that depletion of alveolar 85 

macrophages results in reduced killing of K. pneumoniae in vivo (Broug-Holub et al. 1997,Cheung 86 

et al. 2000). This suggests that Klebsiella countermeasures against phagocytosis would be 87 

important virulence factors. Supporting this notion, K. pneumoniae capsule (CPS) reduces 88 

phagocytosis by neutrophils and macrophages (March et al. 2013,Cortes et al. 2002b,Regueiro et al. 89 

2006,Alvarez et al. 2000) and CPS mutant strains are avirulent not being able to cause pneumonia 90 

and urinary tract infections (Cortes et al. 2002b,Lawlor et al. 2005,Camprubi et al. 1993).  91 

 K. pneumoniae has been largely considered as an extracellular pathogen. However, there are 92 

reports showing that K. pneumoniae is internalized in vitro by different cell types being able to 93 

persist intracellularly for at least 48 h (Oelschlaeger and Tall. 1997). It has been also reported the 94 

presence of intracellular Klebsiella spp. within a vacuolar compartment inside human macrophages, 95 

mouse alveolar macrophages and lung epithelial cells in vivo (Cortes et al. 2002b,Fevre et al. 96 

2013,Willingham et al. 2009,Greco et al. 2012).  The present study was designed to investigate the 97 
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interaction between K. pneumoniae and macrophages. We report that K. pneumoniae survives 98 

within macrophages by deviating from the canonical endocytic pathway and residing in a unique 99 

intracellular compartment which does not fuse with lysosomes. Mechanistically, our results indicate 100 

that Klebsiella targets the PI3K-Akt-Rab14 axis to control the phagosome maturation. Finally, we 101 

present evidence indicating that K. pneumoniae has the potential to kill and escape from the 102 

phagocyte.  103 

 104 

  105 
RESULTS 106 

K. pneumoniae survives inside macrophages. 107 

 To explore whether K. pneumoniae resides inside macrophages in vivo, macrophages were 108 

isolated from the bronchoalveolar lavage of mice infected intranasally with K. pneumonia strain 109 

43816 (hereafter Kp43816R). Confocal microscopy experiments showed that 85  ± 4 % of the 110 

intracellular bacteria did not colocalize with the lysosomal marker cathepsin D (Fig 1A). 111 

Macrophages isolated obtained from the bronchoalveolar lavage were pulsed-chased with 112 

tetramethylrhodamine-labelled dextran (TR-dextran) as described in the Experimental procedures. 113 

Pulse-chase protocols with TR-dextran are extensively used in the literature to label lysosomes  114 

(Morey et al. 2011,Eissenberg et al. 1988,Hmama et al. 2004,Lamothe et al. 2007). Confocal 115 

microscopy revealed that 80  ± 3 % intracellular Klebsiella did not colocalize with TR-dextran (Fig 116 

1A).  117 

To assess the interaction of K. pneumoniae and macrophages in more detail, we standardized 118 

the infection conditions of the mouse macrophage cell line MH-S with Kp43816R. We optimized 119 

the time of bacteria-cell contact (30, 60 and 120 min), the multiplicity of infection (MOI) (100, 50 120 

or 10 bacteria per cell), and the antibiotic treatment necessary to kill the remaining extracellular 121 

bacteria after the contact. To synchronize infection, plates were centrifuged at 200 x g during 5 min 122 

and intracellular bacteria were enumerated after macrophage lysis with 0.5% saponin in PBS. We 123 

found that 90 min treatment with a combination of gentamicin (300 g/ml) and polymxyin B (15 124 
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g/ml) was necessary to kill 99.9% of the extracellular bacteria. The highest numbers of engulfed 125 

bacteria were obtained after 120 min of bacteria-cell contact with a multiplicity of infection (MOI) 126 

of 100:1. However, these conditions also triggered a significant decrease in cell viability as detected 127 

by the trypan blue exclusion method. 30 min of contact and a MOI of 50:1 were the conditions in 128 

which no decrease in cell viability was observed and, therefore, they were used in the subsequent 129 

experiments described in this study. 130 

 To investigate the molecular mechanisms used by mouse macrophages to engulf Kp43816R, 131 

infections were carried out in the presence of inhibitors of host cell functions (Fig 1B). Cytochalasin 132 

D and nocodazol reduced the engulfment of Kp43816R hence indicating that Kp43816R 133 

phagocytosis requires the assembly of F-actin and the host microtubule network. Methyl-β-134 

cyclodextrin (MCD), which depletes cholesterol from host cell membranes, was employed to 135 

analyse the involvement of lipid rafts in Kp43816R phagocytosis. Cholesterol depletion impaired 136 

Klebsiella engulfment by MH-S. Similar results were obtained when cells were treated with filipin 137 

and nystatin (Fig. 1B). Since the generation of phosphoinositides is linked to phagosome formation 138 

(Vieira et al. 2001), we assessed the contribution of the PI3K signalling pathway on Kp43816R 139 

phagocytosis. Pre-treatment of MH-S cells with LY294002, a specific inhibitor of PI3K activity, 140 

resulted in the blockage of Kp43816R phagocytosis (Fig. 1B). Immunofluorescence experiments 141 

further confirmed that treatment of cells with LY294002 inhibited the engulfment of Klebsiella (Fig 142 

S1). This was also true for UV-killed bacteria (Fig S1). Akt is a downstream effector of PI3K which 143 

becomes phosphorylated upon activation of the PI3K signalling cascade. As expected, western blot 144 

analysis revealed that Kp43816R induces the phosphorylation of Akt in a PI3K-dependent manner 145 

since LY294002 inhibited Klebsiella-induced phosphorylation of Akt (Fig. 1C-D). UV-killed 146 

bacteria also induced the phosphorylation of Akt although the levels were significantly lower than 147 

those induced by live bacteria (Fig 1C). The PI3K-Akt cascade is also activated by Kp43816R in 148 

human macophages (THP-1 monocytes differentiated to macrophages by phorbol-12-myristate-13-149 

acetate [PMA] treatment; hereafter mTHP-1) (Fig. S2).  150 
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 Bacterial intracellular location in MH-S cells was assessed 3 and 6 h post infection by 151 

transmission electron microscopy (TEM). In good agreement with other published observations in 152 

vivo (Cortes et al. 2002b,Fevre et al. 2013,Willingham et al. 2009,Greco et al. 2012), bacteria were 153 

located in a vacuolar compartment (data not shown). To determine the fate of intracellular 154 

Kp43816R, MH-S cells were infected with GFP-expressing Kp43816R and the number of 155 

intracellular bacteria was assessed microscopically using differential (extracellular/intracellular) 156 

staining and by plating after different incubation times. The number of intracellular bacteria in MH-157 

S cells decreased during the first 2 h of infection but then it remained constant until 7.5 h post 158 

infection (Fig 2A). Immunofluorescence analysis revealed that the number of infected macrophages 159 

decreased during the first 2 h hence suggesting that some cells are able to clear the infection. 160 

However, after 2 h, the percentage of infected macrophages did not change until the end of the 161 

experiment (Fig 2B). We did not observe any change of host cell morphology (data not shown). The 162 

majority of infected macrophages contained less than three bacteria (Fig 2C). The fact that the 163 

number of macrophages containing between three and five bacteria or more than five did not 164 

change over time suggests that there is not significant bacteria replication. Similar results were 165 

obtained when mTHP-1 cells were infected (Fig S3).  166 

To elucidate whether those intracellular bacteria assessed by microscopy were indeed viable, 167 

cells were infected with Klebsiella harbouring two plasmids, one conferring constitutive expression 168 

of mCherry (pJT04mCherry) and another one (pMMB207gfp3.1) expressing gfp under the control 169 

of an IPTG inducible promoter. Therefore, only metabolically active bacteria will be mCherry-GFP 170 

positive. Microscopy analysis using differential (extracellular/intracellular) staining showed that 171 

more than 75% of intracellular bacteria were mCherry-GFP positive 3.5 h post infection (Fig 2D-E). 172 

This percentage did not change over time. To further confirm that intracellular Klebsiella are 173 

metabolically active, fluorescent in situ hybridisation (FISH) was carried out by using the 174 

oligonucleotide probes EUB338 and GAM42a (see Experimental procedures). The detection of 175 

bacteria by these oligonucleotide probes is dependent on the presence of sufficient ribosomes per 176 
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cell, hence providing qualitative information on the physiological state of the bacteria (Christensen 177 

et al. 1999,Morey et al. 2011). Microscopy analysis revealed that the number of bacteria 178 

metabolically active (FISH positive) versus the total number of intracellular bacteria (GFP positive) 179 

was maintained through the infection (Fig. S4).  180 

  Collectively, these results showed that Kp43816R phagocytosis by macrophages is an event 181 

dependent on host cytoskeleton and cell plasma membrane lipid rafts. Moreover, the PI3K/Akt host 182 

signalling pathway is activated by Kp43816R infection and it is required for bacterial phagocytosis. 183 

Our data demonstrate that Kp43816R survives within macrophages through the course of infection 184 

and the TEM experiments may suggest that Kp43816R may reside in a specific compartment that 185 

we named the Klebsiella containing vacuole (KCV). 186 

 187 

K. pneumoniae elicits a cytotoxic effect on macrophages. 188 

 Examination of the infected monolayers by immunofluorescence at different time points 189 

revealed a decreased in the overall monolayer density at 10 h post infection which became more 190 

evident 20 h post infection (Fig S5A). This observation prompted us to study whether Kp43816R 191 

exerts a cytotoxic effect on macrophages. We assessed the viability of infected MH-S cells by 192 

measuring the levels of LDH release. Kp43816R infection was associated with a 35% decrease in 193 

cell viability after 20 h of infection. Kp43816R-triggered cytotoxic effect on macrophages was also 194 

evident when cell viability was estimated by the neutral red uptake assay (Fig S5B).  195 

