
Thermal transport in out-of-equilibrium quantum harmonic
chains

Nicacio, F., Ferraro, A., Imparato, A., Paternostro, M., & Semiao, F. L. (2015). Thermal transport in out-of-
equilibrium quantum harmonic chains. Physical Review E, 91(4), [042116]. DOI: 10.1103/PhysRevE.91.042116

Published in:
Physical Review E

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
©2015 American Physical Society

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/thermal-transport-in-outofequilibrium-quantum-harmonic-chains(b9e75140-c35f-413e-ad6b-2afe70d01e92).html


Thermal transport in out of equilibrium quantum harmonic chains

F. Nicacio,1 A. Ferraro,2 A. Imparato,3 M. Paternostro,2 and F. L. Semião4

1Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, São Paulo, Brazil
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We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the
influences of local environments of various nature, stressing the effects that the specific nature of the environ-
ment has on the phenomenology of the transport process. We study in detail the behavior of thermodynamically
relevant quantities such as heat currents and mean energies of the oscillators, establishing rigorous analytical
conditions for the existence of a steady state, whose features we analyse carefully. In particular we assess the
conditions that should be faced to recover trends reminiscent of the classical Fourier law of heat conduction and
highlight how such a possibility depends on the environment linked to our system.

Understanding the transport properties in open systems in
contact with several energy or particle baths represents a chal-
lenge for nonequilibrium physics. Ideally, one would like to
characterize and even calculate explicitly the statistics of the
energy and particle currents, similarly to what can be done
in equilibrium ones. However, differently from the observ-
ables at equilibrium, the properties of the currents in out-of-
equilibrium systems depends strongly on the bath properties,
and on the characteristics of the system-bath coupling.

In this context, chains of oscillators have been extensively
used as microscopic models for heat conduction and, in gen-
eral, for out-of-equilibrium systems [1–4] to investigate the
behaviors of the thermal conductivity for different interaction
potentials between the oscillators, different bath properties, or
different system-bath couplings [1, 2].

The Fourier law of heat conduction implies that the heat
current flowing throughout a system from a hot to a cold bath
scales as the inverse of the system size J ∼ 1/L. In the clas-
sical case, it is known that this law is violated in 1D homoge-
neous harmonic systems [3, 5] where heat is carried by freely
propagating phonons, while the current scales with the system
size in presence of anharmonicity or disorder either in mass
or in the coupling constant. Although the transport is anoma-
lous (J ∼ 1/Lα, with α 6= 1) in these cases, the Fourier
law is finally restored only in presence of a external substrate
potential [1] or in the presence of a locally attached energy-
conserving reservoirs for each oscillator [6].

Quantum mechanically, a realistic description of a quan-
tum medium for the transport of heat would imply the use
of an explicitly open-system formalism and the introduction
of system-environment interactions. In this context, it is in-
teresting to identify the conditions, if any, under which heat
transport across a given quantum system can be framed into
the paradigm of Fourier law. Finding a satisfactory answer to
this question is certainly not trivial, in particular in light of the
ambiguities that the validity of Fourier law has encountered
even in the classical scenario.

In the quantum scenario, significant studies are embodied
by the work by Martinez and Paz [7], who demonstrated that
arbitrary networks of harmonic oscillators evolving under a

quantum Brownian master equation will obey the three laws
of thermodynamics and Fourier law. Assadian et al. [8], on the
other hand, have addressed a chain of oscillators interacting
with thermal and dephasing reservoirs described by a Lind-
blad master equation, finding that a Fourier-like dependence
on the system’s size can be observed for very long harmonic
chains.

In this paper, we contribute to such research efforts by
studying a general quadratic model for the coupling among
harmonic oscillators that, in turn, are affected by individual
thermal reservoirs and exposed to the temperature gradient
generated by all-diffusive end-chain environments. Our ap-
proach is able to pinpoint the origins of the specific energy dis-
tributions observed by varying the operating conditions of the
system and thus identify the role played, respectively, by the
diffusive and thermal reservoirs in the process of heat trans-
port. We find working configurations that deviate substan-
tially from the expectations arising from Fourier law and sin-
gle out scenarios that are strictly adherent to such a paradigm,
thus remarking the critical role played by the nature of the en-
vironment affecting the medium in the establishment of the
actual mechanism for heat transport.

The remainder of this paper is organised as follows. In
Sec. I we introduce the formalism used to address the dynam-
ics of the system. The general scenario addressed in our inves-
tigation is described in Sec. II, while the thermodynamic prop-
erties and phenomenology of heat currents across the device
are analyzed in Sec. III. Sec. IV is devoted to the analysis of
a few significant cases that help us addressing the deviations
from (and adherences to) Fourier law.

I. TOOLS AND NOTATION

In this Section we will consider a large class of systems
with a generic number of degrees of freedom n. Let us define
the operator

x̂ = (q̂1, ..., q̂n, p̂1, ...p̂n)†, (1)
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which is the column vector composed by n generalised coor-
dinates together with n canonical conjugate momenta. It is
possible to express the canonical commutation relations in-
volving coordinates and momenta compactly as [x̂j , x̂k] =
i~ Jjk with Jij the elements of the symplectic matrix

J =

(
0n In
−In 0n

)
. (2)

Here In and 0n are the n dimensional identity and zero matrix,
respectively. In the remainder of these notes, we will be deal-
ing with quadratically coupled harmonic oscillators. In this
scenario, the use of first and second moments of x̂ provides
a powerful oil for the description of the physically relevant
quantities involved in the evolution of the system. We thus
introduce the mean value (MV) vector 〈x̂〉t = Tr [x̂ρ̂(t)] and
the covariance matrix (CM) V of elements

Vjk(t) = 1
2Tr [{x̂j − 〈x̂j〉t, x̂k − 〈x̂k〉t} ρ̂(t)] . (3)

The focus of our work will be the study of a nearest
neighbor-coupled harmonic chain whose n elements are in
contact with (individual) local reservoirs at finite temperature.
The evolution of the chain can thus be described, in general,
through the Lindblad master equation

dρ̂

dt
= − i

~
[Ĥ, ρ̂]− 1

2~

M∑
m=1

({L̂†mL̂m, ρ̂} − 2L̂mρ̂L̂
†
m) (4)

with the following general form of a quadratic Hamiltonian
and linear Lindblad operators

