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Abstract 

The purpose of this study was to examine longitudinal associations among thyroid stimulating 

hormone (TSH) levels and cognitive performance. Data collected at the first three assessment 

times, approximately 3 years apart, are reported for the survivors (n = 45) from a previously 

published cross-sectional study. Participants were aged 75-93 years at baseline, and data 

reported were collected in the Kungsholmen Project, a longitudinal project investigating aging 

and dementia. Analyses revealed that although declining verbal fluency and visuospatial 

abilities were accompanied by simultaneously declining TSH levels, the pattern of cross-

sectional and longitudinal results are interpreted such that declining TSH levels may have 

caused episodic memory deficits later on. These results were obtained in the examination of 

6-year but not 3-year change, and after removal of the cognitive variation associated with 

depressive mood symptoms. 
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Although the deleterious effects of thyroid disease on cognitive functioning is well 

documented (e.g., Osterweil et al., 1992), the association between normal variation of thyroid 

functioning and cognitive performance in old age has been subjected to a limited number of 

reports. In one of the first published studies (Wahlin et al., 1998) we found that, within 

normal ranges, Thyroid Stimulating Hormone (TSH) but not thyroxine predicted cognitive 

performance cross-sectionally among elderly persons between 75 and 96 years. Interestingly, 

there was a strong positive relationship between levels of TSH and episodic memory 

performance, but the associations with other cognitive abilities (i.e., verbal fluency, 

visuospatial ability, short-term memory, and perceptual-motor speed) were less pronounced. 

Prinz and colleagues (1999), showed in a subsequent cross-sectional study of elderly 

euthyroid men with a mean age of 72 years that thyroxine but not trijodothyronine or TSH 

levels were related to various cognitive performance measures including tests of verbal and 

general cognitive abilities. Volpato et al. (2002), published data on physically impaired 

women, aged 65 years and older, and with normal thyroid gland function at baseline, showing 

that low baseline thyroxine but not TSH within normal ranges predicted cognitive decline 

across three years, as assessed by the Mini-Mental State Examination Scale (MMSE: Folstein 

et al., 1975). No cross-sectional associations were detected in this study. Interestingly, item 

analyses revealed that the prospective thyroxine-MMSE association was related to the 

orientation and memory aspects of the scale, both involving episodic memory components. 

Finally, van Boxtel et al. (2004), examined a random sample from the Maastricht Aging 

Study, aged 49-71 years. The test battery included a variety of tasks, among them tests of 

episodic memory. This study failed to detect any cross-sectional associations involving TSH 

and cognitive performance. 

As is evident, the results from the aforementioned studies are contradictory as to 

which indicator of thyroid functioning is the most relevant marker of cognitive performance, 
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and which domain of cognitive performance, if any, is primarily affected by thyroid hormonal 

variations. The contrasting results might be due to sample differences, where age could 

potentially constitute an explanatory factor. Thus, the inconsistencies in the work reviewed, 

may in part be due to the varying age ranges involved. Evidence showing that increasing age 

results both in growing thyroid and cognitive variability (Marrioti et al., 1995; Bäckman et al., 

1999) supports this hypothesis. Thus, increased variability in thyroid and cognitive 

functioning should be expected among the oldest persons. 

Thyroid functioning is commonly assessed by means of TSH obtained in serum. 

Although TSH is a sensitive method for detecting low values indicative of hyperfunction, 

diagnosis of hypothyroidism may require additional tests. Importantly, thyroid hormones 

increase the response of the beta-adrenergic receptor to norepinephrine, which may serve as 

an adaptive mechanism of neuromodulation (Whybrow and Prange, 1981; Dratman and 

Gordon, 1996). More specifically, low TSH levels are also associated with elevated steroid 

hormone levels within the hypothalamus-pituitary-adrenal axis (van Haasteren et al., 1996). 

Increased levels of cortisol, which is part of this circuitry, may result in hippocampal cell loss 

and impair episodic memory performance (Lupien et al., 1994). Therefore, although thyroid 

hormones may be associated with a variety of cognitive abilities, there might be a particularly 

strong link to episodic memory. 

Yet, to the best of our knowledge, no study has been published showing analyses of 

longitudinal relationships among cognitive and normal thyroid functioning involving 

longitudinal assessment of both thyroid indicators and cognition. Such analyses would permit 

safer conclusions about whether (a) there is a causal relationship between normal variations in 

thyroid functioning and cognitive performance, or (b) cognitive and thyroid functioning are 

both subject to the influence of a third causative factor or process potentially responsible for 
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the presence or absence of significant thyroid-cognition associations as documented in the 

studies published to date. 