 The induction of host cell apoptosis is one mechanism used by some pathogens to augment 196 

infection (Navarre and Zychlinsky. 2000). To test whether Kp43816R causes apoptosis of MH-S 197 

cells, apoptosis was measured with annexin V, to analyze phosphatidylserine translocation to the 198 

outer leaflet of the plasma membrane, and 7-actinomycin D (AAD) to evaluate plasma membrane 199 

integrity. Flow cytometry analysis of infected cells showed a significant increased in annexin 200 

V
+
AAD

−
 cells over time (Fig. 3). The amount of double-positive annexinV

+
AAD

+
 cells, which 201 

corresponds to a necrotic-like phenotype, was markedly lower than the amount of cells annexin 202 
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V
+
AAD

−
 at all times analyzed. These results indicate phosphatidylserine translocation and intact 203 

membrane integrity, a classical apoptotic phenotype, hence suggesting that Kp43816R triggers 204 

apoptosis in macrophages. 205 

 206 

K. pneumoniae prevents phagosome fusion with lysosomes. 207 

 Because Kp43816R is able to survive within macrophages, we hypothesized that Klebsiella 208 

must either divert the normal process of phagosome maturation or withstand the hostile 209 

environment of the mature phagolysosome. Therefore, we analyzed the maturation of the KCV 210 

during the course of an infection by unravelling the association of the KCV with compartments of 211 

the exocytic and endocytic pathways. Bacteria did not colocalize with either markers of the 212 

endoplasmic reticulum (calnexin) or markers of the Golgi network (GM 130) at any time point 213 

analyzed (Fig S6). EEA1 is an early endosome-specific peripheral membrane protein which 214 

colocalizes with the small GTP binding protein Rab5 (Vieira et al. 2002,Flannagan et al. 2012). As 215 

shown in Figure 4, we could detect the presence of EEA1 on 22 ± 4% of KCVs at 15 min post 216 

infection. The percentage of vacuoles positive for this marker dropped to 15 ± 9% and to 5 ± 1% at 217 

60 and 90 min post infection, respectively (Fig 4). We next sought to determine whether the KCV 218 

acquires the late endosomal markers Lamp1 and Rab7 (Vieira et al. 2002,Flannagan et al. 2012). 219 

KCVs were positive for Lamp1 already at 15 min post infection and the percentage of positive 220 

KCVs increased over time (Fig 4). KCVs remained positive for Lamp1 until 7.5 h post infection. 221 

Rab7 is a small GTPase that controls vesicular transport to late endosomes and lysosomes in the 222 

endocytic pathway (Rink et al. 2005). To assess the presence of Rab7 on KCVs, macrophages were 223 

transfected with GFP-Rab7 and then infected with Kp43816R. The majority of the vacuoles 224 

containing Kp43816R were positive for both Rab7 and Lamp1 (Fig 4). To determine the activation 225 

status of Rab7 we asked whether RILP, a Rab7 effector protein that exclusively recognizes the 226 

active (GTP bound) conformation of Rab7 (Cantalupo et al. 2001,Jordens et al. 2001), labels the 227 

KCV. Before infection, cells were transfected with a plasmid containing GFP fused to the C-228 
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terminal Rab7-binding domain of RILP, called “RILP-C33”, which can be used as a reliable index 229 

of the presence and distribution of active Rab7 (Cantalupo et al. 2001,Jordens et al. 2001). As 230 

shown in Figure 4 RILP-C33-EGFP colocalized with the majority of KCVs. These vacuoles were 231 

also positive for Lamp1. 232 

 Since the interaction of Rab7 with RILP drives fusion with lysosomes (Cantalupo et al. 233 

2001,Jordens et al. 2001), we sought to determine whether KCV colocalizes with lysosomal 234 

markers. Although there are not markers that unambiguously distinguish late endosomes from 235 

lysosomes, mounting evidence indicates that an acidic luminal pH and the presence of hydrolytic 236 

proteases, such as processed cathepsin D, are characteristics of the phagolysosomal fusion (Vieira et 237 

al. 2002,Flannagan et al. 2012). We used the fixable acidotropic probe LysoTracker to monitor 238 

acidic organelles in infected macrophages. We found a major overlap between the dye and the 239 

KCVs (Fig 5), hence indicating that the KCV is acidic. We next examined the presence in the 240 

vacuole of cathepsin D as a marker for the lysosomal soluble content. The majority of the KCVs did 241 

not colocalize with cathepsin D (Fig 5), thereby suggesting that the KCV does not fuse with 242 

lysosomes. To further sustain this notion, we assessed KCV colocalization with TR-dextran. Prior 243 

to bacterial infection macrophages were pulsed with TR-dextran for 2 h followed by a 1 h chase in 244 

dye-free medium to ensure that the probe is delivered from early and recycling endosomes to 245 

phagolysosomes (Morey et al. 2011,Eissenberg et al. 1988,Hmama et al. 2004,Lamothe et al. 246 

2007). Confocal immunofluorescence showed that the majority of the KCVs did not colocalize with 247 

TR-dextran (Fig 5B). In contrast, when macrophages were infected with UV-killed Kp43816R more 248 

than 70% of the KCVs did colocalize with cathepsin D and TR-dextran 1.5 h post infection (Fig 249 

S7). Collectively, these results strongly support the notion that the majority of KCVs containing 250 

live bacteria prevent the fusion of the vacuole with lysosomes.  251 

 Similar findings were obtained when mTHP-1 cells were infected. KCV was not associated 252 

with compartments of the exocytic pathway, either Golgi network or endoplasmic reticulum, but 253 

acquired markers of the endocytic pathway, EEA1 and Lamp1 (Fig S8A). The majority of KCVs 254 
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colocalized with LysoTracker (Fig S8A) but they were negative for cathepsin D (Fig S8B). In 255 

contrast, nearly 70% of UV-killed Kp43816R colocalized with cathepsin D after 2 h post infection 256 

(Fig S8B). Altogether, these results indicate that only phagosomes containing UV-killed Klebsiella 257 

bacteria fuse with lysosomes in human macrophages. 258 

 In summary, these findings suggest that K. pneumoniae trafficks inside macrophages within 259 

vacuoles associated to the endocytic pathway, and that live bacteria perturb the fusion of the KCV 260 

with the hydrolases-rich lysosomal compartment. 261 

 262 

Inhibition of compartment acidification affects K. pneumoniae intracellular survival. 263 

 Phagosome acidification has been shown to be essential for the intracellular survival of 264 

several pathogens (Morey et al. 2011,Ghigo et al. 2002,Porte et al. 1999). Therefore, we 265 

investigated the effect of inhibiting KCV acidification on K. pneumoniae survival. Bafilomycin A1 266 

is a specific inhibitor of the vacuolar type H+-ATPase in cells, and inhibits the acidification of 267 

organelles containing this enzyme, such as lysosomes and endosomes. As expected, 268 

phagolysosomal acidification was sensitive to bafilomycin A1 treatment (Fig 6A), hence confirming 269 

dependence on the vacuolar H
+
-ATPase. Moreover, bafilomycin A1 treatment also abrogated the 270 

overlap between Kp43816R and the probe LysoTracker (Fig 6A). To assess the effect of vacuolar 271 

acidification on Kp43816R survival, cells were treated with bafilomycin A1 at the onset of the 272 

gentamicin treatment and bacteria were enumerated by plating at different time points.  Data shown 273 

in Figure 6C revealed that the number of intracellular Kp43816R decreased in bafilomycin A1 274 

treated cells over time compared to infected untreated cells. Control experiments revealed that 275 

bafilomycin A1 has no toxic effect on K. pneumoniae (our control experiments [data not shown]) or 276 

on other Gram-negative bacteria (Morey et al. 2011,Porte et al. 1999)). Microscopy analysis 277 

revealed that the percentages of Kp43186R colocalization with TR-dextran in bafilomycin A1 278 

treated cells either at 3.5 or 5.5 h post infection (19± 4 and 20 ± 5%, respectively) were similar to 279 

those in DMSO (vehicle solution)-treated cells (20 ± 4 and 24 ± 6 %, respectively). In turn, the 280 
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percentage of mCherry-GFP positive intracellular bacteria dropped from 85 ± 7 % in DMSO-treated 281 

cells to 25 ± 4 % in bafilomycin A1 treated cells already at 2.5 h post infection (P < 0.05 Mann-282 

Whitney U test). Altogether, these observations suggest that Kp43816R intracellular survival 283 

requires KCV acidification. 284 

 285 

PI3K-AKT and Rab14 contribute to K. pneumoniae intracellular survival. 286 

 S. enterica serovar typhimurium perturbs the fusion of the phagosomes with lysosomes by 287 

activating the host kinase Akt (Kuijl et al. 2007). In turn, inhibition of Akt activation reduces 288 

Salmonella intracellular survival (Kuijl et al. 2007,Chiu et al. 2009). Several pathogens also target 289 

the PI3K-Akt axis to manipulate cell biology for their own benefit (Krachler et al. 2011). Since 290 

Kp43816R induced the activation of Akt in a PI3K-dependent manner we sought to determine the 291 

contribution of the PI3K-Akt axis to the intracellular survival of K. pneumoniae. Treatment of cells 292 

with the PI3K inhibitor LY294002 or the Akt inhibitor AKT X at the onset of the gentamicin 293 

treatment reduced the number of intracellular bacteria in MH-S cells (Fig 7A). Moreover, 294 

microscopy analysis revealed that more than 70% bacteria colocalized with either TR-dextran or 295 

cathepsin D in cells treated with AKT X (Fig 7B and Fig S9). Collectively, these results support the 296 

notion that Kp43816R targets the PI3K-Akt axis to survive intracellularly. 297 

 At least 18 Rab GTPases are implicated in phagosomal maturation (Smith et al. 2007). 298 