Ĥ =
1

2
x̂ ·Hx̂+ ξ · Jx̂+H0, L̂m = λm · Jx̂+ µm, (5)

where H is the adjacency matrix of the Hamiltonian, ξ ∈ R2n

is a column vector encompassing possible position and mo-
mentum displacements, H0 ∈ R represents a possible energy
offset, and λm ∈ C2n contains the coupling strengths between
a given element of the chain and the respective reservoir. Fi-
nally, µm ∈ C are constants [12]. Using such a general de-
scription of the coherent and incoherent part of the evolution,
we can straightforwardly work out the dynamical equations
of motion for both 〈x̂〉t and the CM by calculating their time
derivative and using the state evolution provided by Eq. (4)
as [9]

d〈x̂〉t
dt

= ξ − η + Γ〈x̂〉t,
dV

dt
= ΓV + VΓ> + D, (6)

where we have introduced η =
∑M
m=1 Im(µ∗m λm) and

Γ = JH− ImΥJ, D = ~ReΥ, (7)

which are defined in terms of the decoherence matrix Υ =∑M
m=1 λmλ

†
m. By definition, we have ImΥ> = −ImΥ and

D = D> ≥ 0.
For time independent problems, Eqs. (6) can be solved ex-

actly as

〈x̂〉t = eΓt〈x̂〉0 + Γ−1
(
eΓt − I2n

)
(ξ − η),

V(t) = eΓt V0 eΓ>t +

∫ t

0

dt′ eΓt′ D eΓ>t′
(8)

with 〈x̂〉0 and V0 the MV and CM of the initial state, re-
spectively. The steady-state (or fixed-point) solutions of such
equations can be found by imposing dV/dt = d〈x̂〉t/dt = 0,
which are equivalent to the conditions (in what follows, the
subscript ? will be used to indicate steady-state values)

〈x̂〉? = −Γ−1(ξ − η), ΓV? + V?Γ
> + D = 0. (9)

The equation satisfied by V? is of the stationary Lyapunov
form [10] that, under the conditions above, admits a unique
positive-definite solution iff the eigenvalues of Γ have positive
real parts. In this case, we find

V? = lim
t→∞

V(t) =

∫ ∞
0

dt eΓt D eΓ>t . (10)

For time dependent H, ξ, η and λm, the form of 〈x̂〉? in Eq. (9)
is no longer valid and the conditions over the Lyapunov equa-
tion for V? must hold at each instant of time.

Note that, in order to deduce Eqs. (6), (8) and (10), we did
not need to make any assumption on the initial state of the sys-
tem but only use the quadratic and linear structure of Eq. (5)
and (4), respectively. The rest of our analysis, which will fo-
cus on the dynamics of thermodynamically relevant quantities
such as currents and energy, only depends on the actual form
of MV and CM.

II. THE SYSTEM AND ITS DYNAMICS

We can now start analyzing explicitly the system that we
have in mind. We consider the chain of oscillators depicted in
Fig. 1, each interacting with its own thermal reservoir at tem-
perature Tk, k = 1, ..., n. The Hamiltonian of the chain arises
from the application of the rotating-wave approximation on a
nearest-neighbour Hooke-like coupling model, which gives us

Ĥ = ~ω
n∑
j=1

â†j âj + 2~Ω

n−1∑
j=1

(â†j âj+1 + â†j+1âj), (11)

where ω and Ω are the frequency of the oscillators and their
mutual coupling rate respectively, and âj = (q̂j+ip̂j)/

√
2~ is

the creation operator of the jth oscillator. Using the notation
introduced before, Ĥ can be written as in Eq. (5) with ξ =
H0 = 0 and the adjacency matrix H = HHH ⊕HHH , where

HHHjk = ω δjk + Ω (δj k+1 + δj k−1) (12)

and δjk is the Kronecker symbol.
The coupling between a given oscillator and the respective

thermal reservoir is described by the Lindblad operators

L̂k =
√
~ζk(N̄k + 1) âk, L̂

′
k =

√
~ζkN̄k â†k, (13)

where ζk ≥ 0 is the bath-oscillator coupling and N̄k is the
mean occupation number of the reservoirs at temperature Tk.
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FIG. 1. (Color online) Schematic representation of the system. A
chain of coupled harmonic oscillators interacting according to an
RWA model.

This choice allows us to make the identifications

λk =

√
ζk
2

(N̄k + 1) (0, ..., 0︸ ︷︷ ︸
k−1

, i, 0, ..., 0︸ ︷︷ ︸
n−1

,−1, 0, ..., 0︸ ︷︷ ︸
n−k

)>,

λ′k =

√
ζk
2
N̄k (0, ..., 0︸ ︷︷ ︸

k−1

,−i, 0, ..., 0︸ ︷︷ ︸
n−1

,−1, 0, ..., 0︸ ︷︷ ︸
n−k

)>.

(14)
We now make the explicit assumption that the first and

last oscillator in the chain are also affected by two additional
reservoirs, which we label A and B, having temperatures
TA ≥ TB � Tk. This allows us to take N̄l � N̄k and ap-
proximate N̄l + 1 ≈ N̄l for l = A,B. Therefore, such baths
contribute with

λA = λ′∗A =

√
ζA
2
N̄A (i, 0, ..., 0︸ ︷︷ ︸

n−1

,−1, 0, ..., 0︸ ︷︷ ︸
n−1

)>,

λB = λ′∗B =

√
ζB
2
N̄B (0, ..., 0︸ ︷︷ ︸

n−1

,−i, 0, ..., 0︸ ︷︷ ︸
n−1

,−1)>.

(15)

We are now in a position to give some motivations for the
specific choice of the system to study. In a realistic scenario,
the impossibility to achieve full isolation leads one to take
into account the external and uncontrollable influences from
the environment over the evolution of a system. In our case
such disturbances are represented by the n thermal reservoirs
attached to each oscillator of the chain. On the other hand, as
we aim at studying heat transport across the system, we need
to set a temperature gradient, which is imposed, in our setting,
by the external end-chain baths. As such gradient is supposed
to be the leading mechanism for the transport process, it is
reasonable to assume that TA,B are the largest temperatures
across the system.

