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Objective.WNT/𝛽-catenin pathwaymembers have been implicated in interstitial fibrosis and glomerular sclerosis disease processes
characteristic of diabetic nephropathy (DN), processes partly controlled by transcription factors (TFs) that bind to gene promoter
regions attenuating regulation.We sought to identify predicted cis-acting transcription factor binding sites (TFBSs) overrepresented
withinWNT pathway members.Methods.We assessed 62 TFBSmotif frequencies from the JASPAR databases in 65WNT pathway
genes. 𝑃 values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were
examined in DN-related datasets to assess clinical significance. Results. Transcription factor AP-2 alpha (TFAP2A), myeloid zinc
finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (𝑃 values < 6.83 × 10−29,
1.34 × 10−11, and 3.01 × 10−6, resp.). MZF1 expression was significantly increased in DN in a whole kidney dataset (fold change =
1.16; 16% increase; 𝑃 = 0.03). TFAP2A expression was decreased in an independent dataset (fold change = −1.02; 𝑃 = 0.03). No
differential expression of SP1was detected. Conclusions.Three TFBS profiles are significantly enriched withinWNT pathway genes
highlighting the potential of in silico analyses for identification of pathway regulators. Modification of TF binding may possibly
limit DN progression, offering potential therapeutic benefit.

1. Introduction

Diabetic nephropathy (DN) is a microvascular complication
of diabetes and the most frequent cause of end-stage renal
disease (ESRD) in western populations [1]. Approximately
one-third of those with prolonged duration of diabetes will
develop DN regardless of their glycemic control [2]. The
earliest phase of DN is characterized by kidney hypertrophy
and an increased glomerular filtration rate (GFR) with
later progression resulting in pathological changes in the
kidney including expansion of mesangial matrix, glomerular
sclerosis, and interstitial fibrosis. Clinical features of DN
include persistent proteinuria, hypertension, and progres-
sive decline in GFR. ESRD secondary to DN necessitates
costly renal replacement therapies, such as dialysis and renal
transplantation. However, a subset of individuals with poorly
controlled type 1 diabetes (T1D) do not develop DN [3].
A strong predisposition to DN exists with an increased
estimated sibling risk (2.3-fold) supporting an underlying

genetic susceptibility to this diabetic complication [4]. In
addition, evidence in support of variation in ethnic genetic
DN susceptibility has been previously reported [5].

Renal interstitial fibrosis and glomerular sclerosis are
characteristic hallmarks of DN and several studies have
implicated members of the WNT/𝛽-catenin pathways in
these disease processes [6–9].TheWNTpathways can be sep-
arated into canonical 𝛽-catenin dependent and noncanonical
𝛽-catenin independent pathways (Figure 1). Canonical WNT
signalling is integral to many developmental processes and
associated variants have been identified in multiple WNT
pathway members with respect to many complex diseases
such as familial adenomatous polyposis coli, colorectal and
hepatocellular cancers, type 2 diabetes, and schizophrenia
[10]. NoncanonicalWNT signalling remains less well charac-
terized, partly as a consequence of further subdivisions into
the WNT/Ca2+ and the WNT planar cell polarity pathways.
The WNT/𝛽-catenin pathways have been reported to alter
cytoskeletal reorganization and activation of the JNK and
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Figure 1: The canonical Wnt signalling pathway implicated in diabetic nephropathy. When a WNT ligand binds to the Frizzled (FZD) and
the LRP5/6 coreceptors, the Dvl protein is recruited and inhibits the binding of 𝛽-catenin, leading to an increase in cytoplasmic 𝛽-catenin
levels and subsequent activation of downstream signalling targets (a). In the absence of any WNT ligand (b), 𝛽-catenin is sequestered by the
Axin complex containing such proteins as GSK3-𝛽, APC, CK1, 𝛽TrCP, and axin itself. 𝛽-catenin is then phosphorylated and ubiquitinated
and enters the proteasomal degradation pathway and leading to subsequent repression of downstream signalling targets.