Interestingly, Salmonella targets Rab14 to prevent phagosomal maturation in an Akt dependent 299 

manner (Kuijl et al. 2007). We speculated that Kp43816R may also target Rab14 to control the 300 

maturation of the phagosome. Immunofluorescence experiments revealed that GFP-Rab14 301 

colocalized with the KCVs (Fig 7C-D). To determine whether Rab14recruitment is required for 302 

intracellular survival, cells were transfected with a Rab14 dominant-negative construct (DN-Rab14) 303 

or control vector and then infected with Kp43816R. As shown in figure 7E, we found a 60% 304 

decrease in the number of intracellular bacteria in cells transfected with DN-Rab14. Supporting that 305 

Klebsiella recruited Rab14 to the KVC in an Akt-dependent manner, GFP-Rab14 did not colocalize 306 
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with the KCV in AKT X treated cells (7 ± 2 % percentage of colocalization at 2.5 h post infection)  307 

(Fig 7F).  308 

 In summary, our results are consistent with a model where Kp43816R targets the PI3K-Akt-309 

Rab14 axis to control the phagosome maturation to survive inside macrophages. 310 

 311 

K. pneumoniae capsule polysaccharide is dispensable for intracellular survival. 312 

 We were keen to identify K. pneumoniae factors necessary for intracellular survival. Given 313 

the importance of K. pneumoniae CPS on host-pathogen interactions, we explored whether CPS is 314 

also necessary for K. pneumoniae intracellular survival. As anticipated, a CPS mutant was engulfed 315 

by MH-S and mTHP1 macrophages in higher numbers than Kp43816R (data not shown). For the 316 

sake of comparison with the wild-type strain in time-course experiments, we adjusted the MOI of 317 

the CPS mutant to get comparable numbers of intracellular bacteria at the beginning of the 318 

infection. Time course experiments showed no differences between the number of intracellular 319 

bacteria of both strains in MH-S and mTHP1 cells (Fig 8A). 320 

 Given the critical role of CPS in preventing complement-mediated opsonophagocytosis 321 

(Alvarez et al. 2000,de Astorza et al. 2004,Cortes et al. 2002a), we evaluated whether the 322 

intracellular fate of the CPS mutant could be modified by bacterial opsonization with human serum. 323 

In agreement with previous reports (de Astorza et al. 2004,Cortes et al. 2002a), opsonization of the 324 

CPS mutant resulted in an increase in the number of ingested bacteria by mTHP1 cells compared to 325 

nonopsonized bacteria (Fig 8B). Fort he sake of comparison, the MOI was adjusted to get 326 

comparable numbers of intracellular bacteria at the beginning of the infection. The number of CFU 327 

recovered from cells infected with the opsonized CPS mutant was significantly lower than the 328 

number of CFU recovered from cells infected with non-opsonized bacteria (100 fold lower at 8 h 329 

post infection; Fig 8C). These data indicate that internalization via the C3 receptor results in a 330 

significant loss of intracellular viability, presumably because these bacteria are ultimately delivered 331 

to lysosomes. 332 
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 The lack of contribution of CPS to intracellular survival prompted us to analyze the 333 

expression of cps in the KCV. To monitor cps expression over time, we generated a transcriptional 334 

fusion in which the cps promoter region was cloned upstream a promoterless gfp that encodes a 335 

protein tagged at the C terminus with the (LVA) peptide. The GFP(LVA) protein is targeted for Tsp 336 

protease degradation within the bacteria and has been reported to have 40-min half-life, while 337 

untagged GFP is very stable (estimated in vivo half-life, 24 h) (Miller et al. 2000). We assessed 338 

GFP fluorescence in Kp43816R containing the unstable GFP reporter grown in LB. Klebsiella was 339 

stained using rabbit anti-Klebsiella serum followed by Rhodamine-conjugated donkey anti-rabbit 340 

secondary antibody. FACS analysis revealed an overlap between GFP fluorescence (green 341 

histogram) and Rhodamine fluorescence (red histogram) in bacteria grown in LB (Fig 8D, panel 342 

label as inoculum) which is in perfect agreement with the constitutive expression of cps by bacteria 343 

grown in LB. To investigate cps expression in intracellular bacteria, MH-S cells were infected with 344 

Kp43816R containing the GFP reporter. Cells were processed as described in Experimental 345 

procedures, and fluorescence analysed by FACS at different time points post infection. GFP 346 

fluorescence (green histograms) was measured in the gated Rhodamine positive population (red 347 

histograms). Data in Figure 8D shows that GFP fluorescence decreased over time in the 348 

intracellular bacteria reaching the levels of the control strain carrying the empty vector (grey 349 

histogram), which is considered negative for GFP fluorescence.  350 

To explore whether the acidic pH of the KCV might be responsible for the downregulation 351 

of cps expression, bacteria were grown in M9 mininal medium, with 8 µM magnesium sulfate, 352 

buffered to different pHs. The expression of the cps::gfp fusion was 5-fold lower when bacteria 353 

were grown at pH 5.5 than at pH 7.5 (Fig 8E). Similar results were obtained when the mRNA levels 354 

of wzi, orf7 and gnd, three genes of the cps operon (Arakawa et al. 1995), were assessed by real 355 

time quantitative PCR (RT-qPCR) (Fig 8F). 356 

Collectively, these findings show that K. pneumoniae CPS is dispensable for intracellular 357 

survival. In fact, the environment found by Klebsiella within the KCV triggers the downregulation 358 
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of the expression of cps. The fact that opsonization affects the intracellular survival of the CPS 359 

mutant indicates that the mechanism of bacteria entry into macrophages has a major impact in the 360 

ability of K. pneumoniae to survive intracellularly. 361 

  362 

DISCUSSION 363 

In this work, we present compelling evidence demonstrating that K. pneumoniae survives 364 

killing by macrophages by manipulating phagosome maturation. Our data sustain that K. 365 

pneumoniae traffics within vacuoles associated with the endocytic pathway in mouse and human 366 

macrophages. In contrast to UV-killed bacteria, which colocalize with lysosomal markers, live 367 

bacteria modify the vacuole biogenesis preventing the fusion of the KCV with the hydrolases-rich 368 

lysosomal compartment. K. pneumoniae thus increases the list of pathogens able to alter phagosome 369 

maturation.  370 

Engulfment of K. pneumoniae by mouse and human macrophages was dependent on host 371 

cytoskeleton, cell plasma membrane lipid rafts and the activation of PI3K which are all commonly 372 

needed to engulf pathogens and inert particles such as latex beads (Vieira et al. 2002,Flannagan et 373 

al. 2012). TEM analysis suggested that K. pneumoniae resides inside a vacuolar compartment and, 374 

by using FISH and two fluorescent markers tagging, we confirmed that intracellular bacteria are 375 

metabolically active. Several lines of evidence indicate that K. pneumoniae infections are associated 376 

with cell death (Willingham et al. 2009,Cano et al. 2009,Cai et al. 2012). In good agreement, in this 377 

study we show that K. pneumoniae triggers a programmed cell death in macrophages displaying 378 

features of apoptosis. Of note, kinase activity profiling in whole lungs during K. pneumoniae 379 

infection showed the activation of kinases associated to induction of apoptosis (Hoogendijk et al. 380 

2011). However, Willingham and co-workers reported that K. pneumoniae activates the NLRP3-381 

dependent cell death programme termed pyronecrosis (Willingham et al. 2009). Similar apparently 382 

contradictory findings have been reported for Shigella flexneri infections. Shigella triggers 383 

apoptotic and pyroptotic cell death in macrophages depending on the bacterial dosage and time of 384 
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infection (Willingham et al. 2007,Hilbi et al. 1998). In that case, short time of bacteria-cell contact 385 

and low MOI are associated to induction of apoptosis (Willingham et al. 2007,Hilbi et al. 1998). 386 

Notably, the infection conditions in our study are different to those used by Willingham and co-387 

workers who used a MOI four times higher than ours (Willingham et al. 2009). Future studies are 388 

warranted to carefully assess the influence of infection conditions on Klebsiella-induced cell death.   389 

Manipulation of cell death is a common pathogenic strategy not only for bacteria but also for 390 

viruses (Finlay and McFadden. 2006). In general, viruses either accelerate or inhibit apoptosis of 391 

the infected cell, depending on the biology of the specific virus. Like viruses, obligate intracellular 392 

bacteria generally suppress apoptotic death. Because apoptosis is a less inflammatory process than 393 

necrotic death, many nonobligate intracellular pathogens trigger apoptotic death to avoid cell to cell 394 

communications. Thus, Klebsiella-induced macrophage death by apoptosis could be considered a 395 

central aspect of Klebsiella infection biology taken into account the evidence demonstrating that 396 

alveolar macrophages play a critical role in the clearance of Klebsiella (Broug-Holub et al. 397 

1997,Cheung et al. 2000) and the importance of an early inflammatory responses to control the 398 

infection (Greenberger et al. 1996a,Greenberger et al. 1996b,Happel et al. 2005,Happel et al. 399 

2003). 400 

The vacuole of K. pneumoniae and its biogenesis was studied by immunofluorescence. The 401 

presence of EEA1 on the KCV indicates that internalized bacteria are initially present in a vacuole 402 

related to the endocytic pathway. However, K. pneumoniae does not remain in early endosomes as 403 

demonstrated by the acquisition of Lamp1 and Rab7. A hallmark of the maturation is the exclusion 404 

of lysosomal hydrolases in the majority of KCVs containing live bacteria. In contrast, more than 405 