We can now go back to the formal description of the system
and write the decoherence matrix as Υ = Υ(A) + Υ(B) +∑n
k=1 Υ(k) with

Υ(k) = λkλ
†
k + λ′kλ

′†
k (k = 1, . . . , n),

Υ(l) = 2 Re(λlλ
†
l ) (l = A,B).

(16)

As the contribution given by the reservoirs A and B to the
dynamics is all in the matrix D of Eq. (7), we refer to them as
all-diffusive.

In order to simplify our analysis without affecting its gener-
ality, we now take ζk = ζ. From Eq. (12) and the expression

found for Υ, we find

Γ = −
(
ζ
2 In −HHH
HHH ζ

2 In

)
, D =

~ζ
2

I2n +DDD⊕DDD (17)

withDDD = ~ζ Diag( ζAζ N̄A + N̄1, N̄2, ..., N̄n−1,
ζB
ζ N̄B + N̄n).

This allows us to achieve the flowing expression for the CM

V(t) = eΓt V0 eΓ>t+ ~
2

(
1− e−ζt

)
I2n+U† (I⊕I∗) U (18)

with I =
∫ t
0
dt′ e−ζt

′
e−iHHHt

′
DDD eiHHHt

′
. Following the lines given

in the Appendix and integrating I by parts, it is then possible
to show that

V(t) = eΓt V0 eΓ>t + ~
2

(
1− e−ζt

)
I2n

+ O⊕O

(
ODDDO ◦ ReL −ODDDO ◦ ImL
ODDDO ◦ ImL ODDDO ◦ ReL

)
O⊕O,

(19)

with ◦ the symbol for a Hadamard matrix product [10] and the
matrices O and L having the elements

Okl =

√
2

n+ 1
sin

(
klπ

n+ 1

)
, Ljk =

1− e−[ζ+i(νj−νk)]t

ζ + i(νj − νk)
(20)

with νm = ω + 2Ω cos( mπ
n+1 ) (cf. Appendix). The steady-

state form of such solution can be found as illustrated in the
previous Section, which yields

V? =
~
2
I2n+

O⊕O

(
ODDDO ◦ ReL? −ODDDO ◦ ImL?
ODDDO ◦ ImL? ODDDO ◦ ReL?

)
O⊕O

(21)

with L?jk := limt→∞ Ljk = 1/[ζ + i(νj − νk)]. Remark-
ably, Eq. (21) is the CM of a vacuum state corrected by terms
whose origin is entirely ascribed to the presence of the reser-
voirs. Furthermore, the nullity of the diagonal elements of
ImL? guarantees that, in the long-time limit, each oscillator
is in a thermal state. If the reservoirs connected to the el-
ements of the chain have all the same temperature (so that
N̄k = N̄ , ∀k = 1, . . . , n), Eq. (21) can be cast into the form

V? = ~(N̄ + 1
2 )I2n

+ O⊕O

(
ODDDO ◦ ReL? −ODDDO ◦ ImL?
ODDDO ◦ ImL? ODDDO ◦ ReL?

)
O⊕O,

(22)
withDDD := ~Diag(ζAN̄A, 0, ..., 0, ζBN̄B). This is the CM of a
thermal equilibrium state at temperature T for the n oscillators
plus corrections due to the all-diffusive reservoirs.

III. ANALYSIS OF HEAT CURRENT ACROSS THE CHAIN

In a thermodynamical system ruled by Hamiltonian Ĥ and
described by the density matrix ρ̂, the variation of the internal
energy is associated with work and heat currents. In fact

d

dt
〈Ĥ〉 = Tr

(
ρ̂
∂Ĥ

∂t

)
+ Tr

(
dρ̂

dt
Ĥ

)
. (23)
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While the first term in the right-hand side is associated with
the work performed on/by the system in light of the time-
dependence of its Hamiltonian, the second term accounts for
heat flowing into/out of the system itself. As the Hamiltonian
of our problem is time-independent, any change in the mean
energy of the chain should be ascribed to the in-flow/out-flow
of heat. By inserting the right-hand side of Eq. (4) in place of
dρ̂/dt above, we find

J = Tr

(
dρ̂

dt
Ĥ

)
=

M∑
k=1

Jk (24)

with Jk = 1
2~ 〈2L̂kĤL̂

†
k − {Ĥ, L̂

†
kL̂k}〉 the heat current in-

duced by the kth Lindblad operator, andM = 2(n+1) for the
system depicted in Fig. 1. This expression can be specialized
to the case of the system addressed in Section II to give (cf.
Appendix)

Jk =Tr

[
~
2

H Re(λkλ
†
k)−H

(
V + 〈x̂〉t〈x̂〉>t

)
J Im(λkλ

†
k)

]
.

(25)
Summing over all Lindblad operators, the total current reads

J =
1

2
Tr [H D]− Tr

[
H
(
V + 〈x̂〉t〈x̂〉>t

)
J ImΥ

]
. (26)

The first term is the diffusive part of the current and is constant
in time if the set of λk’s does not depend on time explicitly.

The system’s internal energy can be easily worked out to
take the general form

〈Ĥ〉t =
1

2
Tr
[
H V(t) + H 〈x̂〉t〈x̂〉>t

]
=

1

2
e−ζt Tr(HV0) +

1

2
e−ζt〈x̂〉0 ·H〈x̂〉0

+ ~ω

(
n

2
+

n∑
k=1

N̄k+
ζA
ζ
N̄A +

ζB
ζ
N̄B

)(
1− e−ζt

)
.