One such factor, known to be associated deficient thyroid functioning (e.g., Brown, 

1980; Denicoff et al., 1990) and to account for TSH-cognition associations (van Boxtel et al., 

2004), is mood symptoms. Thus, in the present study, we controlled for depressive mood 

symptoms before examination of TSH-cognitive performance associations. The mood 

variable was derived from the Comprehensive Psychopathological Rating Scale (CPRS: 

Åsberg et al., 1978). In Sweden, this scale is commonly used as a basis for diagnosing major 

depression according to DSM-IV criteria. 

In the present study, we follow a sample for which cross-sectional data have already 

been reported (Wahlin et al., 1998) across two follow-up assessments separated by 

approximately three years. The three points of data collection are from now on referred to as 

T1, T2, and T3. Although both thyroxine and TSH were available at baseline, only TSH was 

considered necessary for diagnostic purposes at follow-ups within the larger project. Hence, 

this study will focus exclusively on the relationship between normal TSH variations and 

cognitive abilities. 

We hypothesised, first, that the selective relationship of normal TSH levels with 

episodic memory functioning should be detectable also with a longitudinal data design. 

Hence, we expected this selective association both cross-sectionally at T1, T2, and T3 and 

with respect to longitudinal associations among longitudinal change indicators. Second, we 

hypothesised that if longitudinal associations were detected, they would not be entirely due to 

a parallel change in TSH and cognitive functioning. Instead, we expected previous 

longitudinal change in TSH to cause differences in cognitive performance later on. Thus, in 

order to arrive at such a conclusion, some clear discrepancies in the pattern of associations 

among cross-sectional and longitudinal change data were necessary. Finally, in stating these 
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hypotheses we make the assumption that biological change (i.e., TSH) causes differences in 

cognitive functioning, and that the reverse causal direction is less likely. 

To achieve these goals, we analyzed longitudinal data collected from the surviving 

participants of the sample reported in our first study from the Kungsholmen Project on cross-

sectional associations among TSH and cognitive functioning. 

Methods 

The Kungsholmen project (KP) involves longitudinal assessment of three 

independent populations. The present sample was taken from the Kungsholmen parish of 

Stockholm, Sweden, aged 75 years and older at the first time of assessment (see Fratiglioni et 

al., 1992, for an overview of the study). Diagnosis of dementia, depression (major depression 

and dysthymia), and general anxiety disorder were made according to established criteria (i.e., 

DSM-III-R: American Psychiatric Association, 1987; DSM IV: American Psychiatric 

Association, 1994) at each phase of data collection. Cross-sectional data for the sample 

selected for longitudinal analysis (n = 200), was reported in a previous publication (Wahlin et 

al., 1998). From this sample, data collected from participants who completed the cognitive 

testing and had normal TSH values also at the first and second follow-up are reported in the 

present study (n = 45). Retest intervals for this sample were approximately 3 years (T1-T2: M 

= 2.86 years, SD = .49; T2-T3: M = 3.51 years, SD = .50). All procedures were approved by 

the ethics committee at Karolinska institutet, and in accordance with the Helsinki Declaration 

of 1975. 

Laboratory Tests 

Across all three times of assessment, the same procedure and methods were applied for the 

collection of laboratory data. Thus, blood samples were collected in the morning on the same 

day as the cognitive testing. These analyses involved a variety of health indices, of which 

TSH was selected for the present study. For the analysis of TSH, the immunoradiometric 
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method was used (Seth et al., 1984). The immunoradiometric assay is an ultrasensitive 

method that allows detection of very low TSH values, indicative of hyperthyreosis. Inter- and 

intratest variability of the method within the normal range is 2.5% and 1.5% respectively. 

 The same cutoff values as in our previous study were applied. These cutoff 

scores were chosen according to clinical recommendations in order to exclude subjects with 

potential thyroid-related disease. Thus, the lower limit for TSH was set at 0.4 mU/liter, and 

the upper limit at 5.0 mU/liter (Griffin and Solomon, 1986). For these reasons, subjects with 

TSH values outside the normal range at either of the two follow up assessments were 

excluded. In addition, for the purpose of prospective analyses, thyroxine data collected at T1 

were added to the data set. Free thyroxine levels were assessed by means of a 

radioimmunoassay method (Giles, 1982). The methods used to assess TSH and thyroxine are 

both highly reliable within normal ranges (Giles, 1982; Seth et al., 1984), as reflected by the 

variability. For thyroxine the intra-test variability is almost undetectable (.04%), and 

the inter-test variability (1%) is similar to that of TSH. 

 Next, we computed percentage change in TSH values between the three times of 

assessment. Among the three possible time frames (T1-T2, T2-T3, and T1-T3), we selected 

for further analysis the entire time range (T1-T3) and the last three years (T2-T3). This was 

done in order to compare the impact of 3-year with 6-year TSH change on cognitive 

performance at the end of the respective time interval. Since the T1-T2 range was already 

included in the T1-T3 range, it represented redundant information and was therefore 

considered only in a control analysis to be reported below. 