50% of the KCVs containing UV-killed bacteria were positive for lysosomal markers already 90 406 

min post infection. The KCV is acidic most likely due to the activity of vacuolar proton-ATPases.  407 

Notably, inhibition of these pumps by bafilomycin A1 resulted in a decrease in intracellular 408 

bacterial numbers. Similar findings have been reported for non typable H. influenzae, Tropheryma 409 

whipplei, and Brucella suis (Morey et al. 2011,Ghigo et al. 2002,Porte et al. 1999).  The reduction 410 
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of intracellular viability may have several explanations. Bafilomycin A1 might affect other 411 

macrophage functions necessary for K. pneumoniae survival. An alternative hypothesis, and more 412 

appealing to us, is that K. pneumoniae requires a low pH environment for survival within the KCV 413 

which is in agreement with our data showing a significant decrease in the number of metabolic 414 

active intracellular bacteria in bafilomycin A1-treated cells. For example, the acidic environment 415 

may facilitate the uptake of nutrients by Klebsiella. Acidic pH is required for the transport of 416 

glucose in Coxiella burnetii (Howe and Mallavia. 2000) and localization in an acidic environment 417 

facilitates the availability of iron for the growth of Francisella turalensis (Fortier et al. 1995). In 418 

addition, low pH may regulate the expression of factors essential for intracellular survival. This has 419 

been shown to be true for virulence gene transcription in S. typhimurium (Yu et al. 2010). In this 420 

context, our data revealed that Klebsiella downregulates the expression of cps when residing within 421 

the KCV. Interestingly, when Klebsiella was cultured in low magnesium and acidic pH we also 422 

found a downregulation of cps expression. It is tempting to speculate that these signals could trigger 423 

cps downregulation within the KCV. In fact, we show here that the KCV is acidic and there are 424 

reports suggesting that the magnesium concentration in pathogen-containing vacuoles is in the 425 

micromolar range (Garcia-del Portillo et al. 1992). Future efforts will be devoted to characterize the 426 

chemical composition of the KCV as well as the transcriptional landscape of intracellular K. 427 

pneumoniae. 428 

 It was interesting to consider the mechanism(s) whereby K. pneumoniae prevents the fusion 429 

of the lysosomes to the KCV. The overall resemblance between the KCV and the Salmonella 430 

containing vacuole (acidic Lamp-1-positive cathepsin-negative vacuole) prompted us to explore 431 

whether K. pneumoniae employs similar strategies as Salmonella to subvert phagosome maturation. 432 

Kuijl and coworkers (Kuijl et al. 2007) demonstrated that S. typhimurium activates Akt to prevent 433 

phagosome-lysosome fusion. Since K. pneumoniae activates Akt in vitro (this work and (Frank et 434 

al. 2013)) and in vivo (Hoogendijk et al. 2011) we speculated that activated Akt may also promote 435 

Klebsiella intracellular survival. Indeed this was the case. Akt inhibition resulted in a significant 436 
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decrease in bacterial intracellular survival associated with an increased colocalization of the KCV 437 

with lysosomal markers. The fact that Akt is implicated in the intracellular survival of other 438 

pathogens, including M. tuberculosis (Kuijl et al. 2007), strongly suggests that this kinase is a 439 

central host node targeted by pathogens to take control over cellular functions.  440 

 PI3K/Akt governs phagosome maturation by controlling, at least, the activation of Rab 441 

GTPases (Thi and Reiner. 2012), although Rab14 is emerging as a central Rab in this process. 442 

Previous data indicate that pathogens hijack Rab14 to manipulate phagosome maturation. The M. 443 

tuberculosis vacuole recruits and retains Rab14 to maintain early endosomal characteristics (Kyei et 444 

al. 2006) whereas S. typhimurium containing vacuole retains Rab14 in an Akt-dependent manner to 445 

arrest phagosome maturation (Kuijl et al. 2007). Immunofluorescence confirmed that the KCV is 446 

positive for Rab14 in an Akt-dependent manner whereas transient transfection of the dominant-447 

negative Rab14 resulted in a decrease in bacteria intracellular survival. In aggregate, this evidence 448 

supports a scenario in which K. pneumoniae manipulates phagosome maturation by targeting a 449 

PI3K-Akt-Rab14 pathway. Nevertheless, we do not rule out that there are additional pathways 450 

necesary for Klebsiella intracellular survival.  451 

 We were keen to identify the bacterial factors interfering with the phagosomal maturation 452 

pathway. Given the critical role of K. pneumoniae CPS in preventing host defense responses (March 453 

et al. 2013,Regueiro et al. 2006,Lawlor et al. 2005,Frank et al. 2013,Moranta et al. 2010,Campos et 454 

al. 2004,Lawlor et al. 2006), we hypothesized that CPS is necessary for intracellular survival.  To 455 

our initial surprise, CPS does not play a large role, if any, in intracellular survival of Klebsiella 456 

since a cps mutant did not display any loss of viability upon phagocytosis. Furthermore, the cps 457 

mutant also triggered a programmed cell death in macrophages (data not shown). At first glance, 458 

these findings may seem contradictory with the well-established role of CPS in K. pneumoniae 459 

virulence. However, considering the presence of complement in the bronchoalveolar fluid (Wu et 460 

al. 2005), the fact that opsonization results in more efficient internalization of pathogens and 461 

maturation of phagosomes (Aderem and Underhill. 1999), and the well-known role of CPS in 462 
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preventing complement opsonization (de Astorza et al. 2004,Cortes et al. 2002a), we hypothesized 463 

that the cps mutant opsonization is deleterious to its intracellular fate. Indeed, this was the case 464 

hence revealing the critical role of CPS on Klebsiella-macrophage interplay. These results also 465 

illustrate how the mode of entry of a pathogen influences its intracellular outcome. Similar findings 466 

have been reported for other pathogens (Geier and Celli. 2011,Gordon et al. 2000,Drevets et al. 467 

1993) but it cannot be considered a general feature since complement opsonization does not affect 468 

the intracellular fate of Salmonella and M. tuberculosis (Drecktrah et al. 2006,Zimmerli et al. 469 

1996).  470 

At present we can only speculate why Klebsiella downregulates the expression of cps once 471 

inside the KCV. Since CPS biosynthesis is a metabolically demanding process, Klebsiella may 472 

downregulate cps expression to better survive in the intracellular environment poor in nutrients.  It 473 

is also plausible that CPS may interfiere with Klebsiella factors implicated in the intracellular 474 

survival. Current efforts of the laboratory are devoted to identify these factors. 475 

Finally, it is worthwhile commenting on the clinical implications of this study. The 476 

antibiotics commonly used to treat Klebsiella infections are not very efficient against intracellular 477 

bacteria. In turn, our findings provide rationale for the use of inhibitors targeting the PI3K-Akt 478 

signaling cascade to eliminate intracellular K. pneumoniae. The concept of eradicating pathogens 479 

through targeting host factors modulated by pathogens has received wide attention in the infectious 480 

disease arena. Several promising drugs have been developed or are being developed to antagonize 481 

PI3K/Akt due to its relevance for many human cancers. Of note, there are in vitro and in vivo 482 

studies supporting the use of Akt inhibitors to eliminate intracellular Salmonella and M. 483 

tuberculosis (Kuijl et al. 2007,Chiu et al. 2009). Therefore, we propose that agents targeting 484 

PI3K/Akt might provide selective alternatives to manage K. pneumoniae pneumonias. Careful 485 

designed preclinical trials using the well establish mouse pneumonia model are warranted to test 486 

this hypothesis. 487 

 488 
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EXPERIMENTAL PROCEDURES 489 

Bacterial strains and growth conditions. 490 

 Kp43816R is a rifampicin-resistant derivative of K. pneumoniae pneumonia clinical isolate 491 

[ATCC 43816; (Bakker-Woudenberg et al. 1985)]. This strain has been widely used to study the 492 

host response to Gram-negative pneumonia because it recapitulates acute pneumonia with fatal 493 

systemic spread at a relatively low infectious dose. Kp43816R expresses a type 1 O-polysaccharide 494 

and a type 2 capsule.  Bacteria were grown in lysogeny broth (LB) at 37ºC on an orbital shaker (180 495 

rpm). To UV kill bacteria, samples were UV irradiated (1 joule for 15 min) in a BIO-LINK BLX 496 

crosslinker (Vilber Lourmat). When appropriate, antibiotics were added to the growth medium at 497 

the following concentrations: rifampicin (Rif) 50 µg/ml, ampicillin (Amp), 100 µg/ml for K. 498 

pneumoniae and 50 µg/ml for E. coli; kanamycin (Km) 100 µg/ml; chloramphenicol (Cm) 12.5 499 

µg/ml.  500 

Construction of a K. pneumoniae cps mutant.  501 

 Primers for manC mutant construction were designed from the known K. pneumoniae K2 502 

gene cluster sequence (Arakawa et al. 1995). Primer pairs ManCUPF (5’- 503 

CGCTTAAAGACCAGCGTGTCG -3’), ManCUPR (5´- 504 

CGGATCCGATCAGCGGGTCGTCGCCGTG -3’), and ManCDOWNF (5´- 505 

CGGATCCGCAGCGACGAGAAGCTGGTGG-3’ BamHI site underlined), ManCDOWNR (5’- 506 

GGATATCCCGCAGGCCGGTG -3’) were used in two sets of asymmetric PCRs to obtain DNA 507 

fragments ManCUP and ManCDown, respectively. DNA fragments ManCUP and ManCDOWN 508 

were annealed at their overlapping region and amplified by PCR as a single fragment using primers 509 