MAPK signalling [11, 12], directly affecting mesangial cell
motility and adherence resulting in blunting ofmesangial cell
reaction to dynamic mechanical forces (a key mesangial cell
function).

In vitro epithelial-to-mesenchymal transition (EMT) is
induced by TGF-𝛽1 [13], an integrin-linked kinase which
promotes renal fibrosis. Both the canonical WNT pathway
and TGF-𝛽1 require activation of 𝛽-catenin implicating
both 𝛽-catenin and the WNT pathway in the regulation
of EMT [14]. In addition, the 𝛽-catenin phosphorylating
protein, GSK3-𝛽, is responsible for subsequent proteasomal
degradation and has been reported to inhibit transition to a
mesenchymal phenotype in human embryonic stemcells [15].
Differential gene expression profiles for severalWNT ligands,
FZD receptors, and 𝛽-catenin have been identified in the
unilateral ureteral obstructed (UUO) mouse model of renal
injury [6]. Independently, the WNT signalling antagonist,
Dickkopf-1 (DKK1), was reported to promote hyperglycemia-
induced matrix expansion in rat mesangial cells [7].

Differential gene expression of many developmental and
pathological processes is partly controlled by transcription
factors (TFs), proteins that bind to the promoter regions
of genes affecting their transcription to mRNA [16]. Tran-
scriptional regulation is modulated primarily by upstream
elements in the DNA sequence. RNA polymerase II is
directed to the transcription start site (TSS) by a series of
“general transcription factors” (GTFs) necessary for in vitro
transcription [17]which assemble approximately 25 to 30 base

pairs (bp) upstream of the TSS and typically contain motifs
such as the TATA box [18].

While the GTFs interact with a mediator forming a
large complex to initiate transcription in vivo [19], additional
influences are exerted by upstream elements located both
proximally and distally from the TSS. Enhancer and repressor
elements can initiate, amplify, reduce, or inhibit transcription
of a given gene and various TFs bind to these regulatory
elements [20]. The TFs are proteins or protein complexes
that contain DNA-binding and activation domains which
recognize specific sequence motifs and act on some target in
the transcriptional machinery or the surrounding chromatin
structure in order to modulate transcription [21]. A TF can
recognize different sequence elements across many genes
providing a mechanism for the coordinated expression of
multiple genes or pathways in parallel by a single element.

Previously, we have assessed common genetic variants
within key WNT pathway genes for association with DN
[22, 23] and there is evidence that manyWNT pathway genes
are differentially regulated in the pathogenesis of DN [6–
9]. In this study we sought to identify cis-acting regulatory
elements in groups of coregulated genes by searching for an
overrepresentation of known TF binding motifs within the
promoters of WNT pathway genes and compare these to a
background set of sequences, typically other gene promoters
within the genome [24–26].We used TF binding site (TFBSs)
data from the JASPAR database [27] on 65 known WNT
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pathway genes to identify common transcriptional regulatory
mechanisms associated with the WNT pathway.

Although current therapeutic options have been shown to
reduce proteinuria and retard DN progression, recent studies
highlight that, despite improved care, the higher risks of
cardiovascular disease, ESRD, and mortality associated with
DN persist [28]. As such, identification of genetic factors
that may influence susceptibility to and development of DN
can help identify novel pathophysiologic mechanisms as
potential therapeutic targets to improve the adverse clinical
outcomes that currently exist in diabetic patients. Despite
several genome wide association studies to investigate com-
mon genetic variants and more recent identification of
rarer variants though whole exome sequencing, the genetic
architecture of DN remains poorly understood [3, 29, 30].
Given the low level of genetic variation associated with DN,
we hypothesized if overrepresentation of TFBS motifs in
WNT pathway gene members might influence genetic risk
and offer future potential therapeutic target pathways.

2. Methods

Research ethics approval was obtained from the South and
West Multicentre Research Ethics Committee (MREC/98/6/
71) and Queens University Belfast Research Ethics Commit-
tee.