Mood symptoms 

Four items were selected from the CPRS (i.e., dysphoria, appetite disturbance, feelings of 

guilt, and suicidal thoughts). At each of T1-T3, the four mood symptoms were added to form 

a composite mood score with a possible range of 0-4. In order to avoid dividing by zero in the 
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computation of mood change scores, 1 was first added to all scores at T1, T2, and T3 

respectively. 

Participants 

At T1 two hundred subjects ranging in age between 75 and 96 years were selected for study 

on the basis of their euthyroid status (see Wahlin et al., 1998). As expected, a large number of 

the participants died before the two follow up assessments. At T2, 36 subjects had died, 7 

refused to participate, and 2 had moved and could not be located. At T3, another 48 persons 

had died, 5 refused to participate, and 1 person had moved. From the remaining sample, 10 

refused to take part in the blood testing at either T2 or T3, and 46 participants were excluded 

as they had TSH values outside the normal ranges at either T2 or T3. Due to the small sample 

remaining after these exclusions, we decided not to remove incident dementia cases at either 

T2 (n = 6) or T3 (n = 9). None of the participants were diagnosed with depression, dysthymia 

or general anxiety disorder at any time point, and no participants were treated with thyroid 

hormones. The remaining 45 participants were subjected to the analyses of longitudinal data 

reported in this article. Table 1 provides descriptive information for demographic, thyroxine, 

TSH, and mood symptom data. In addition, the table provides descriptive information for the 

persons excluded due to their TSH values being outside the normal range. 

________________________ 

Insert Table 1 About Here 

________________________ 

Cognitive Tests 

The same cognitive tests as reported in our 1998 publication were selected for further 

examination. However, for the digit span tests, the rank-order stability of change was 

relatively constant across individuals, resulting in reduced variance and attenuated 
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associations. These problems resulted in non-interpretable findings. Thus, we therefore 

excluded the digit span tests from the analyses. 

 In order to control for practice effects, the tasks were administered in two orders 

and, for the tests of episodic memory, five versions. These combinations were 

counterbalanced across age and time of testing. Thus, no participant received identical tests at 

any of the three test occasions. 

Episodic memory. Four episodic memory tests (requiring the participant to remember also 

that the to-be-remembered materials were presented to him/her during study, that is, the 

personal, temporal and spatial source information) comprising free recall of 12 semantically 

unrelated words presented at either rapid (2 sec/word) or slow (5 sec/word) pace, free recall of 

organizable words, and category cued recall of organizable words where presentation for the 

organizable words were 5 sec/word. In all four tasks, nouns were used as study items. 

Verbal fluency. Three fluency tasks were administered. In two letter (initial N and S) fluency 

tasks, participants were given 60 seconds to produce as many words as possible. In a third 

category fluency task, participants were asked to produce, within 60 seconds, as many 

exemplars of food as possible. 

Visuospatial ability. To assess this domain, we used the block design test from the Wechsler 

Adult Intelligence Scale - Revised (Wechsler, 1981). Standard procedures for administration 

and scoring were applied. 

Perceptual-motor speed. Shortened versions of the Trail Making A and B (TMT: Reitan and 

Davidson, 1974) were administered, and time scores were used as the outcome measure. The 

TMT was modified such that part A had a maximum score of 12 and part B had a maximum 

score of 11. This modification was done to make sure that severely impaired subjects could 

also be assessed. Both tasks were administered according to standard procedures and the time 

scores indicated the time to complete the task. 
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Results 

In order to reduce the number of dependent variables and to increase reliability, 

composite cognitive scores were created. Thus, we created a composite score for episodic 

recall of random words, where the correlations across T1-T3 were .60, .42, and .47 

respectively (ps < .01), a composite recall of organizable words, where the T1-T3 correlations 

were .89, .86, and .92 (ps < .01), a composite letter fluency score (rs .83, .69, .67, ps < .01), 

and a composite TMT score (rs .31, .40, .29, ps < .05). In all cases, the composite score 

constituted the mean of the summed scores. Missing data (< 5% in all cases) were inputed 

using the EM algorithm in SPSS. 

Finally, and similar to the TSH data, we computed for each dependent measure, 

percentage change from T2 - T3, and T1 - T3, respectively. Table 2 provides summary 

statistics for the cognitive variables across T1, T2, and T3, and the time intervals of primary 

interest. 

________________________ 

Insert Table 2 About Here 

________________________ 

 Although the demographic and dementia information were not correlated with 

any of the TSH cross-sectional or change scores (demographic ps > .05; dementia ps > .10), 

they were significantly correlated with several of the cognitive performance composite scores. 