ManCUPF and ManCDOWNR. This PCR fragment was cloned into pGEM-T Easy to obtain 510 

pGEMT∆manC. A kanamycin cassette, obtained as a 1.5 kb PCR fragment from pKD4 (Datsenko 511 

and Wanner. 2000) using primers cassette-F1 (5’- 512 

CGCGGATCCGTGTAGGCTGGAGCTGCTTCG-3’ BamHI site underlined) and cassette-R1 (5’- 513 

CGCGGATCCCATGGGAATTAGCCATGGTCC -3’ BamHI site underlined), was BamHI-514 
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digested and cloned into BamHI-digested pGEMT∆manC to obtain pGEMTmanCKm. Primers 515 

ManCUPF and ManCDOWNR were used to amplify a 3.5 kb fragment which was electroprated 516 

into Kp43816R containing pKOBEG-sacB plasmid (Derbise et al. 2003). The vector pKOBEG-517 

sacB contains the Red operon expressed under the control of the arabinose inducible pBAD 518 

promoter and the sacB gene that is necessary to cure the plasmid. A recombinant in which the wild-519 

type allele was replaced by man::Km was verified by PCR and named 43manCKm. The mutant 520 

was resistant to the CPS-specific phage 2.  521 

Eukaryotic cells culture. 522 

 Murine alveolar macrophages MH-S (ATCC, CRL-2019) and human monocytes THP-1 523 

(ATCC, TIB-202) were grown in RPMI 1640 tissue culture medium supplemented with 10% heat-524 

inactivated fetal calf serum (FCS) and 10 mM Hepes at 37ºC in an humidified 5% CO2 atmosphere. 525 

THP-1 cells were differentiated to macrophages by PMA-treatment (10 ng/ml for 12 h).  526 

Infection of macrophages.  527 

 Macrophages were seeded in 24-well tissue culture plates at a density of 7 x 10
5
 cells per 528 

well 15 h before the experiment. Bacteria were grown in 5-ml LB, harvested in the exponential 529 

phase (2500 x g, 20 min, 24ºC), washed once with PBS and a suspension containing approximately 530 

1x10
9
 cfu/ml was prepared in 10 mM PBS (pH 6.5). Cells were infected with 35 μl of this 531 

suspension to get a multiplicity of infection of 50:1 in a final volume of 500 l RPMI 1640 tissue 532 

culture medium supplemented with 10% heat-inactivated FCS and 10 mM Hepes. To synchronize 533 

infection, plates were centrifuged at 200 x g during 5 min. Plates were incubated at 37ºC in a 534 

humidified 5% CO2 atmosphere. After 30 min of contact, cells were washed twice with PBS and 535 

incubated for additional 90 min with 500 l RPMI 1640 containing 10% FCS, 10 mM Hepes, 536 

gentamicin (300 μg/ml) and polymyxin B (15 g/ml) to eliminate extracellular bacteria. This 537 

treatment did not induce any cytotoxic effect which was verified measuring the release of lactate 538 

dehydrogenase (LDH) and by immunofluorescence microscopy (data not shown). For time course 539 
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experiments, after the 90 min treatment period, cells were washed three times with PBS and 540 

incubated with 500 l RPMI 1640 containing 10% FCS, 10 mM Hepes, gentamicin (100 μg/ml).  541 

To determine intracellular bacterial load, cells were washed three times with PBS and lysed 542 

with 300 l of 0.5% saponin in PBS for 10 min at room temperature. Serial dilutions were plated on 543 

LB to quantify the number of intracellular bacteria. Intracellular bacterial load is represented as cfu 544 

per well. All experiments were done with triplicate samples on at least three independent occasions.  545 

When indicated, cells were pre-incubated for 1 h with nocodazole (50 g/ml), filipin (5 546 

g/ml), 
 
nystatin (25 g/ml), LY294002 hydrochloride (75μM), or for 30 min with cytochalasin D 547 

(5 μg/ml) before carrying out infections as described above. Cells were also pre-incubated for 1 h 548 

with 1 mM methyl-β-cyclodextrin (MβCD), washed twice with PBS to remove cholesterol and 549 

infected. In other experiments, LY294002 hydrochloride (75μM), AKT X (10 μM), or 100 nM 550 

bafilomycin A1 were added to the cells during the gentamicin treatment and kept until the end of 551 

experiment. Exposure to these drugs had no effect on cell and bacterial viability under the 552 

conditions tested. All drugs were purchased from Sigma. 553 

Immunofluorescence and transmission electron microscopy.  554 

Cells were seeded on 12 mm circular coverslips in 24-well tissue culture plates. Infections 555 

were carried out as described before with K. pneumoniae strains harbouring pFPV25.1Cm (March 556 

et al. 2013). Control experiments showed that there were no differences in the number of 557 

intracellular bacteria recovered over time from cells infected with bacteria containing pFPV25.1Cm 558 

or no plasmid (data not shown). When indicated, cells were washed three times with PBS and fixed 559 

with 3% paraformaldehyde (PFA) in PBS pH 7.4 for 15 min at room temperature. For EEA1 560 

staining, cells were fixed with 2.5% PFA for 10 min at room temperature followed by 5% PFA + 561 

methanol (1:4 v/v) at -20°C for 5 min. Methanol fixation (3% PFA for 20 min at room temperature 562 

followed by 1 min cold methanol) was used for cathepsin D whereas periodate-lysine-563 

paraformaldehyde fixation (0.01 M NaIO4, 0.075 M L-lysine, 0.0375 M NaPO4 buffer pH 7.4, 2% 564 

paraformaldehyde: 20 min room temperature) was used for calnexin. The actin cytoskeleton was 565 
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stained with Rhodamine-Phalloidin (Invitrogen) diluted 1:100, DNA was stained with Hoecsht 566 

33342 (Invitrogen) diluted 1:2500. Klebsiella was stained with rabbit anti-Klebsiella serum diluted 567 

1:5000. Early endosomes were stained with goat anti-EEA1 (N-19) antibody (Santa Cruz 568 

Biotechnology) diluted 1:50. Late endosomes were stained with rat anti-Lamp-1 (1D4B) antibody 569 

(Developmental Studies Hybridoma Bank). Lysosomes were labelled with goat anti-human 570 

cathepsin D (G19) or rabbit anti-human cathepsin D (H-75) antibodies (Santa Cruz Biotechnology) 571 

diluted 1:100. Golgi network was stained with mouse anti-GM130 (BD Laboratories) diluted 1:400. 572 

Endoplasmic reticulum was stained with rabbit anti-calnexin (SPA-860; Enzo Life Sciences) diluted 573 

1:400. Donkey anti-rabbit, donkey anti-mouse, donkey anti-rat and donkey anti-goat conjugated to 574 

Rhodamine, Cy5 or Cy2 secondary antibodies were purchased from Jackson Immunological and 575 

diluted 1:200. Donkey anti-rabbit conjugated to AlexFluor 595 and goat anti-rabbit conjugated to 576 

Cascade blue antibodies (Life technologies) were diluted 1:200. 577 

Fixable dextran 70,000 (molecular weight) labelled with Texas red (TR-dextran) (Molecular 578 

Probes) was used to label lysosomes in a pulse-chase assay. Briefly, macrophages seeded on glass 579 

coverslips were labelled by pulsing with 250 g/ml of TR-dextran for 2 h at 37ºC in 5% CO2 in 580 

RPMI 1640 medium. To allow TR-dextran to accumulate in lysosomes, medium was removed; cells 581 

were washed three times with PBS, and incubated for 1 h in dye-free medium (chase). After the 582 

chase period, cells were infected.  583 

LysoTracker Red DND-99 (Invitrogen) was used to label acidic organelles following the 584 

instructions of the manufacturer. 0.5 M Lysotracker RedDN99 was added to the tissue culture 585 

medium 30 min before fixing the cells. The residual fluid marker was removed by washing the cells 586 

three times with PBS, followed by fixation.  587 

Staining was carried out in 10% horse serum, 0.1% saponin in PBS. Coverslips were washed 588 

twice in PBS containing 0.1% saponin, once in PBS, and incubated for 30 minutes with primary 589 

antibodies. Coverslips were then washed twice in 0.1% saponin in PBS and once in PBS and 590 

incubated for 30 minutes with secondary antibodies. Finally, coverslips were washed twice in 0.1% 591 
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saponin in PBS, once in PBS and once in H2O, mounted on Aqua Poly/Mount (Polysciences). 592 

Immunofluorescence was analysed with a Leica CTR6000 fluorescence microscope. Images were 593 

taken with a Leica DFC350FX monochrome camera. Confocal microscopy was carried out with a 594 

Leica TCS SP5 confocal microscope. Depending of the marker, a KCV was considered positive 595 

when it fulfilled these criteria: (i) the marker was detected throughout the area occupied by the 596 

bacterium; (ii) the marker was detected around/enclosing the bacterium, (iii) the marker was 597 

concentrated in this area, compared to the immediate surroundings. To determine the percentage of 598 

bacteria that colocalized with each marker, all bacteria located inside a minimum of 100 infected 599 

cells were analysed in each experiment. Experiments were carried out by triplicate in three 600 

independent occasions.  601 

For extra-/intracellular bacteria differential staining, PFA fixed cells were incubated with 602 

PBS containing 10% horse serum, Hoechst 33342 and rabbit anti-Klebsiella  for 20 min. Coverslips 603 

were washed three times with PBS and stained as described above with donkey anti-rabbit 604 

conjugated to Rhodamine secondary antibody. Coverslips were washed three times in PBS and once 605 

in distilled water before mounting onto glass slides using Prolong Gold antifade mounting gel 606 

(Invitrogen).  607 

For transmission electron microscopy (TEM), cells were seeded in 24-well tissue culture 608 

plates. Infections were carried out as described before, fixed with glutaraldehyde and processed for 609 

