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Chapter 6

Pleistocene Island Occupation in the Mediterranean: 
Insights from a Tied-Biome Approach to Glacial Refugia

Nellie Phoca-Cosmetatou and Ryan J. Rabett

Introduction: islands in human evolution

Concepts drawn from ‘island biogeography’ (Mac
Arthur & Wilson 1967; Whittaker & Fernández- Palacios 
2007), such as size, configuration and distance to other 
landmasses, have been, and continue to be, closely 
bound up within the growing sub-field of Island 
Archaeology. The idea that islands can provide labo
ratories for studying concepts of cultural change (e.g. 
Clark & Terrell 1978; Evans 1973) akin to the way they 
were proposed within biogeography to elucidate ‘ideas 
about the structure of plant and animal communities’ 
(May 1975, 177) has been largely superseded (for dif
ferent discussions, see Broodbank 2006; Rainbird 2007); 
however, the crucible of an insular situation continues 
to exert authority in studies of early humanity, wherein 
islands are often viewed as an ideal setting to explore 
the dynamics of hominin adaptation: epitomizing both 
the refugial setting and the isolation that has driven 
behavioural and physical change (e.g. Erlandson 2010; 
Heinrich 2004; Morwood & Jungers 2009). The ability 
to cross the sea (to breach the barrier between habitat 
patches) carries profound conceptual as well as real
world significance for early colonizers, to the extent that 
maritime activities have come to be seen as a mark of 
emerging human behavioural complexity (e.g. David
son 2010; Davidson & Noble 1992; O’Connell et al. 2010). 
The ability to access and move between island settings 
has also become the subject of considerable attention 
because of the economic and demographic expansion 
it permits (Anderson et al. 2010; Broodbank 2006; 2013). 

Nonetheless, presapiens’ seafaring abilities con
tinue to be widely questioned. Morwood & Jungers 
(2009) concluded that colonizing Flores was always 
a challenging prospect, one that few land mammals 
had achieved over the last 900,000 years. The arrival 
of the hominins responsible for making the Wolo Sege 
(Brumm et al. 2010) artefacts and (possibly separately) 
the arrival of Homo floresiensis are thought most likely 

the outcome of rare accidental events (for discussion, 
see Rabett 2012). Erlandson (2010) pointed out that the 
implication of Greater Australia only being colonized 
by anatomically modern humans was that earlier 
hominin species were not capable of largescale, pur
poseful oceanic crossings. Broodbank (2006) suggested 
that the separate evolutionary trajectories between 
Neanderthals in Europe and Homo sapiens in Africa are 
an indication that the Mediterranean was not cross
able. Despite these misgivings, the ‘distinctly human’ 
nature of maritime practice is being eroded by accruing 
evidence of both marine exploitation and freshwater 
crossings evident from sites attributed to pre-sapiens 
(Alperson-Afil et al. 2009; Braun et al. 2010; Colonese et 
al. 2009; Joordens et al. 2009); as well as by questions that 
continue to be raised when Palaeolithic stone tools and 
fossils are discovered on remote islands (Dennell et al. 
2014; Mijares et al. 2010; Strasser et al. 2011).

Although the Mediterranean is one of the most 
archaeologically studied areas of the world, the first 
appearance of humans on islands here seems to have 
taken place much later than in areas far less heavily 
studied, such as the Pleistocene islands of Southeast 
Asia and Sahul (Piper & Rabett 2014). In his recent 
overviews of human maritime activity across the Med
iterranean, Broodbank (2006; 2013) concluded that 
there is little secure, albeit tantalizing, evidence for 
early human ventures off the continental landmasses 
until c. 12,000 years ago (see also Simmons 2012) ; he 
considers any possible earlier maritime activity as 
having been episodic, refugiadriven and of (poten
tially) limited evolutionary significance (Broodbank 
2006, 207; 2013, 95–6). Mesolithic seafaring is now 
quite firmly established, based on recent finds from 
Crete, the Aegean, Sardinia and Corsica (Depalmas 
2013; Sampson 2008a,b; Sampson et al. 2012; Strasser 
et al. 2010). Full-fledged maritime cultures emerge 
only with the Neolithic and farmers (Dawson 2011; 
PhocaCosmetatou 2011a). 
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Intriguing, from our perspective, are the sites 
dating to the Late Glacial (14,600–11,700 cal. bp): 
Ouriakos on Limnos (Efstratiou et al. 2013) and pos
sibly Aspros, Nissi and Aetokremnos on Cyprus 
(Ammerman 2010; Simmons 2011), as well as the 
presence of obsidian from Melos at the mainland site 
of Franchthi (Perlès 1999). Their occurrence within the 
Younger Dryas (12,800–11,700 cal. bp) led Ammerman 
(2010) and Broodbank (2013) to argue for a causal link 
between this maritime activity and the Natufian popu
lation expansion in the Levant – with the increased 
resource pressure this brought. There is slightly earlier 
evidence from Sicily, from c. 16,700 cal. bp (Grotta 
dell’Acqua Fitusa: Mussi 2007), which spans the Late 
Glacial (D’Amore et al. 2009; Mannino et al. 2011; 2012); 
Sicily, though, was very close or joined to mainland 
Italy. These forays appear to have been quite localized 
and fall short of full-fledged, purposeful seafaring, 
though they were moving in that direction. 