2.1. Identification of WNT Pathway Genes. We used the
KEGG database which is a repository that stores pathway
based information and “molecular circuit” maps to identify
65 targets for investigation [31].

2.2. Definition of Promoter Sequences and Identification of
TFBSs. The JASPARdatabase (2010; http://jaspar.genereg.net/)
catalogues 68 human TF position frequency matrices,
although six were incomplete for the purpose of reconstruct-
ing position weight matrices using the programming lan-
guage R. Upstream DNA sequence information for 65 WNT
pathway genes was interrogated for recognized binding
sites relating to the 62 annotated TFs documented in the
JASPAR database amenable to analysis. Frequency correla-
tions for observed TF motifs identified 5,000 bp upstream of
WNTpathway geneswere compared to∼28,000 gene sequen-
ces from genome build hg19/GCRh37.3 (http://hgdownload
.cse.ucsc.edu/goldenPath/hg19/bigZips/upstream5000.fa.gz).
𝑃 values for each TF were estimated on their hypergeometric
distribution which describes the probability of 𝑘 successes in
𝑛 draws from a finite population without replacement. This
distribution was used to model the probability of finding
a TFBS more frequently in a chosen set of gene promoter
sequences than in a set of random gene promoters alone
[24].

2.3. Clinical Evaluation of Enriched Transcription Factor
Expression Profiles. The clinical significance of gene expres-
sion profiles of enriched motifs was examined from
several DN-related datasets. Nephromine combines a rapidly
growing compendium of publicly available human renal gene
expression profiles with a sophisticated analysis engine and

an application for data mining and visualization of gene
expression data (http://www.nephromine.org). The Schmid
diabetes dataset (hereafter referred to as whole kidney) is
characterized within Nephromine and comprises expression
data from cDNA microarrays of whole kidney biopsies from
healthy living donors (𝑛 = 3), cadaveric donors (𝑛 = 4),
minimal change disease patients (𝑛 = 4), and DN donors
(𝑛 = 11) [32]. The Woroniecka datasets in Nephromine
comprise nine diabetic kidney disease (DKD)microdissected
glomeruli analysed against thirteen control glomeruli and
ten DKD tubulointerstitium and vascular compartments
(hereafter referred to as tubulointerstitium) evaluated against
twelve control tubulointerstitium samples [33]. Additional
data examining the effect of the proinsulin C-peptide on the
profibrotic actions of TGF-𝛽1 [34] was obtained from the
Gene Expression Omnibus (GEO) database. This data was
generated from HK-2 cells (immortalised human proximal
renal tubular cells [35]) for three control samples and three
TGF-𝛽1 (2 ng/mL) samples treated for 48 hours (hereafter
referred to as HK-2 + TGF-𝛽) and analysed using the gcrma
R/bioconductor package for data normalization (http://www
.bioconductor.org/packages/release/bioc/html/gcrma.html),
with changes in expression estimated using the limma R/bio-
conductor package for the computation of fold change (http://
www.bioconductor.org/packages/2.12/bioc/html/limma.html),
test statistics, and 𝑃 values. Expression levels, fold change,
and significance were assessed for each TF.

3. Results

3.1. Motif Enrichment Analysis. Motif enrichment analysis
(𝑛 = 62) was completed on the promoter regions of 65 WNT
pathway genes and ∼28,000 NCBI documented genes as
comparative controls, focusing on 5,000 bp regions upstream
from the TSS. The total number of binding sites for each
TF/gene was also calculated with only those motifs where
the confidence score exceeded 95% included (Figure 2).
A Bonferroni correction for multiple testing established a
significance threshold level of 𝑃 < 0.001 (𝑃 = 0.05/62).
The TFBS motifs transcription factor AP-2 alpha (TFAP2A),
myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1)
were identified as significantly enriched within the WNT
pathway dataset compared to the background gene set with
𝑃 values estimated at 6.83 × 10−29, 1.34 × 10−11, and 3.01 ×
10−6, respectively and are represented as probability sequence
motifs (Figure 3).