TEM as described previously (Kruskal et al. 1992). 610 

Assessment of intracellular bacteria viability 611 

(i) Fluorescent in situ hybridisation 612 

 We carried out hybridization of PFA fixed infected cells with fluorescently labelled 613 

oligonucleotides as described before (Morey et al. 2011). Alexa488 conjugated DNA probes 614 

EUB338 (5’-GCTGCCTCCCGTAGGAGT-3’) and GAM42a (5’-GCCTTCCCACATCGTTT-3’) 615 

were designed for specific labelling of rRNA of eubacteria and gamma subclass of Proteobacteria, 616 

respectively (Manz et al. 1993). A DNA probe non-EUB338, complementary to EUB338 was used 617 
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as a negative control. The detectability of bacteria by such oligonucleotide probes is dependent on 618 

the presence of sufficient ribosomes per cell, hence providing qualitative information on the 619 

physiological state of the bacteria on the basis of the number of ribosomes per cell. These probes 620 

were used together to obtain a stronger signal, added to a final concentration of 5 nM each in the 621 

hybridation buffer. The hybridization buffer contained 0.9M NaCl, 20mM Tris-HCl (pH 7.4), 622 

0.01% sodium dodecyl sulfate (SDS) and 35% formamide. Coverslips were first washed with 623 

deionized water. Hybridization was carried out for 1.5 h at 46ºC in a humid chamber; followed by a 624 

30 min wash at 48ºC. Washing buffer contained 80 mM NaCl, 20 mM Tris-HCl (pH 7.4), 0.01% 625 

sodium dodecyl sulfate (SDS) and 5 mM EDTA (pH 8). After washing, DNA staining for total 626 

bacteria was carried out by incubating the coverslips in PBS containing Hoechst 33342 for 20 min. 627 

Coverslips were then washed three times in PBS and once in distilled water before mounting onto 628 

glass slides using Prolong Gold antifade mounting gel.  629 

(ii) Two fluorescent markers tagging 630 

 pJT04mCherry, expressing mCherry constituvely (kindly donated by Miguel Valvano, to 631 

be described elsewhere), and pMMB207gfp3.1 (Pujol et al. 2005), expressing gfpmut3.1 under the 632 

control of an IPTG-inducible promoter, were conjugated into Kp43816R. Control experiments 633 

confirmed that UV-killed Klebsiella was always mCherry positive and GFP negative whereas live 634 

Klebsiella was mCherry positive and only GFP positive if IPTG was added (1 mM, 1.5 h) to the 635 

medium. Cells were infected with Kp43816R harbouring both plasmids and IPTG was added to the 636 

medium 1.5 h before fixing the cells with PFA. To stain extracellular bacteria, PFA fixed cells were 637 

incubated with PBS containing 10% horse serum, and rabbit anti-Klebsiella for 20 min. Coverslips 638 

were washed three times with PBS and stained as described above with goat anti-rabbit antibodies 639 

conjugated to Cascade Blue (C2764, Life Technologies). Immunofluorescence was analysed with a 640 

Leica CTR6000 fluorescence microscope. Images were taken with a Leica DFC350FX 641 

monochrome camera. 642 

Isolation of in vivo infected macrophages 643 
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Mice were treated in accordance with the Directive of the European Parliament and of the 644 

Council on the protection of animals used for scientific purposes (Directive 2010/63/EU) and in 645 

agreement with the UK Home Office (licence PLZ 2700) and the Bioethical Committee of the 646 

University of the Balearic Islands (authorisation number 1748). 647 

Infections were performed as previously described (Insua et al. 2013). Briefly, five- to 648 

seven-week-old male C57BL/6 mice (Harlan) were anesthetized by intraperitoneal injection with a 649 

mixture containing ketamine (50 mg/kg) and xylazine (5 mg/kg). Overnight bacterial cultures were 650 

centrifuged (2500 x g, 20 min, 22ºC), resuspended in PBS and adjusted to 5 x 10
4
 CFU/ml for 651 

determination of bacterial loads. 20 μl of the bacterial suspension were inoculated intranasally in 652 

four 5 μl aliquots. To facilitate consistent inoculations, mice were held vertically during inoculation 653 

and placed on a 45° incline while recovering from anaesthesia. 24 h post infection, mice were 654 

euthanized by cervical dislocation and bronchoalveolar lavage was performed as previously 655 

described (Cai et al. 2012). The lavage fluid from four mice was pooled together and spun at 300 x 656 

g for 10 min to pellet alveolar macrophages. Cells were cultured on 12 mm circular coverslips in 657 

24-well tissue culture plates at a concentration of 0.5 x 10
6
 cells/well in 1 ml RPMI 1640 tissue 658 

culture medium supplemented with 10% heat-inactivated FCS and 10 mM Hepes and gentamicin 659 

(100 μg/ml). After 2 h of incubation, nonadherent cells were washed off with PBS, and cells were 660 

fixed. Cathepsin D staining was performed as previously described. To label lysosomes using TR-661 

dextran, after washing off the nonadherent cells, the attached macrophages were pulsed with TR-662 

dextran (250 g/ml) for 2 h  in RPMI 1640 medium containing gentamicin (100 μg/ml). Cells were 663 

washed three times with PBS, and incubated for 1 h in dye-free medium (chase). After the chase 664 

period, cells were fixed. Immunofluorescence was analysed with a Leica TCS SP5 confocal 665 

microscope.  666 

Neutral red uptake assay for the estimation of cell viability. 667 

Cell viability was determined by assessing the ability of viable cells to incorporate and bind 668 

the supravital dye neutral red in the lysosomes. The protocol described by Repetto and coworkers 669 
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(Repetto et al. 2008) was followed with minor modifications. Macrophages were seeded on 96-well 670 

tissue culture plates at 5 x 10
5
 cells/well 18 h before the experiment. Cells were infected to get a 671 

multiplicity of infection of 50:1 in a final volume of 200 l RPMI 1640 tissue culture medium 672 

supplemented with 10% heat-inactivated FCS and 10 mM Hepes. To synchronize infection, plates 673 

were centrifuged at 200 x g during 5 min. Plates were incubated at 37ºC in a humidified 5% CO2 674 

atmosphere. After 90 min of contact, cells were washed twice with PBS and incubated overnight 675 

with 200 l RPMI 1640 containing 10% FCS, 10 mM Hepes, gentamicin (100 μg/ml). Cells were 676 

washed twice with PBS and incubated with 100 l of freshly prepared neutral red medium (final 677 

concentration 40 g/ml neutral red [Sigma] in tissue culture medium) for 2 h. Wells were washed 678 

once with PBS and the remaining biomass-adsorbed neutral red was solubilized with 150 l neutral 679 

red destaining solution (50% ethanol 96%; 49% deionised water, 1% glacial acetic acid). Staining 680 

was then quantified by determining the OD540 in a 96-well microplate reader, and used to compare 681 

relative neutral red staining of uninfected cells and cells that were lysed completely with 1% Triton 682 

X-100. Experiments were carried out by triplicate in six independent occasions.  683 

Detection of Akt phosphorylation by Western blotting  684 

Macrophages were seeded on 6-well tissue culture plates at 10
6
 cells/well. Cells were 685 

infected with Kp43816R , washed 3 times with cold PBS, scraped and lysed with 100 l lysis buffer 686 

(1x SDS Sample Buffer, 62.5 mM Tris-HCl pH 6.8, 2% w/v SDS, 10% glycerol, 50 mM DTT, 687 

0.01% w/v bromophenol blue) on ice. Samples were sonicated, boiled at 100ºC for 10 min and 688 

cooled on ice before polyacrylamide gel electrophoresis and Western Blotting. Akt phosphorylation 689 

was detected with primary rabbit anti-phospho Ser473 Akt (Cell Signaling Technology) antibody 690 

diluted 1:1,000 and secondary goat anti-rabbit antibody conjugated to horseradish peroxidase 691 

(Thermo Scientific) diluted 1:10,000. Tubulin was detected with primary mouse anti-tubulin 692 

antibody (Sigma) diluted 1:3,000 and secondary goat anti-mouse antibody (Pierce) conjugated to 693 

horseradish peroxidase diluted 1:1,000. To detect tubulin, membranes were reprobed after stripping 694 
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of previously used antibodies using Western Blot Stripping Buffer (Thermo Scientific). Images 695 

were recorded with a GeneGnome HR imaging system (Syngene). 696 

Apoptosis analysis in vitro. 697 

Apoptosis of macrophages was analysed as previously described (Aguilo et al. 2013). 698 

Briefly, phosphatydylserine exposure and membrane integrity were analyzed by using Annexin-V 699 

and 7-AAD (BD Biosciences) and FACS according to manufacturer instructions. Cells were 700 

washed with PBS and incubated with APC-conjugated Annexin-V and 7-AAD in Annexin-binding 701 

buffer for 15 min. After that, cells were washed twice with PBS, fixed with 4% PFA during 30 min 702 

and washed again with PBS. Both PBS and PFA contained 2.5 mM CaCl2. 703 

Bacterial opsonisation. 704 

 Normal human serum (NHS), kindly donated by the Balearics Blood Centre, was obtained 705 

from five different donors (blood type O negative) and kept frozen at -80
o
C. 35 µl from a 706 

suspension containing approximately 1x10
9
 cfu/ml in 10 mM PBS (pH 6.5) were added to 500 µl 707 

RPMI 1640 tissue culture medium supplemented with 10 mM Hepes and 1% NHS. The suspension 708 

was incubated at 37
o
C shaking (180 rpm) for 45 min. The suspension was used to infect mTHP1 709 

cells as previously described. 710 

Plasmids and transient transfections 711 

For transient transfections with GFP-Rab7 (Addgene plasmid #28047) (Sun et al. 2010), 712 