Thus, even if the demographic and incident dementia data may not be confounded with the 

TSH effects, we considered it to be informative to generalize the results across the mean level 

of these parameters. Importantly, running the analyses reported below without these control 

variables resulted in very similar findings.  Hence, in all analyses that followed, age at 

baseline, years of education, gender, and incident dementia diagnosis at either of T2 or T3, 

and the relevant mood score were used as control variables. Data were analyzed by means of 
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hierarchical regressions, where age, education, gender, the two dummy-coded incident 

dementia diagnose variables, and the relevant mood score were entered in the first step. In the 

second step, the relevant TSH predictor variable was entered. The analyses were structured 

into four sections. First, we examined at T1, T2, and T3 the cross-sectional associations 

between TSH level and cognitive performance. As a control, we examined also whether 

thyroxine at T1 predicted T1 performance. Second, T2-T3 and T1-T3 percentage cognitive 

change was predicted from baseline TSH and thyroxine values. Third, T2-T3 and T1-T3 

percentage cognitive change was predicted from percentage TSH change in the corresponding 

time intervals. Fourth, and finally, we predicted in two separate sets of analyses cognitive 

performance at T3 with T2-T3 percentage TSH change, or T1-T3 percentage TSH change as 

predictors. Here, we added as a control analysis the prediction of cognitive performance at T2 

from percentage TSH change within the T1-T2 time frame. The results of the analyses are 

presented next. 

 Cross-sectional associations. The cross-sectional associations of TSH with 

cognitive performance were examined at each of the three points of assessment. The two 

incident dementia variables were as expected the strongest predictors among the control 

variables, accounting for significant portions of variations in several of the tasks across the 

three times of assessment. Age, gender, and education predicted performance on the fluency 

tasks, but only at T1 and T2. Number of mood symptoms were not significantly associated 

with performance at any of T1, T2, or T3 (all ps >.10), but most of the ß-weights indicated 

associations in the expected directions (i.e., more symptoms were associated with worse 

performance). Although all TSH-performance associations were in the expected direction 

(i.e., higher level of TSH indicated better performance), it approached significance for recall 

of random words only. This association was marginally significant at both T1 (  = .265, incr. 

R
2
 = .065, p = .05), and T3 (  = .273, incr. R

2
 = .064, p = .06), although the association at T2 
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was not reliable (  = .206, incr. R
2
 = .039, p = .16). Thyroxine level did not predict 

performance in any of the cognitive tasks at T1 (all ps > .45). 

 Baseline TSH and thyroxine relative to cognitive change. In two sets of separate 

analyses we examined the extent to which baseline TSH or thyroxine would predict cognitive 

change scores between T1-T3 and T2-T3, respectively, after accounting for the block of 

control variables. Results showed that both baseline TSH and thyroxine levels were unrelated 

to all cognitive change scores (all ps > .30). The impact of the control variables are reported in 

the next set of analyses. 

 TSH change relative to cognitive change. In the third set of analyses we sought 

to determine whether changing TSH values would predict changing cognitive performance. 

As indicated above, the time intervals examined were T1-T3, and T2-T3. Results are shown in 

Table 3. Note that the time intervals are combined in the table, so that the T2-T3 TSH-

cognitive change associations are shown in the upper part, and the T1-T3 associations in the 

lower part of the table. 

________________________ 

Insert Table 3 About Here 

________________________ 

As can be seen in the lower section of Table 3, TSH T1-T3 change significantly predicted 

change on the two fluency tests and on the test of visuospatial ability. In all cases, positive 

change in TSH level was associated with less decline on these tasks. No significant TSH-

cognitive performance associations were found in the T2-T3 time interval. Among the control 

variables, longer education predicted decline in TMT performance across the T2-T3 time 

interval. Apart from a single positive association between T1-T3 mood and visuospatial 

change scores, mood symptoms were unrelated to all performance scores. Unexpectedly, 
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incident dementia at T2 was positively related to cognitive change in both time intervals. The 

beta-weights for incident dementia at T3 were however in the expected directions. 

 TSH change relative to cognitive performance at T3 and T2. In the final set of 

analyses, we examined the extent to which changing TSH values would predict cognitive 

performance. Here, we selected cognitive performance at T3 as the endpoint, and regressed, 

first, the respective cognitive variable on three year TSH change (T2-T3), and second, the 

same dependent measures on six year TSH change (T1-T3). Finally, as a control analysis, we 

regressed the T2 cognitive performance scores on three year (T1-T2)  TSH change. Table 4 

shows a summary of the results obtained. 