(27)
At the steady state, we can write

〈Ĥ〉? = ~ω
(
ζA
ζ
N̄A +

ζB
ζ
N̄B

)
+~ω

n∑
k=1

N̄k+
1

2
~ωn, (28)

showing that the mean energy of the system does not depen-
dent on the coupling strength between the oscillators and is
fully determined by the the interactions with the reservoirs.
The contribution that each oscillator gives to the equilibrium
energy in Eq. (28) is not uniform across the chain, as can be
seen from Fig. 2 where we plot the mean occupation number
of each oscillator

N̄
(k)
? = Tr(â†kâkρ̂) =

1

~
[V?]kk − 1/2. (29)

Despite the individual contribution of each bath for the mean
energy in (28), the state of the chain is described by the
CM (22), which encompasses the collective effects of all the
reservoirs resulting from the mixing process effectively im-
plemented by the inter-oscillator coupling. As for the current,
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FIG. 2. (Color online) Distribution of mean occupation numbers for
the elements of a chain of two lengths. The (green) diamond-shaped
points correspond to a chain of n = 25 with N̄A = 2N̄B = 10N̄k =
100. The (blue) square points are for n = 50 with N̄A = 2N̄B =
10N̄k = 100. Finally, the (violet) dots are for n = 50 with N̄A =
N̄B = 10N̄k = 100. The remaining parameters are Ω/ω = 1/2,
ζ/ω = ζA/ω = ζB/ω = 1/10 and ~ = 1.

one finds

J = −ζ
2

e−ζt Tr(HV0)− ζ

2
e−ζt〈x̂〉0 ·H〈x̂〉0

+ ~ω

(
ζn

2
+ ζ

n∑
k=1

N̄k+ζAN̄A + ζBN̄B

)
e−ζt

(30)

with J? = 0. As the current is a linear function of the matrix
λmλ

†
m [cf. Eq. (25)], in order to interpret each term of the

above equation and their contribution to the total current at
the steady state, we break the total current into the three parts.
The first two are time independent and read

J (l) =
~
2

Tr
[
H Υ(l)

]
= ~ωζlN̄l (l = A,B). (31)

The third one is

J (k) =
~
2

Tr
[
H ReΥ(k)

]
− Tr

[
HVJ ImΥ(k)

]
(32)

= ~ωζ(N̄k + 1/2)−ζ(ωVkk + Ω Vk−1k + Ω Vkk+1) .

For simplicity, we have omitted the explicit dependence on
the initial conditions. The simple form attained in Eq. (31) is
a consequence of Eq. (16), where the matrices Υ(A) and Υ(B)

are purely real. At the steady state, using Eqs. (29) and (32),
one finds

J (1)
? = −~ωζ

[
N̄

(1)
? − N̄1

]
− ΩζV?12,

J (k)
? = −~ωζ

[
N̄

(k)
? − N̄k

]
− Ωζ(V?kk+1 + V?k−1k),

J (n)
? = −~ωζ

[
N̄

(n)
? − N̄n

]
− ΩζV?n−1n.

(33)
The above currents for each reservoir in the chain at the sta-
tionary state are plotted in Fig. 3. From Eq. (21), it is possible
to show that in the situation depicted there, we have

V?jj+1 = 0, (j = 1, ..., n− 1), (34)
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and thus the currents in Eq. (33) are given exclusively by the
difference between the mean occupation number of the reser-
voirs N̄k, and the mean thermal photon number of each oscil-
lator N̄ (k)

? . That is, the heat currents within the system can be
understood as the difference between the amounts of energy
stored in a given reservoirs and that in the respective oscilla-
tor [13]. The fact that J? = 0 implies that all the internal
currents J (k) are constrained to sum up the (constant) value
−
(
J (A) + J (B)

)
independently on the length of the chain,

which shows a clear violation of Fourier law of heat conduc-
tion. Note that all the currents are negative showing also that
the thermal energy stored in each oscillator, represented by
N̄

(k)
? , is greater than the energy of its own reservoir.

The behavior of both quantities against the length of the
chain can be deduced from Fig. 4. In virtue of Eq. (33), the
occupation number of the oscillators decreases with n while
the current increases, so that in the thermodynamical limit (i.e.
for n � 1) both become independent of the length of the
chain. Furthermore, any oscillator in the bulk of the chain,
i.e. any element identified by a label k ∼ n/2, has the same
occupation number of the reservoir attached to it. This is due
to the fact that, thanks to Eq. (20), Okj ≈

√
2/n sin(jπ/2)

and N̄ (k)
? = N̄k. In such conditions, the individual current is

null, as it can be seen from Eq. (33).

The classical version of the problem, where a chain of har-
monic oscillators is attached to two end-chain thermal baths
at temperatures T1 and Tn [5], shares some similarities with
our study. In fact in the work by Reider et al. [5], the bulk os-
cillators attains a constant temperature as in our case. While
in Ref. [5] this is given by (T1+Tn)/2, here such temperature
is given by the occupation number of the bath attached to one
of the oscillators. Moreover, the current in the work of Reider
et al. is constant throughout the system and proportional to
T1 − Tn. In our study, the current is given by the sum of the
currents of the all diffusive reservoirs.
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FIG. 3. (Color online) Currents across the chain. The (green)
diamond-shaped points correspond to a chain of n = 25 with
N̄A = 2N̄B = 10N̄k = 100. The (blue) square points are for
n = 50 with N̄A = 2N̄B = 10N̄k = 100. Finally, the (violet) dots
are for n = 50 with N̄A = N̄B = 10N̄k = 100. The remaining
parameters are as in Fig. 2.
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FIG. 4. (Color online) Mean value of energy [panel (a)] and currents
[panel (b)] of the first (k = 1), central (k = n/2), last (k = n) and
10th oscillators in the chain as a function of the length with N̄A =
2N̄B = 10N̄k = 100; The remaining parameters are the same as in
Fig. 2.

IV. APPLICATION TO PARADIGMATIC CASES

In this Section we use the formalism and results illustrated
so far to analyze the transport of heat in a few paradigmatic
examples, all encompassed by the general treatment of the
problem provided above.

A. Case I: Ordinary Baths

We start wondering about the specific dependence of the
mean energy in Eq. (28) on the length of the system, and the
way it is influenced by the constraint imposed by the purely
diffusive reservoirs.