GFP-Rab14 (Kuijl et al. 2007), and RILP-C33-EGFP (Cantalupo et al. 2001), the Neon transfection 713 

system was used (Life Technologies). 8 x 10
6
 cells were transfected (1400 v, 30 ms and 1 pulse) 714 

with 2 µg of plasmid DNA. After, cells were seeded on 12 mm circular coverslips in 24-well tissue 715 

culture plates and 24 h later were infected. In all cases, samples were fixed, stained and analysed by 716 

immunofluorescence microscopy. pcDNA3 and DN-Rab14 (Seto et al. 2011) were transfected 717 

using jetPEI-macrophage (Polyplus) following manufacturer´s instructions. After 24 h, cells were 718 

washed twice with PBS, infected, and intracellular bacterial load determined as previously 719 

described. 720 
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Construction of cps reporter strain 721 

DNA fragment containing the promoter region of the Kp43816R capsule operon was 722 

amplified by PCR using Vent polymerase (NewEngland Biolabs) and primers K2ProcpsF (5’- 723 

gaattcTGCTGGGACAAATTGCCACC-3’) and K2ProcpsR (5’- 724 

AGATGGATGACCCCGCGATC-3’). To construct a green fluorescent protein (GFP) reporter,  the 725 

PCR product was EcoRI-digested and cloned into the EcoRI-SmaI digested low-copy-number 726 

vector pPROBE’-gfp[LVA] (Miller et al. 2000) to obtain pPROBE’43Procps.  The plasmid was 727 

introduced into Kp43816R by electroporation.  728 

Analysis of cps expression 729 

The reporter strain was grown at 37ºC on an orbital incubator shaker (180 r.p.m.) until 730 

OD540 1.2. The cultures were harvested (2500 x g, 20 min, 24ºC) and resuspended to an OD540 of 731 

0.6 in PBS. 0.8-ml aliquot of this suspension was transferred to 1-cm fluorimetric cuvette and 732 

fluorescence was measured with a spectrofluorophotomoter (Perkin Elmer LS55) set as follows: 733 

excitation, 485 nm; emission, 528 nm; slit width 5 nm; integration time 5 seconds. Results were 734 

expressed as relative fluorescence units (RFU). All measurements were carried out in quintuplicate 735 

on at least three separate occasions.   736 

To obtain RNA, bacteria were grown at 37
o
C in 5 ml of medium on an orbital incubator 737 

shaker (180 r.p.m.) until an OD600 of 0.3. 3 ml of RNA later solution were added to the culture and 738 

the mixture was incubated for 20 min to prevent RNA degradation. Total RNA was extracted using 739 

Trizol as recommended by the manufacturer (Life Technology). The purification included a 740 

DNAase treatment step. cDNA was obtained by retrotranscription of 1 μg of total RNA using a 741 

commercial M-MLV Reverse Transcriptase (Sigma), and random primers mixture (Invitrogen). 20 742 

ng of cDNA were used as a template in a 10-μl reaction. RT-PCR analyses were performed with a 743 

Mx3005P qPCR System (Agilent Technologies) and using a KapaSYBR Fast qPCR Kit as 744 

recommended by the manufacturer (Kapa biosystems). The thermocycling protocol was as follows; 745 

95°C for 3 min for hot-start polymerase activation, followed by 40 cycles of 95°C for 10 s, and 746 



 30 

56°C for 20 s. SYBR green dye fluorescence was measured at 521 nm. cDNAs were obtained from 747 

two independent extractions of mRNA and each one amplified by RT-qPCR in two independent 748 

occasions. Relative quantities of wzi, orf7 and gnd mRNAs were obtained using the comparative 749 

threshold cycle (ΔΔCT) method by normalizing to rpoD gene. Primers used were: Kpn_RpoD_F1 750 

(5’-CCGGAAGACAAAATCCGTAA-3’) and Kpn_RpoD_R1 (5’-751 

CGGGTAACGTCGAACTGTTT-3’); Kp43/52_wzi_F2 (5’-TCGACCGCAATCATTCAGCA-3’) 752 

and Kp43/52_wzi_R2 (5’-CATCCTTACCCCAGCCGTG-3’); Kp43/52_orf7_F1 (5’-753 

ATCAAGATTGCCGACGTTTCT-3’) and Kp43/52_orf7_R1 (5’-754 

GCCTCTACCGCAACTAATCCA-3’); Kp43/52_gnd_F1 (5’-GGATC CGGCGAACCTCTTT-3’) 755 

and Kp43/52_gnd_R1 (5’-GCCCTGAGCATAGGAAACGA-3’). 756 

 For analysis of cps expression from intracellular bacteria, macrophages were seeded in 6-757 

well plates and infected with Kp43816R containing pPROBE’43Procps or pPROBE’-gfp[LVA] 758 

control vector at a MOI of 150:1. After 40 min, cells were washed twice with PBS and incubated 759 

with 500 l RPMI 1640 containing 10% FCS, 10 mM Hepes, gentamicin (300 μg/ml) and 760 

polymyxin B (15 g/ml) to eliminate extracellular bacteria. At the indicated time points, cells were 761 

lysed with 900 µl 0.5 % saponin in PBS. The samples from two wells were combined and serial 762 

dilutions were plated on LB to quantify the number of intracellular bacteria. Control experiments 763 

showed that there were no differences in the number of intracellular bacteria recovered over time 764 

from cells infected with bacteria containing pPROBE’-gfp[LVA] derivatives or no plasmid (data 765 

not shown). By replica plating on plates containing kanamycin, it was determined that 85-100% of 766 

the bacteria contained the reporter plasmid at any time point analysed. The rest of the lysate was 767 

centrifuged (13 000 rpm, 1 min, room temperature) and resuspended in 1 ml 1 % BSA in PBS for 768 

staining. Bacteria were stained with rabbit anti-Klebsiella serum diluted 1:5000 for 20 min, washed 769 

twice with PBS, and incubated for 20 min with a 1:200 dilution of Rhodamine-conjugated donkey 770 

anti-rabbit secondary antibody. Flow cytometry analyses were performed using a Cultek Epics XL 771 

flow cytometer. Samples were gated for bacteria-like particles by using the rhodamine fluorescence 772 
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of the anti-Klebsiella labelling to identify bacterial cells and to exclude mammalian cell debris and 773 

background noise. Lysed and stained uninfected macrophages were not rhodamine positive, 774 

indicating that there was no cross-reactivity of the primary or secondary antibodies with MH-S 775 

cells. Fluorescence compensation settings were determined in parallel under identical conditions by 776 

using the constitutively GFP-expressing Kp43816R strain or the non-expressing strain, with and 777 

without anti-Klebsiella antibody labelling. Approximately 10,000 events identified as Klebsiella 778 

cells were collected per sample. A histogram of GFP fluorescence for the negative-control sample 779 

(bacteria containing pPROBE’-gfp[LVA] ) was created, and the area of the histogram containing 780 

the bacterial population was considered to be negative for GFP fluorescence. All experiments were 781 

done with triplicate samples on at least three independent occasions. 782 

Statistical analysis. 783 

 Statistical analyses were performed using the one-tailed t test or, when the requirements 784 

were not met, by the Mann-Whitney U test. P < 0.05 was considered statistically significant. The 785 

analyses were performed using Prism4 for PC (GraphPad Software). 786 
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FIGURE LEGENDS 1019 

FIGURE 1. Phagocytosis of K. pneumoniae by macrophages. 1020 

(A) Immunofluorescence confocal microscopy showing the lack of colocalisation between K. 1021 

pneumoniae and the lysosome marker cathepsin D or TR-dextran (pulse-chase experiment 1022 

described in Experimental procedures) in macrophages isolated from the BALF of infected mice 1023 

with Kp43816R harbouring pFPV25.1Cm. Methanol fixation was used for cathepsin D staining. (B) 1024 

Involvement of PI3K, cytoskeleton and lipid rafts on Kp43816R phagocytosis by MH-S cells. (C) 1025 

Immunoblot analysis of Akt phosphorylation (P-Akt) in lysates of MH-S cells infected with live or 1026 

UV-killed Kp43816R for the indicated times (in minutes). Membranes were probed for tubulin as a 1027 

loading control. Images are representative of three independent experiments. (D) Immunoblot 1028 

analysis of Akt phosphorylation (P-Akt) in lysates of PI3K inhibitor (LY294002) or DMSO 1029 

(vehicle solution)-treated MH-S cells infected with Kp43816R for 20 min. Membranes were probed 1030 

for tubulin as a loading control. Images are representative of three independent experiments.  1031 

FIGURE 2. Dynamics of K. pneumoniae survival in MH-S cells. 1032 

(A) MH-S cells were infected with Kp43816R for 30 min (MOI 50:1). Wells were washed and 1033 

incubated with medium containing gentamicin (300 μg/ml) and polymyxin B (15 g/ml) for 90 min 1034 

to eliminate extracellular bacteria, and then with medium containing gentamicin 100 g/ml for up to 1035 

7.5 h. Intracellular bacteria were quantified by lysis, serial dilution and viable counting on LB agar 1036 

plates. (B) MH-S cells were infected with Kp43816R harboring pFPV25.1Cm and the percentage of 1037 

macrophages containing intracellular bacteria (determined by extra-/intracellular differential 1038 

staining) assessed over time. Extracellular bacteria were stained using rabbit anti-Klebsiella 1039 

antibodies detected using donkey anti-rabbit conjugated to Rhodamine secondary antibodies. (C) 1040 

Percentage of infected macrophages containing 1-2; 3-5, or more than 5 intracellular bacteria 1041 