________________________ 

Insert Table 4 About Here 

________________________ 

 As can be seen in the upper section of Table 4 where T3 cognitive data 

constitute the outcome, short-term (T2-T3) TSH change (2a) did not account for a significant 

portion of the variation in any of the tasks. This general outcome was replicated using T2 

cognitive data as the dependent measures (lower part of Table 4) and again short-term (T1-

T2) TSH change as predictor. Turning to long-term (T1-T3) TSH change, a different picture 

emerged. Looking at the upper section of Table 4, where long-term TSH change was entered 

into the regressions in the second step (2b), TSH T1-T3 change accounts for 7.2% of the 

variation in episodic recall of random words and 8.8% of the variation in episodic recall of 

organizable words. Note also that all beta-weights were positive, indicating that decline of 

TSH values was associated with worse cognitive performance, the exception being TMT 

where the negative beta-weight indicate that worse time performance was associated with 

decline of TSH. As for the control variables, across analyses, all significant associations were 

in the expected directions. Higher age, and incidence of dementia were related to lower levels 



Longitudinal Evidence 

15 

of performance while longer education and being a woman were related to higher levels of 

performance. Changing mood symptoms did not predict any of the cognitive performance 

scores. 

 Age by TSH interactions. In order to test the hypothesis that the chronological 

age range under scrutiny may be a factor explaining why TSH-cognition associations are not 

always detected, we computed Age X TSH and Age X TSH change cross-product interaction 

terms and repeated all analyses with the relevant interaction term entered in the third step. No 

interaction term approached significance in any of the analyses (all ps > .05). 

 Examination of outliers. Inspection of the TMT scores (see Table 2) revealed 

that one subject exhibited extreme time scores at T3. To check whether this accounted for the 

lack of effects in this particular task, this value was truncated at the next level considered to 

be a high but not extreme time score (i.e., 209 sec), and the analyses involving TMT repeated. 

Results revealed that TMT performance was still unrelated to TSH.  

 Examination of impending death. Proximity to death is known to be associated 

with decline of cognitive functioning (e.g., Small & Bäckman, 1996), a phenomenon 

sometimes referred to as ‘terminal drop’. Five of the participants in the study had died within 

one year after T3, and three of those were incident dementia cases during this study. 

Correlations showed that impending death was significantly associated with more and slightly 

increasing mood symptoms (all ps <.05), and slightly associated with most cognitive 

performance and change scores (ps >.05). No reliable association with the TSH indicators was 

found (all ps >.10), although the direction of the correlations were negative in all cases (i.e., 

impending death was associated with lower and declining TSH values. As a final control, we 

examined whether impending death accounted for the detected TSH-cognition associations by 

repeating all main analyses including death within one year after T3 as a dummy-coded 
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control variable. Results revealed that although impending death was weakly (ps >.10) 

associated with declining cognitive abilities, the main findings remained unchanged. 

Discussion 

 The chief objective of the present study was to further examine the previously 

documented cross-sectional positive associations between normal variation in levels of 

thyroid stimulating hormone and cognitive and episodic memory performance by means of 

longitudinal data. For this purpose, we used data from the Kungsholmen Project collected 

during the first three times of assessment (T1, T2, T3) between 1987 and 1996. The study is 

unique in two respects. First, associations among longitudinal thyroid and cognitive data have, 

to the best of our knowledge, not previously been reported. Second, the age range examined 

(75-93 years at baseline) is rare in this type of study. Due to high death rates and presence of 

TSH values indicative of thyroid dysfunction across T2 and T3, the original sample reported 

in the previous study (Wahlin et al., 1998) was reduced to 45 participants. We therefore 

decided to include both non-demented persons and cases of incident dementia at either of T2 

or T3. 

 Data were analyzed cross-sectionally, prospectively, and longitudinally, where 

percentage difference scores were employed to indicate change over time. The main findings 

were, first, that six year change in TSH levels were found to selectively predict episodic 

memory performance at the final assessment. This association was however not detected 

using three-year TSH change, irrespective of whether T2 or T3 cognitive data constituted the 

outcomes. Second, at the cross-sectional level of analysis, the selective association of TSH 

with episodic memory performance was detected at T1 and T3, but only for episodic recall of 

random words. In the analyses of T1-T3 and T2-T3 cognitive change predicted from baseline 

TSH and thyroxine levels, no significant association was detected. Third, turning to 

associations among change scores, a different pattern of results emerged, showing that six 
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year change in TSH was significantly associated with six year change in the two indicators of 

verbal fluency and the visuospatial ability indicator. In these analyses, the relationships to the 

two indicators of episodic memory were less pronounced and did not reach conventional 

levels of statistical significance. No reliable associations were detected in any of the analyses 

involving three year change scores, and age did not interact with TSH or thyroxine to 

influence any of the foregoing. 