Clinical evaluation of enriched transcription factor
expression profiles showed significant increased gene expres-
sion of MZF1 in DN in the whole kidney dataset with a fold
change of 1.16 (16% increase, 𝑃 = 0.03; Figure 4). TFAP2A
gene expression was decreased in the HK-2 + TGF-𝛽 dataset
with a fold change of −1.02 (𝑃 = 0.03; Figure 4). SP1 did not
show any differential expression in the datasets examined.

3.2. Pair-Wise Correlation of Motifs. The total number of
binding sites for each TF/gene was calculated (Figure 2) and
Spearman’s rank correlation test performed to estimate the
correlation between the number of TFBSs identified and
each TF examined (Figure 5). TFAP2A was more strongly
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Figure 4: Expression of enriched transcription factors from four independent datasets. Log
2

expression values evaluated in Nephromine
(http://www.nephromine.org) from whole kidney (WK [32]) biopsies, glomerulus (Glom [33]) biopsies, tubulointerstitium (Tubulo [33])
biopsies, and from HK-2 cells treated with TGF-𝛽 for 48 hours (TGF-𝛽 [34]). MZF1 gene expression was significantly increased in diabetic
nephropathy (DN) whole kidney tissue compared to non-DN control (fold change = 1.16; 𝑃 = 0.031). TFAP2A gene expression was decreased
in HK-2 cells treated with TGF-𝛽 compared to untreated HK-2 cells (−1.02-fold change; 𝑃 = 0.031).

correlated with MZF1 (𝑟2 = 0.59; 𝑃 = 1.87 × 10−7) and less
so with SP1 (𝑟2 = 0.46; 𝑃 = 1.09 × 10−4). MZF1 was also
significantly correlated with SP1 (𝑟2 = 0.41; 𝑃 = 6.26 × 10−4).

4. Discussion

The in silico approach adopted in this study to assess
transcription factor binding motif enrichment has predicted

three TFBSs to be significantly enriched within the WNT
pathway genes examined. These transcription factors have
been reported previously in relation to cancer biology and
other cellular processes involved in the pathogenesis of
DN, such as regulating epithelial-to-mesenchymal transition,
TGF-𝛽 signalling, and fibrogenesis. A common regulatory
mechanism underpinning these processes with respect to
DN may offer a promising potential therapeutic target.
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Hyperglycemia has been shown to downregulate WNT sig-
nalling resulting in increased TGF-𝛽 and fibronectin expres-
sion in glomerular mesangial cells. Induced upregulation of
WNT4,WNT5a, and stabilization of cytosolic𝛽-catenin have
been reported to minimize the damaging effects of TGF-𝛽1
induced fibronectin expression, in a manner similar to that
observed through pharmacological inhibition of GSK3-𝛽 [8].

TFAP2A is a TF involved in the regulation of multi-
ple developmental processes, such as neural crest forma-
tion and kidney development [36]. The activator protein-2
(TFAP2) family of transcription factors includes five closely
related proteins TFAP2A-E [37]. Reduced expression levels
of TFAP2A have been associated with increased metastatic
capability in breast cancer [38] with poor prognosis reported
in gastric adenocarcinoma patients [39]. Reduction of
TFAP2A in extravillous trophoblasts reduces EGF-dependent
invasion, as well as levels of MMP-2 and urokinase plas-
minogen activator, proteins involved in extracellular matrix
degradation [40]. Polymorphic variants within TFAP2A have
also been shown to interact directly with APC and 𝛽-
catenin preventing 𝛽-catenin from associating with TCF4
and thus blocking transcription of WNT-responsive genes in
colorectal cancer cells [41].