(determined by extra-/intracellular differential staining) over time. (D) MH-S cells were infected 1042 

with Kp43816R harbouring pJT04mCherry, expressing mCherry constituvely, and 1043 

pMMB207gfp3.1, expressing gfpmut3.1 under the control of an IPTG-inducible promoter. IPTG (1 1044 
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mM) was added 1.5 h before fixation. Images were taken 3.5 h post infection. Images are 1045 

representative of duplicate coverslips in three independent experiments. (E) Percentage of 1046 

intracellular bacteria (determined by extra-/intracellular differential staining; Klebsiella antibodies 1047 

were detected using goat anti-rabbit conjugated to Cascade blue antibodies) mCherry-GFP positive 1048 

over time. In panel A, data, shown as Log10CFU/well, are the average of three independent 1049 

experiments. In panel B, at least 500 cells belonging to three independent experiments were counted 1050 

per time point whereas in panels C and E, at least 300 infected cells from three independent 1051 

experiments were counted per time point. 1052 

FIGURE 3. Apoptosis of MH-S cells. 1053 

(A) MH-S cells were mock-treated or infected with Kp43816R harboring pFPV25.1Cm. 6 h post 1054 

infection, cells were stained with Annexin V and 7-AAD and analysed by flow cytometry. A 1055 

representative experiment of three is shown. (B) Data from three independent experiments are 1056 

represented as mean ± SD.  1057 

FIGURE 4. Phagosome maturation during K. pneumoniae infection of MH-S cells. 1058 

(A) Upper and middle rows show the colocalization of Kp43816R harboring pFPV25.1Cm and 1059 

EEA1 (images were taken 30 min post infection) and Lamp1 (images were taken 4 h post infection) 1060 

using goat anti-EEA1 and donkey anti-goat conjugated to Rhodamine, and rat anti-Lamp-1 and 1061 

donkey anti-rat conjugated to Rhodamine antibodies, respectively. Images are representative of 1062 

triplicate coverslips in three independent experiments. (B) Panels show the colocalization of 1063 

Kp431816R and Lamp1 and EGFP-Rab7 or RILP-C33-EGFP (images were taken 3.5 h post 1064 

infection).  Bacteria were stained using rabbit anti-Klebsiella and goat anti-rabbit conjugated to 1065 

Cascade blue antibodies. Images are representative of triplicate coverslips in three independent 1066 

experiments. (C) Percentage of Kp43816R colocalization with EEA1, Lamp1, and EGFP-Rab7 and 1067 

RILP-C33-EGFP over a time course. Cells were infected, coverslips were fixed and stained at the 1068 

indicated times. Values are given as mean percentage of Kp43816R colocalizing with the marker + 1069 
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SE. At least 300 infected cells belonging to three independent experiments were counted per time 1070 

point.  1071 

FIGURE 5. Colocalization of K. pneumoniae with phagolysosomal markers. 1072 

(A) Upper row shows the colocalization of Kp43816R harboring pFPV25.1Cm and the dye 1073 

LysoTracker at 4 h post infection. Middle row shows the colocalization of Kp43816R harboring 1074 

pFPV25.1Cm and cathepsin D at 2 h post infection. Cathepsin D was stained using goat anti-human 1075 

cathepsin D (G19) and donkey anti-goat conjugated to Rhodamine antibodies. Lower row displays 1076 

the colocalization of Kp43816R harboring pFPV25.1Cm and TR-dextran at 2 h post infection. 1077 

Images are representative of three independent experiments. (B) Percentage of Kp43816R 1078 

colocalization with LysoTracker, cathepsin D and TR-dextran over a time course. Cells were 1079 

infected, coverslips were fixed and stained at the indicated times. Values are given as mean 1080 

percentage of Kp43816R colocalizing with the marker + SE. At least 300 infected cells belonging 1081 

to three independent experiments were counted per time point.  1082 

FIGURE 6. Effect of vacuolar acidification on K. pneumoniae survival. 1083 

(A) Microscopy analysis showing that bafilomycin A1 (100 nM) treatment abrogates LysoTracker 1084 

staining of the KCV (images were taken at 4 h post infection). MH-S cells were infected with 1085 

Kp43816R harboring pFPV25.1Cm. Images are representative of triplicate coverslips in two 1086 

independent experiments. (B) Experimental outline to investigate the effect of vacuolar acidification 1087 

on the intracellular survival of Kp43816R. (C) Intracellular bacteria in MH-S cells, treated (white 1088 

symbols) or not (black symbols) with bafilomycin A1, were quantified by lysis, serial dilution and 1089 

viable counting on LB agar plates. Data, shown as CFU/well, are the average of three independent 1090 

experiments. Significance testing performed by Log Rank test. *, P < 0.05.  1091 

FIGURE 7. PI3K-AKT and Rab14 aid intracellular survival of K. pneumoniae. 1092 

(A) Quantification of intracellular bacteria in MH-S cells infected with Kp43816R which were 1093 

mock-treated (black bar) or treated with LY294002 hydrochloride (75 μM) or with AKT X (10 1094 

μM). Treatments were added after the time of contact and kept until cells were lysed for bacterial 1095 
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enumeration. Data, shown as CFU/well, are the average of three independent experiments. *, P < 1096 

0.05 (results are significantly different from the results for untreated cells; Mann-Whitney U test).  1097 

(B) Percentage of Kp43816R colocalization with TR-dextran or cathepsin D in cells mock-treated 1098 

or treated with the Akt inhibitor AKT X over a time course. Cells were infected, coverslips were 1099 

fixed and stained at the indicated times. AKT X was added after the time of contact and kept until 1100 

cells were fixed. Values are given as mean percentage of Kp43816R colocalizing with the marker + 1101 

SE. At least 300 infected cells belonging to three independent experiments were counted per time 1102 

point. *, P < 0.05 (results are significantly different from the results for untreated cells; Mann-1103 

Whitney U test).  (C) Colocalization of Kp431816R and Lamp1 and EGFP-Rab14 (images were 1104 

taken 3.5 h post infection).  Bacteria were stained using rabbit anti-Klebsiella and goat anti-rabbit 1105 

conjugated to Cascade blue antibodies. Images are representative of triplicate coverslips in three 1106 

independent experiments. (D) Percentage of Kp43816R colocalization with EGFP-Rab14 over a 1107 

time course. Cells were infected, coverslips were fixed and stained at the indicated times. Values 1108 

are given as mean percentage of Kp43816R colocalizing with the marker + SE. At least 300 1109 

infected cells belonging to three independent experiments were counted per time point. (E) 1110 

Quantification of intracellular bacteria in transfected MH-S cells with plasmid pcDNA3 or with 1111 

Rab14 dominant-negative construct (DN-Rab14) at 3.5 h post infection. Data, shown as CFU/well, 1112 

are the average of three independent experiments. *, P < 0.05 (results are significantly different 1113 

from the results for cells transfected with control plasmid pcDNA3; Mann-Whitney U test). (F) 1114 

Immunofluorescence showing the lack of colocalization of the KCV and EGFP-Rab14 (images 1115 

were taken 3.5 h post infection) in AKT X treated cells.  Bacteria were stained using rabbit anti-1116 

Klebsiella and goat anti-rabbit conjugated to Cascade blue antibodies. Images are representative of 1117 

triplicate coverslips in two independent experiments. 1118 

FIGURE 8. Role of CPS in K. pneumoniae intracellular survival. 1119 

(A) MH-S or mTHP-1 cells were infected with Kp43816R (black symbols) or the capsule mutant 1120 

(43manCKm; white symbols). Intracellular bacteria were quantified by lysis, serial dilution and 1121 
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viable counting on LB agar plates. Data, shown as Log10CFU/well, are the average of three 1122 

independent experiments. (B) Opsonization with 1% normal human sera (NHS) increased the 1123 

phagocytosis of the capsule mutant (Kp43816Rdes) by mTHP-1 cells. Data, shown as CFU/well, 1124 

are the average of three independent experiments. *, P < 0.05 (results are significantly different 1125 

from the results for cells infected with the non-opsonized capsule mutant; Mann-Whitney U 1126 

test); n.s., no significant difference. (C) mTHP-1 cells were infected for 30 min with Kp43816R 1127 

or the capsule mutant (43manCKm; manCKm) which were either opsonized or not. 1128 

Intracellular bacteria were quantified by lysis, serial dilution and viable counting on LB agar 1129 

plates. Data, shown as Log10CFU/well, are the average of three independent experiments. 1130 

Significance testing performed by Log Rank test. *, P < 0.05. (D) Analysis of cps::gfp 1131 

expression over time by flow cytometry. Analysis was performed staining the bacteria using 1132 

rabbit anti-Klebsiella and donkey anti-rabbit conjugated to Rhodamine antibodies (red 1133 

histogram). GFP fluorescence (green histogram) was analyzed in the gated Rhodamine labelled 1134 

(antibody stained) population. Grey histogram represents GFP fluorescence for the negative-1135 

control sample, and the area of the histogram is considered negative for GFP fluorescence. 1136 

Panels show the overlay of the different histograms. Results are representative of three 1137 

independent experiments. (E) Fluorescence levels of Kp43816R containing pPROBE’43Procps. 1138 

Data, shown as relative fluorescence units (RFUs), are the average of three independent 1139 

experiments. *, P < 0.05 (results are significantly different from the results for cells grown in 1140 

medium buffered to pH 7.5; Mann-Whitney U test). (F) wzi, orf7 and gnd mRNA levels assessed 1141 

by RT-qPCR. Data are presented as mean ± SD (n = 3).*, P < 0.05 (results are significantly 1142 

different from the results for cells grown in medium buffered to pH 7.5; Mann-Whitney U test).  1143 
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