 The finding that the reliable TSH-cognitive performance associations were all 

positive, both cross-sectionally and longitudinally, may seem at odds with previous studies 

showing that hypothyroidism (in which TSH values are high) constitute a risk factor for 

developing dementia at a later stage (e.g., Breteler et al., 1991; Ganguli et al., 1996). It is 

however not uncommon that the predictive power (both in terms of strength and direction) 

changes outside normal ranges (e.g., Wahlin et al., 1996) or that the predictive directions are 

best described as an inverted U-shaped form. Importantly, in this study we took great care in 

excluding persons with TSH values outside normal range at any of the three occasions of data 

collection. 

 Although the present data do not permit definite conclusions about causality, the 

outcome of the main analyses present an interesting pattern suggesting the existence of some 

direct TSH change-cognition effects, and some effects indicating that TSH levels and 

cognitive performance change in parallel, possibly due the existence of a third variable. The 

main comparison to be made is that of the results from the TSH change relative to cognitive 

change, and TSH change relative to cross-sectional cognitive differences, respectively. As 

shown in Table 3, changing TSH values were accompanied by changing letter and category 

fluency scores, and changing visuospatial ability scores. In these analyses, the TSH-episodic 

memory association failed to reach conventional levels of significance. Table 4 presents the 

opposite result, where six year change in TSH levels predicted performance on the two 
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episodic memory tests at T3, but no other cognitive ability. Thus, the results suggest that 

declining TSH levels are accompanied by parallel decline in fluency and visuospatial 

performance, while the very same TSH decline results in episodic memory deficits only at the 

end of six years change. However, it is still possible that TSH change might cause deficits in 

fluency and visuospatial performance, but that the time needed for such deficits to occur is 

longer than six years. 

 As noted, the four previously published studies present quite disparate findings. 

Prinz et al. (1999) found cross-sectional associations between thyroxine but not TSH and 

verbal and global cognitive functioning. Wahlin et al. (1998) found cross-sectional 

associations between TSH but not thyroxine and episodic memory. Volpato et al. (2002) and 

van Boxtel et al. (2004) failed to find any cross-sectional associations involving thyroxine and 

TSH, respectively, but the Volpato et al. study found that baseline thyroxine levels predicted 

future cognitive decline, particularly on tasks involving episodic memory components. Van 

Boxtel and colleagues (2004) argued that one explanation for the lack of TSH-related effects 

in their study, was that their sample was younger than that examined by Wahlin et al. (1998). 

In order to test this hypothesis, Age x TSH level cross-product interaction effects were tested, 

but similar to the present study they were found to be non-significant. However, the problem 

associated with detecting significant interaction effects are well documented (McClelland and 

Judd, 1993). Therefore, the age of the studied sample may still be a valid concern. Also, a 

study involving an age range covering both that of van Boxtel et al. (49-71 years) and our 

study (75-93 years) might still present a different outcome showing significant age by TSH 

interaction effects. However, common to all previous studies was that no information was 

available regarding longitudinal change of the thyroid indicators. In light of the present 

findings, it may be that both T4 and TSH require long-term change in order to correlate with 

cognitive performance, where TSH actually exerts an impact on episodic memory 
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functioning, while the longitudinal associations with other types of cognitive abilities are 

merely an expression of shared variation possibly caused by a third factor. Note in this 

context that we controlled for a likely third variable, that is, depressive mood symptoms. Van 

Boxtel and colleagues (2004) found mood symptoms to account for much of the TSH-

episodic memory associations in their study, while number of mood symptoms or change 

scores had little impact on the outcome variables in the current study. Whether this is a 

result of the strict selection procedure in combination with the age range studied, remains to 

be determined by future research. 

 It is noteworthy that six-year change was required to detect significant 

longitudinal associations among TSH and cognitive variations. This finding does however not 

necessarily indicate that varying TSH levels exert long-term but not short-term change effects 

on cognitive functioning. Inspection of Table 2 shows, first, that cognitive decline was larger 

across six years than three years and, second, that the variation increased proportionally to the 

means. This is in accordance with previous research showing that in order to detect reliable 

cognitive decline, six years is the minimal test interval required (e.g., Zelinski and Burnight, 

1997). Interestingly, TSH levels did not present this pattern (see Table 1). Thus it may be 

premature to draw any firm conclusions as to the time aspect of the TSH-cognition 

association. 

 The prospective analyses of baseline TSH and thyroxine regressed on cognitive 

change were included in order to replicate the study by Volpato et al. (2002). Similar to that 

study, we found that baseline TSH did not predict future decline of cognitive performance. 