Myeloid zinc finger 1 (MZF1, also known as ZNF42) is a
two-domain TF, with each domain containing four and nine
zinc finger arrangements recognizing separate but similar
sequences [42]. The motif found to be enriched in our study
corresponds with the first four zinc finger domain. MZF1
plays a key role in embryonic stem cell hematopoietic dif-
ferentiation, yet its canonical function involves regulation of
genes associated with growth, differentiation, and apoptosis
of cells during myeloid lineage [43]. Much like TFAP2A,
MZF1 has been reported in relation to multiple cancers. In
colorectal and cervical cancer cells overexpressed MZF1 was
shown to inducemigration and invasion.MZF1 has also been
implicated in increased expression of PKC𝛼 in hepatocellular
carcinoma with reported reduction in invasion, migration,
and proliferation in these cells with MZF1 siRNA [44].

SP1 is reported to regulate many processes including
expression of genes modulating angiogenesis, apoptosis, cell
growth, differentiation, and immune response [45]. The
functionality of SP1 is cell specific leading to different or even
opposing roles depending on the cellular context. Treatment
with TGF-𝛽 has been shown to reduce SP1 expression
in human articulated chondrocyte cells but increases SP1
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expression in skin cells [46, 47]. SP1 also leads to downreg-
ulation of TGF-𝛽RI and TGF-𝛽RII following treatment with
TGF-𝛽 [47]. Fibroblasts treated with TGF-𝛽 have increased
levels of SP1 and subsequently type 1 collagen synthesis.
Subsequent blockade of SP1 induction leads to a reduced
collagen response [46]. Zhang and colleagues [48] identified
four SP1 binding sites in the putative promoter region of
the adiponectin gene ADIPOQ (adipocyte C1q and collagen
domain containing) providing evidence of reduced promoter
transcriptional activity as a result of genetic variation. Reg-
ulation of genes, such as GAPDH, insulin-like growth factor,
calmodulin, and PAI1 by insulin, has also shown to be, at least
in part, mediated by SP1 [49].

A major limitation of this motif enrichment analysis is
reflected in the relatively small number of human TFBS
motifs represented in the JASPAR database (𝑛 = 62) which is
limited to investigating the effects of cis-acting elements only
to the exclusion of trans-acting factors. The human genome
encodes numerous transcription factors, many of which
remain unidentified and may potentially modulate genes
involved in the WNT pathway directly or indirectly. Gene
regulation at the transcriptional level is multifaceted with
multiple epigenetic mechanisms such as DNA methylation
and histone modification involved, further compounding
the level of complexity. Nevertheless, the motif enrichment
analysis of the 65 WNT genes in this study identified three
motifs that were represented significantly more frequently
among WNT pathway genes than across the genome and,
as such, are likely to represent major regulatory mechanisms
that govern the expression, activation, and functions of the
WNT pathways.

TFAP2A and MZF1 have both been implicated in the
regulation of genes that control tumour invasiveness and
metastases and the pathological process of EMT is known
to underpin many cancer types with evidence supporting
its role in metastatic cancer cells [50]. Given the role of
EMT in renal fibrosis and the putative role of the WNT
pathways in the aetiology of DN, our data suggests a role
for these transcription factors in the pathogenesis of DN.
In addition, SP1’s role in the regulation of TGF-𝛽 signalling
and collagen production suggests an influence on the disease
processes involved in DN. Improved transcriptional control
mechanisms may offer potential therapeutic targets for the
treatment of disorders such as DN, which may result as a
consequence of aberrant WNT pathway mechanisms.

5. Conclusions

Our findings highlight the merit of utilizing in silico analyses
for the prediction of TFBSs and key regulators of WNT
pathway genes, particularly when considered in conjunction
with gene expression data. Insights into the pathological
processes andmolecularmechanismswhich contribute to the
progression of DN have important therapeutic implications.
Modifications of TF binding to promoter regions of genes
involved in these processes have been shown to reduce the
rate of DN progression in several models of diabetes [51].

Refinement of targeted therapeutic strategies to modify tran-
scriptional control of disease processes will become possible
through clearer delineation of their role.
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