To investigate this, we take ζA = ζB = 0 in the model de-
picted in Fig. 1, and analyze its properties. The corresponding
steady state CM is as in Eq. (21) with

DDD = ~ζ Diag(N̄1, ..., N̄n), (35)

while the steady state energy and the current are given by
Eq. (28) and Eq. (30), respectively. In order to remain as close
as possible to the system discussed in the previous Section, we
take T1 > Tk > Tn for 1 < k < n. As all reservoirs are of
the ordinary type, the approximation in Eq. (15) does not hold
for the end-chain baths. As one can see from Fig. 5, the same
pattern for the mean excitation number displayed in Fig. 2 is
found. In Fig. 6, we then plot the currents given in Eq. (33)
of the reservoirs with temperatures Tk, k = 2, ..., n− 1. They
are all negative, as in Fig. 3, and sum up to

n−1∑
k=2

J (k)
? = −(J (1)

? + J (n)
? ) < 0. (36)

However, the actual value of the sum of the currents depends
on the number of oscillators since J (1)

? and J (n)
? depends on

the length of the system. Again, the individual currents are the
difference between the energy stored in each oscillator and the
mean energy occupation of the respective reservoir. As the
number of oscillators in the chain increases, the current and
mean energy behave very much like those in Fig. 4.

At this point, one might wonder about the reason for the
negativity of the internal currents. Actually, it turns out that
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FIG. 5. (Color online) Distribution of mean occupation numbers for
the elements of a chain without the diffusive reservoirs. Diamonds
(green): chain with n = 25 oscillators and temperatures of the baths
given in terms of N̄1 = 2N̄n = 100 and N̄k = 30; Squares (blue):
chain with n = 50 oscillators and N̄1 = 2N̄n = 100 and N̄k = 30;
Circles (violet): n = 50 and N̄1 = N̄n = 100 and N̄k = 30;
The remaining parameters are the same as in Fig.2 and in all cases
k = 1, ..., n.

this is a simple consequence of the structure of Eq. (33)
when Eq. (34) is taken into account. In general, the os-
cillators attached to the highest temperature reservoirs will
have N̄k−N̄ (k)

? >0, which is not the case for all the others,
as their occupation number will also be determined by their
own lower-temperature reservoir and the contributions com-
ing from the higher temperature ones.

In Fig. 7, we plot the results valid for a different configura-
tion, where one internal reservoir has the highest temperature.
Notwithstanding the differences with respect to the patterns
shown in Figs. 5 and 6, the currents and energy of this config-
uration follow the same chain-length dependence discussed
above.
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FIG. 6. (Color online) Currents across the chain without the diffusive
reservoirs. The color/symbol code is the same as in Fig. 5, although
we have taken k = 2, ..., n − 1, i.e. we have excluded the positive
currents from the first and last reservoir.

B. Case II: All-diffusive dynamics

Let us consider now a chain of oscillators connected only
to the all-diffusive reservoirs A and B. When ζk = 0 for k =
1, . . . , n the resulting dynamics is not stable (cf. Appendix).
However, the evolution of the system can be deduced from
Eq. (19) by taking ζ → 0 to give

V(t) = eJHt V0 e−HJt

+ O⊕O

(
ODDDO ◦ ReL0 −ODDDO ◦ ImL0

ODDDO ◦ ImL0 ODDDO ◦ ReL0

)
O⊕O,

(37)
with (L0)jk = limζ→0 Ljk = i(e−i(νj−νk)t − 1)/(νj − νk).
The diagonal elements of L0 are obtained taking the limit
νj → νk and are given by (L0)kk = t, ∀k. Note that the
ordering of the two limits above does not commute. As be-
fore, as the elements (ImL0)kk = 0,∀k, and each oscillator
is in a thermal state at all times.

In Fig. 8, we show the mean occupation number of each
oscillator, N̄ (k) = V(t)kk/~ − 1/2, at some instants of time
for the evolution in Eq. (37) and an initial vacuum state. The
process of excitation of the elements of the chain starts from
its ends to then progressively move towards its center. The
mean occupation number of the oscillators increases on av-
erage linearly in time, i.e., they oscillate by the effect of the
orthogonal matrices O around the linear rate given by [L0]kk
[cf. Eq. (37)].

As an interesting remark, we observe that the distribution
corresponding to the case of t = 20 displays oscillators hav-
ing occupation numbers larger than those of the oscillators in
touch with the all-diffusive reservoirs. This is an effect of the
competition between linear increase of N̄k and the oscillatory
behavior induced by the actual absence of a steady state: the
spikes only occur in a small time scale and do not occur again
at longer times.

The total current for this system is obtained as

J0 := lim
ζ→0
J = ω

[
ζAN̄A + ζBN̄B

]
, (38)
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FIG. 7. (Color online) Currents across a chain of n = 25 oscillators
with N̄8 = 30 and N̄k = 10,∀k 6= 8. The remaining parameters
are the same as in Fig. 2. Inset: Mean occupation number of the
oscillators in the chain.
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and is thus a constant and that helps us in determining the
mean energy of the system

lim
ζ→0
〈Ĥ〉t = 1

2Tr(HV0) + J0 t. (39)

The indefinite growth of energy supplied by the current can be
seen as a signature of instability of the system. In this context,
the relative temperature of the reservoirs is irrelevant as both
contribute in the same way to the enhancement of the energy
[Eq. (39)] and currents [Eq. (38)].

C. Case III: Balanced competition of environmental effects

A standard thermal reservoir, as those distributed across the
chain in Fig. 1, exchanges energy with the system in two dis-
tinct ways: diffusion, described by the matrix D in Eq. (7),
which is responsible of the enhancement of energy; and dis-
sipation, described by Γ, which extracts energy from the sys-
tem. The balanced competition of these two effects drives the
system to equilibrium at the steady state. In the presence of
both such mechanisms the currents will anyway flow from the
hotter to the colder reservoir.

So far, these two kinds of reservoirs have not been treated
on equal footing, and it will be interesting to understand the
behavior of a chain when a balanced competition of environ-
mental mechanisms is considered. To this end, let us consider
the system depicted in Fig. 1 with ζm = 0 for 1 < m < n,
i.e., while the reservoirs of the bulk chain are detached, those
at the end of it (having temperature T1, Tn, TA and TB) are
still operative. In this case, the matrices (7) are given by

Γ = GGG⊕GGG+ Adiag(HHH,−HHH), D = DDD⊕DDD, (40)

withGGG = −Diag(ζ1, 0, ..., 0, ζn)/2 and

DDD = ~ζ Diag(N̄1 + 1
2 + ζA

ζ N̄A, 0, ..., 0, N̄n + 1
2 + ζB

ζ N̄B).