However, we failed to replicate their findings that thyroxine levels at baseline predicted future 

memory decline. It is yet to be established whether this is a reliable difference, since the 

Volpato et al. study reported longitudinal data on thyroid status for only a subset of their 

participants, while we defined our sample by their normal thyroid levels at both follow-ups. 
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In a series of control analyses, we examined, first, whether the lack of TSH-

related effects on TMT performance was due to the existence of extreme scores. Second, 

proximity to death was covaried in order to check whether the results were accounted for by 

the terminal drop phenomenon. Note in this context that the terminal drop phenomenon itself 

is likely to be accounted for by various biological indicators (e.g., Berg, 1996). In brief, our 

analyses showed that although impending death was marginally associated with declining 

cognitive performance and reliably associated with increasing mood symptoms, the main 

findings were unchanged by statistical control for death within one year after the third 

assessment. Although no firm conclusion is possible here, it seems that the terminal decline 

phenomenon is not confounded with the association between individual differences in 

cognitive performance and normal TSH status.  

 Performance on the Trail Making Test was not significantly related to TSH in 

any of the analyses. We believe that this may be due to the characteristics of the task. 

Trailmaking is an omnibus test that requires multiple cognitive skills, whereas the remaining 

cognitive tasks involved in the study draw on more specific skills. Provided the relatively 

complex outcome of the analyses showing dissociations in the results depending on the ability 

being examined, the failure to find any associations with the Trail Making test may be 

expected.  

 Although it is customary to separate dementia from non-dementia in cognitive 

aging studies, we decided to include participants who were diagnosed with incident dementia 

either at the first or the second follow-up. Concerns about statistical power formed the basis 

of our decision to do so, and to instead control for dementia by means of statistical 

procedures. We did however repeat all analyses without the incident dementia subjects (data 

not shown). The pattern of results were not changed by this, but as expected few results 

approached significance. This outcome together with the absence of significant TSH - 
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dementia correlations justifies in our view the inclusion of the incident dementia cases. Also, 

the anomaly in Table 3, where incident dementia at the first follow-up was positively related 

to some of the cognitive change scores were due to a few extreme individual change scores in 

this small group (n = 6) caused by very low initial cognitive scores in two individuals. 

 In support of the results in our first cross-sectional study (Wahlin et al., 1998), 

the present data suggest a particularly strong association among individual variations in 

normal TSH levels and episodic memory performance. Saying that, one should note that the 

cognitive change scores display a mixed pattern of decline and improvement over time. This 

is commonly found in most studies (see Hultsch et al., 1998). However, the trends were most 

consistent for the episodic memory variables. Thus, the proposed selective association of 

normal TSH with episodic memory should be interpreted with caution, since this discrepancy 

across the cognitive performance measures may have contributed to this finding. In addition, 

Table 1 reveals that the sign of the TSH change scores were also somewhat inconsistent. 

Importantly, the correlations among the cross-sectional TSH variables were all positive 

and significant (rs = .54 - .69; ps < .001), and the correlations among the change scores of 

primary interest (i.e., TSH T2-T3 vs T1-T3 change; TSH T1-T2 vs TSH T1-T3 change) 

were both positive and highly significant (rs = .58 and .54, ps < .001) 

 Finally, the number of exclusions due to TSH values outside normal range may 

seem large, but was motivated by our wish to take a conservative approach in order to avoid 

spurious associations. It is known that preturbations of thyroid hormones and TSH 

concentrations in the absence of thyroid dysfunction are commonly observed in a number of 

nonthyroidal illnesses that may also exert an impact on cognitive performance (McIver and 

Gorman, 1997). Thus, although we cannot definitely confirm the excluded participants had 

thyroid illnesses, the potential impact on cognitive functioning of their borderline TSH values 

may have inflated the results obtained in this study had they been included. 
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 Hence, as a separate control, we repeated all analyses including the subjects 

with out of range TSH values. In order to minimize effects of outliers, low and high TSH 

values were truncated at the lower (i.e., 0.4 mU/liter) or upper (i.e., 5.0 mU/liter) end of the 

normal distribution. Although the increased sample size provided more power to the analyses, 

most of the TSH-cognition associations disappeared (data not shown). This was however to 

be expected, since the clinical symptomatology of hyper- or hypothyroid persons may vary 

from hyperactivity to lethargy, causing quite disparate effects on cognitive performance. 

Descriptives of the group with out of range TSH values are shown in Table 1. 