The stability of this system is independent of the diffusive
reservoirs since they did not contribute to Γ in Eq. (40). Fur-
thermore, the action of the all-diffusive reservoirs is only to

0

10

20
k 1

10

20

30

t

0

10

20

30

N
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FIG. 8. (Color online) Distribution of mean occupation numbers for
the elements of a chain of n = 25 oscillators attached only to two
end-chain diffusive reservoirs. We sample the dynamics at the in-
stants of time t = 1, 10, 20, 30. The chain is initially prepared in its
vacuum state. We have taken ζA,B = 1/10 and N̄A = 2N̄B = 100.
As for the other parameters of the system, we have Ω/ω = 1/2 and
~ = 1.

enhance the mean occupation number of the standard ones,
that is, the solution to this problem is equivalent to take a chain
with only two end-system standard reservoirs with mean oc-
cupation numbers Ñ1 = N̄1 + (ζA/ζ)N̄A and Ñ2 = N̄2 +
(ζB/ζ)N̄B. The methods employed in Ref. [8], which ad-
dressed the problem embodied by Eq. (40) with ζA = ζB = 0,
will be useful to find a solution to this case. At the steady state
attained by Eq. (40), the sum of all currents is null (as ex-
pected) while the mean occupation number for each oscillator
is given by the expressions

N̄
(1)
? = 1

2 (Ñ1 + Ñn) +
ζ2(Ñ1 − Ñn)

8Ω2 + 2ζ2
,

N̄
(k)
? = 1

2 (Ñ1 + Ñn) (1 < k < n),

N̄
(n)
? = 1

2 (Ñ1 + Ñn)− ζ2(Ñ1 − Ñn)

8Ω2 + 2ζ2
.

(41)

All the internal oscillators have the same occupation number,
as in Ref. [8]. The mean energy at the steady state can be
evaluated from Eq. (27)

〈Ĥ〉? = ~ω
n∑
k=1

(N̄
(k)
? + 1

2 ) = n~ω

(
Ñ1 + Ñn

2
+

1

2

)
. (42)

The currents through the two oscillators are given by Eq. (32),
i.e. J (k)

? = −~ωζ(N̄
(k)
? − Ñk) with k = 1, n and are equal

to

J (1)
? = −J (n)

? =
2~ωΩ2ζ(Ñ1 − Ñn)

4Ω2 + ζ2
. (43)

The perfect balance between such current implies that the cur-
rents at the stationary state for the two standard reservoirs are
constrained to sum upJ (A)+J (B) which is the sum of the all-
diffusive ones. This is analogous to what we have witnessed in
Sec. II. By assuming that two thermal baths with Ñk are mod-
eled by a large number of harmonic oscillators with frequency
$, we can write Ñk = [exp(~βk$) − 1]−1, where βk is the
inverse temperature. Taking the classical limit ~ → 0, both
the current [Eq. (43)] and the temperature of each reservoir in
the bulk [Eq. (41)] behaves as in the classical case [5].

D. Case IV: Dephasing dynamics

In Ref. [8], Assadian et al. considered a chain of oscillators
attached to two standard thermal reservoirs at the ends, which
is the same configuration described in Sec. IV C but with ζA =
ζB = 0. Under these restrictions, the results in Eq. (42) and
(43) remain valid and can be extracted from their work.

Besides this example, they consider also the presence of n
purely dephasing reservoirs, each one attached to each oscil-
lator of the chain. The contribution of the dephasing mecha-
nisms to the dynamics is modelled adding the following Lind-
blad operators to the master equation regulating the dynamics
of the system

L̂k = ~
√
γ â†kâk, k = 1, ..., n. (44)
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FIG. 9. (Color online) Distribution of mean occupation numbers for
the elements of a chain connected to two ordinary end-chain reser-
voirs and n dephasing reservoirs. Diamonds (green): chain with
n = 25 oscillators and bath mean occupation numbers N̄1 = 2N̄n =
100. Squares (blue): chain with n = 50 oscillators and N̄1 =
2N̄n = 100. Circles (violet): n = 50 and N̄1 = 4N̄n/3 = 100. All
other parameters as in Fig. 2.

The special form of these reservoirs is such that they do not
introduce new currents in the system. This can be verified by
calculating the individual currents to find that Jk = 0,∀k.
On the other hand, their presence drastically changes the be-
haviour of the mean occupation value of each oscillator . As
it can be seen from Eq. (29), these are now given by

N̄
(1)
? = 1

2 (N̄1 + N̄n) +
[ζ2 + (n− 1)γζ](N̄1 − N̄n)

8Ω2 + 2ζ2 + 2(n− 1)γζ
,

N̄
(k)
? = 1

2 (N̄1 + N̄n) +
(n− 2k + 1)γζ(N̄1 − N̄n)

8Ω2 + 2ζ2 + 2(n− 1)γζ
,

N̄
(n)
? = 1

2 (N̄1 + N̄n)− [ζ2 + (n− 1)γζ](N̄1 − N̄n)

8Ω2 + 2ζ2 + 2(n− 1)γζ
(45)

for 1 < k < n − 1. Note that if the temperature of standard
end-chain reservoirs are equal, N̄1 = N̄n = N̄ , all the oscil-
lators thermalize with the standard reservoirs having the same
mean occupation number N̄ . We plot such quantity in Fig. 9.

As already commented, the dephasing reservoirs do not
contribute to the currents. At the stationary state, we have

J (n)
? = −J (1)

? =
2~ωΩ2ζ(N̄1 − N̄n)

4Ω2 + ζ2 + (n− 1)γζ
. (46)

This result is remarkable, as it shows that for 4Ω2+ζ2 � nγζ,
which is trivially satisfied for a large enough chain, a Fourier-
like dependence on the size of the system is recovered. The
classical version of the same problem has been studied in
Ref. [6].

We now describe the modifications induced by the dephas-
ing reservoirs when they are attached, one by one, to the sys-
tem. The Lindblad operator in Eq. (44) can be rewritten as
(see also the Appendix)

L̂m = 1
2 x̂ ·∆mx̂+ λm · Jx̂+ µm, (47)

with the 2n× 2n real matrix

[∆m]jk =
√
γm(δjmδmk + δj+nmδmk+n). (48)

Without dephasing reservoirs (γm = 0,∀m), the currents
in the system are the ones described by (43) with the substitu-
tions Ñ1 → N̄1 and Ñn → N̄n. Following the prescriptions
in the appendix, we solve numerically the system with γ1 = γ
and γk = 0∀k 6= 1, n ≤ k ≤ 1 and calculate the current as
function of the number of oscillators n. Adding progressively
more dephasing reservoirs until γm = γ,∀m, [in this situation
the current is given by Eq. (46)] and calculating the current
allows us to show in Fig. 10 the smooth transition from the
situation described by Eq. (43) to that associated to Eq. (46).

E. Case V: Random couplings

Classically, size-dependent currents in chains of oscilla-
tors arise under the presence of anharmonicity or disorder [1],
which can be realised in various ways. One can, for example,
introduce random frequencies or random couplings across the
chain. For the sake of definiteness, we consider the system of
Fig. 1, now ruled by the Hamiltonian

Ĥ = ~ω
n∑
j=1

â†j âj + 2~
n−1∑
j=1

Ωj(â
†
j âj+1 + â†j+1âj). (49)

The structure of Eq. (21) remains the same with O being
replaced by the matrix that diagonalizes the adjacency matrix

HHHjk = ω δjk + Ωj (δj k+1 + δj k−1) (50)

and νk (which appears in the definition for L?) being its eigen-
values and both can be calculated numerically for a given set
of couplings {Ωj}1≤j≤n.
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FIG. 10. (Color online) Current across the chain with two ordinary
end-chain reservoirs, plotted as a function of the number of oscilla-
tors n and the number of dephasing reservoirs k. We highlight the
curves describing the extreme cases k = 0 and k = n, which are the
functions reported, respectively, in Eq. (43) with Ñ1 = 2Ñ2 = 100
and in Eq. (46) with N̄1 = 2N̄2 = 100. The dephasing coupling is
γ/ω = 0.5 while the remaining parameters are the same as in Fig. 2.
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FIG. 11. (Color online) Distribution of mean occupation numbers for
the elements of a chain with random coupling. The couplings among
the oscillators are randomly chosen such that Ωj ∈ [Ω/2, 3Ω/2],
j = 1, ..., n. The remaining parameters are as Fig. 2.

To introduce the randomness, we consider the set
{Ωj}1≤j≤n as a uniform random distribution deviating 50%
from a given mean value Ω, i.e., we raffle Ωj ∈ [Ω/2, 3Ω/2]
with equal probability. In Figs. 11 and 12, respectively, we
plot the mean occupation number and the current for one ran-
dom set of couplings. Structurally speaking the behavior of
the system does not change with the introduction of random-
ness, this can be seen when comparing these figures, respec-
tively, with Fig. 2 and Fig. 3. Observe the similarities on the
profile of the curves, the first and last oscillators and, mainly,
the behavior of the bulk.

It is also interesting to see what happens with the individual
currents and occupation number in the thermodynamical limit.
These are plotted in Fig. 13. As before, currents and mean
occupation numbers for the oscillators in the bulk become in-
dependent of the length for long enough chains. However, it
is interesting to remark that the last oscillator is influenced by
the randomness of the couplings.
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FIG. 12. (Color online) Currents across the chain for the same situa-
tion depicted in Fig. 11.

F. Case VI: Spring-mass coupling

Until now, we have worked in the regime of rotating wave
approximation (RWA), which enables the explicit analytical
form of the CM of the chain [cf. Eq(19)]. This contrasts sig-
nificantly with any classical approach to the transmission of
heat across a harmonic chain, which is in general performed
assuming the standard spring-mass coupling (SMC) [1, 5, 6].
In this Subsection we will thus briefly address the case of an
SMC-like coupling to make a more faithful comparison with
the classical case.

The Hamiltonian of a chain of n oscillators coupled by the
standard SMC coupling has the adjacency matrix H′ = HHH ′ ⊕
ωIn, where

HHH ′jk = (ω + κ) δjk − κ
2 (δj k+1 + δj k−1 + δj1δ1k + δjnδnk).

(51)
As this matrix is almost of the Toeplitz form, a procedure sim-
ilar to the one used in Appendix VI can be used to find the
covariance matrix of the system, which is given by

V = O−1Γ′

[
OΓ′DO>Γ′ ◦ L′?

]
O−>Γ′ . (52)

Here [L′?]jk = −1/(ν′j − ν′k) with

ν′k =
√
ω(ω + κ)− ωκ cos [(m− 1)π/n], (53)

and OΓ′ defined by

OΓ′Γ′O−1Γ′ = −ζ
2
I2n + Diag(iν′1, ..., iν

′
n,−iν′1, ...,−iν′n).

(54)
We can now calculate the mean occupation number and the
current for each oscillator, whose behavior is shown in Fig. 14
and Fig 15, respectively.

As one can see, the results for the SMC case are structurally
similar to those found in the RWA one. Such similarities ex-
tend also to the situations where either the diffusive baths are
not considered or the distribution of couplings across the chain
is random.
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FIG. 13. (Color online) Mean value of energy [panel (a)] and cur-
rents [panel (b)] of the first (k = 1), central (k = n/2), and last
(k = n) element of a chain of length n against the length n for a
chain with ramdon couplings. We also show the energy and current
associated with the 10th. The parameters used in the simulations are
the same as in Fig. 4.
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FIG. 14. (Color online) Distribution of mean occupation numbers
for the elements of a chain of two lengths for the SMC hamiltonian.
Diamonds (green): chain of n = 25 with N̄A = 2N̄B = 10N̄k =
100; Squares (blue): chain of n = 50 with N̄A = 2N̄B = 10N̄k =
100; Circles (violet): n = 50 with N̄A = N̄B = 10N̄k = 100. The
remaining parameters are κ/ω = 1/2, ζ/ω = ζA/ω = ζB/ω =
1/10 and ~ = 1.