 In sum, we found that, within normal ranges, declining TSH levels were 

associated with declining verbal fluency and visuospatial abilities, but not with deficits in 

those abilities at the end of three- or six year change time windows. With respect to episodic 

memory the longitudinal TSH change relative to cognitive change associations were also 

present, although they did not approach conventional levels of statistical significance. By 

contrast, six year changes in TSH levels were positively and significantly related to 

differences in episodic memory performance at the end of the follow-up interval. The results 

suggest that although most of the association between TSH and cognitive abilities may be due 

to shared change variation, TSH may exert a direct impact on episodic memory. It is 

suggested that the mechanism for such effects are increased cortisol levels, known to affect 

episodic memory functioning in particular (Lupien et al., 1994; van Haasteren et al., 1996). In 

order to further clarify this topic, it is necessary to expand the age range under scrutiny to 

cover both younger and older participants, and to add indicators of both relevant thyroid 

indexes (TSH and thyroxine), and steroid hormone levels. 
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Table 1 

Summary Statistics for Demographic and Laboratory Data For Study Sample, and Persons 

Excluded Due to Out of Range TSH Levels 

 

a
 pmol/liter.

 

b
 mU/liter. 

 Study sample (n = 45) Out of range TSH (n = 46) 

  Min Max M SD  Min Max M SD 

Age at T1   75.00   92.00 84.87   3.62            75.00   93.00 78.95   3.64 

Gender (% females) 87     65     

Education (years)     7.00   18.00   9.15   3.11     7.00   18.00   9.75   3.51 

T4 at T1
 a
   12.00   23.00 14.76   2.32   12.00   21.00 15.61   2.43 

TSH at T1 
b
  .60     4.90   1.84   1.06  .50     4.90   2.07   1.08 

TSH at T2 
b
  .60     3.80   1.54     .81  .10     6.20   1.79   1.28 

TSH at T3 
b
  .42     5.00   1.60   1.11  .03     8.10    .69   1.65 

TSH % change T1-T2  -70.45 100.00  -6.68 35.73  -97.96 175.00  -10.86 50.99 

TSH % change T2-T3  -58.46 233.33   7.02 56.19  -95.91 1400.00 -32.71 227.82 

TSH % change T1-T3  -66.54 117.39  -5.48 50.12  -98.16 350.00 -67.54 74.39 

Mood symptoms at T1  0 1.5 .06 .24  0 1.5 .13 .34 

Mood symptoms at T2  0 1 .38 .49  0 3.5 .31 .69 

Mood symptoms at T3  0 3.5 .48 .87  0 3.5 .45 .91 

Mood % change T1-T2  -60 100 34 51  -50 350 21 68 

Mood % change T2-T3  -50 350 19 82  -78 250 21 70 

Mood % change T1-T3  -60 350 45 89  -50 250 21 55 
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Table 2 

Descriptive Statistics for Percentage Change in the Dependent Cognitive Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variables Min Max M SD 

EM random T1 1.00 9.00 5.11 1.78 

                    T2 1.00 9.50 5.04 1.56 

                    T3 .50 8.00 3.44 1.77 

           % change T2-T3 -75.00 57.00 -25.22 25.75 

           % change T1-T3 -75.00 104.09 -23.77 34.43 

EM organized T1 2.50 11.00 7.18 2.43 

                        T2 .00 11.50 6.62 1.97 

                        T3 .00 12.00 5.66 2.69 

           % change T2-T3 -86.78 832.16 7.00 132.85 

           % change T1-T3 -89.47 166.33 -12.32 46.63 

Letter fluency T1 .50 33.50 11.45 6.96 

                       T2 3.00 19.50 10.39 3.54 

                       T3 .00 28.50 13.00 6.20 

           % change T2-T3 -93.55 211.11 30.34 60.33 

           % change T1-T3 -93.93 940.30 58.62 162.35 

Category fluency T1 3.00 33.00 19.00 7.25 

                            T2 8.00 28.00 17.35 4.45 

                            T3 .00 36.00 20.57 9.14 

           % change T2-T3 -145.45 79.42 -13.07 44.09 

           % change T1-T3 -95.65 624.47 25.98 106.15 

Block design T1 2.00 21.00 12.61 5.02 

                      T2 2.00 21.00 12.83 4.59 

                      T3 1.00 19.00 9.09 4.62 

           % change T2-T3 -150.00 75.85 -5.50 43.95 

           % change T1-T3 -84.61 315.66 -15.13 63.85 

TMT T1 26.00 360.00 114.08 67.77 

          T2 20.00 205.00 87.21 43.56 

          T3 25.00 477.00 113.36 68.74 

           % change T2-T3 -47.34 119.19 63.79 185.27 

           % change T1-T3 -80.81 167.04 52.83 256.95 
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Table 3 

Hierarchical Regression Examining TSH Change Scores as Predictors of Cognitive Change 

Scores in the T1-T3 and T2-T3 Time Intervals 

 

Table 4 

Hierarchical Regression Examining TSH Change Scores as Predictors of Cognitive 

Performance Scores at T2 and T3 

 