V. CONCLUSIONS

We have investigated the heat transport in quantum har-
monic chains connected to different types of heath baths. We
calculate the exact expression of the currents in terms of the
system and of the bath properties, applying this result to the
analysis of a few paradigmatic cases. In particular we find
that the Fourier law is violated in homogeneous chains, in-
dependently from the baths considered and it is only restored
when we add a dephasing reservoir to each oscillator, akin to
a substrate external potential in the classical case. Further-
more, heat is transported ballistically in presence of disorder
too and our results are consistent with those known for the 1D
classical harmonic chains.
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FIG. 15. (Color online) Currents across the chain for the SMC hamil-
tonian. We used the same parameters as in Fig. 14.

VI. CONCLUSIONS

We have investigated heat transport in quantum harmonic
chains connected to different types of heath baths. We have
obtained the exact expression for the currents across the sys-
tem highlighting the crucial role played by the properties of
the environment. Such detailed analysis was instrumental to
the study of a few paradigmatic configurations. In particu-
lar, we have found that the Fourier law is violated in homo-
geneous chains, independently of the nature of the bath be-
ing considered and can only be restored when a dephasing
reservoir is attached to each oscillator. This is akin to a sub-
strate external potential in the classical version of the problem
addressed here. Fourier law is violated, and heath is trans-
ported ballistically, in the presence of disorder too, as long
as the weak-coupling regime addressed in this manuscript is
considered. Our results are consistent with those known for
unidimensional classical harmonic chains, and shed new light
on the interplay between transport properties of spatially ex-
tended quantum media and the nature of the environmental
systems interacting with it.
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APPENDIX

In this Appendix we provide additional details on the math-
ematical approach to the problems addressed in the main body
of the paper.

Currents and energy for a quadratic system

Here we address the derivation of the expressions for the
currents and mean energy for a system evolving according to
Eq. (4) when a quadratic Hamiltonian as the one in Eq. (5) and
M quadratic Lindblad operators are considered. Specifically,
we assume the form

L̂m = 1
2 x̂ ·∆mx̂+ λm · Jx̂+ µm, (A-1)

where ∆m = ∆>m is a 2n×2n real matrix. Taking the deriva-
tive of 〈x̂〉t and V defined in Eq. (3), using the master equa-
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tion (4), and recalling the commutation relation [x̂j , x̂k] =
i~ Jjk, we get the dynamical equations

d〈x̂〉t
dt

= ξ − η + Γ̃〈x̂〉t,
dV

dt
= Γ̃V + VΓ̃> + D + ∆V,

(A-2)
where

∆V = ~
M∑
m=1

J∆mV ∆mJ>, Γ̃ = Γ + ~
2

M∑
m=1

(J∆m)2.

(A-3)
Both Γ and D are defined in Eq. (7). By inserting Eq. (5) and
Eq. (A-1) into the definition of the individualJm’s in Eq. (24),
we get

Jm = ~
2Tr

[
HRe

(
λmλ

†
m

)
−HJ∆mV∆mJ

]
+ ~

2Tr
[
H(J∆m)2

(
V + 〈x̂〉t〈x̂〉>t

)]
− Tr

[
H Im

(
λmλ

†
m

)
J
(
V + 〈x̂〉t〈x̂〉>t

)]
+ Jξ ·

[
Im
(
λmλ

†
m

)
J− ~J∆mV ∆mJ

]
〈x̂〉t

+ Im(µ∗mλm) · (Jξ −H〈x̂〉t). (A-4)

Summing over all Lindblad operators, see eq. (24), the total
current has the following form

J =
1

2
Tr [H( D + ∆V)] + Tr

[
H Γ̃

(
V + 〈x̂〉t〈x̂〉>t

)]
+ (ξ − η) ·H〈x̂〉t − Jξ · Γ̃〈x̂〉t, (A-5)

which is zero for a possible state state, i.e., the solution of (A-
2) with ∂t〈x̂〉t = ∂tV = 0. The internal energy of the system
is easily worked out as 〈Ĥ〉t = Tr(Ĥρ̂). We get

〈Ĥ〉t = 1
2Tr

[
H V(t) + H 〈x̂〉t〈x̂〉>t

]
+ξ·J〈x̂〉t+H0. (A-6)

Taking the derivative of this equation and rearranging the ex-
pressions one finds Eq. (A-5).

On the stability of the dynamical system

Here we analyze the dynamical stability of the system dis-
cussed in Sec. II.

The matrixHHH in Eqs. (12) and (17) is a tridiagonal and sym-
metric Toeplitz one, and can thus be diagonalized by a sim-
ple (symmetric) orthogonal transformation [11] as OHHHO> =
Diag(ν1, ..., νn), where

Okl =
√

2
n+1 sin kl π

n+1 , νm = ω + 2Ω cos mπ
n+1 . (A-7)

The matrix that diagonalises Γ in (17) can then be constructed
as OΓ = (O⊕O)U with

U =
1√
2

(
−iIn In
iIn In

)
, (A-8)

which gives us

OΓΓO†Γ = − ζ2 I2n − iDiag(ν1, ..., νn,−ν1, ...,−νn).
(A-9)

As the spectrum in Eq. (A-9) has positive real part, Γ is stable.
Moreover, in light of the fact that D in Eq. (17) is a positive
definite matrix, the system allows for a steady state, whose
moments are given by (9).

Details on the calculation of Eq. (18)

By integrating the expression for I by parts, we get

i[I,HHH]− ζI = e−iHHHtDDDeiHHHte−ζt −DDD. (A-10)

By diagonalizing HHH with the help of Eq. (A-7) and intro-
ducing the matrices Ĩ = OIO, D̃DD = ODDDO and L given
in Eq. (20), we find that Ĩjk = D̃DDjkLjk = (D̃DD ◦ L)jk.
Starting from this, one can straightforwardly show that I =
O [ODDDO ◦ L] O. In turn, the dynamical solution in Eq. (18)
can be obtained by using this result and noticing that

U† (I⊕ I∗) U =

(
ReI −ImI
ImI ReI

)
. (A-11)
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