The level of uncertainty increases for the mil
lennia during and before the peak of the Last Glacial 
Maximum (LGM, 21,000±2000 years ago: after Mix et 
al. 2001). Nonetheless, almost all major Mediterranean 
archipelagos – bar the Balearics – have produced finds 
that their discoverers claim indicate such a presence: 
including Cyprus, Crete (and Gavdos), Melos, Alon
nisos and other islands in the Sporades, Cephallonia, 
Sicily, Malta, Sardinia and Corsica. At the same time, 
almost all of these finds are considered, to a greater or 
lesser extent, contentious, raising the possibility that 
early forays might not have taken place at all. Two 
indirect lines of evidence, namely sea crossings and 
marineresource exploitation, can be used to provide 
further insights about the extent and nature of Palaeo
lithic island visits. 

Pleistocene sea crossings have focused primarily 
on the Strait of Sicily and Straits of Gibraltar. The dis
tance between Tunisia and southwest Sicily would have 
been c. 45–60 km at LGM sea levels (Furlani et al. 2013; 
Shackleton et al. 1984), though not without potential 
island stepping-stones. The insularity of Sicily itself 
continues to be debated (see below). Lower sea levels 
during the last glaciation would also have exposed 
islands within the Straits of Gibraltar and reduced the 
distance (currently 14 km) to short stretches of c. 5 km 
(Collina-Girard 2001; Straus 2001). Glacial constriction 
of the straits, though, would have strengthened sub
surface currents flowing into the Mediterranean basin 
(Mikolajewicz 2011; Voelker et al. 2006), accentuating 
the difficulty of a crossing. From an archaeological 
perspective, the evidence is slim (Garcea 2004; 2012; 
Straus 2001): on the Spanish side, deep-sea fishing 
starts to appear from the Late Glacial (e.g. Morales et 
al. 1998); on the Moroccan, this same period sees the 

enigmatic presence of a single harpoon from Taforalt 
Cave (Straus 2001) and the hint of possible contact with 
Europe on typological grounds. Most faunal studies 
also conclude that the straits constituted a barrier, with 
palaeontological studies supporting a Pyrenean route 
into Iberia (e.g. O’Regan 2008) and a west Asian route 
for mammals into Eurasia (Lahr 2010) in the Lower 
Pleistocene. Against this, occasional findings do offer 
glimpses of a different scenario. For example, a mtDNA 
study of human populations from Morocco and Spain 
found genetic structure suggestive of a postLGM 
expansion across the straits (Rhouda et al. 2009). Also 
the phylogeographic structure of the greater white
toothed shrew (Crocidura russula) on either side of the 
straits suggests transferral from Morocco to Europe 
50,000–80,000 years ago, leading the authors to posit 
the chance that this could have been aided by human 
maritime crossings (Cosson et al. 2005). 

A second, less direct, proxy for maritime activi
ties comes from marineresource exploitation, includ
ing from molluscan, fish and isotope studies. Mollusc 
exploitation has been recorded across the Mediter
ranean during the Middle Palaeolithic. Around 20 
Neanderthal sites have yielded marine mollusc 
remains, mainly in southern Iberia and west-central 
Italy, with the earliest claim from Bajondillo Cave, 
southern Spain (160,000 years ago: Cortés-Sánchez 
et al. 2011) – notwithstanding the Lower Palaeolithic 
finds at Terra Amata and Lazaret (both in southern 
France) of uncertain taphonomic provenance (Colo
nese et al. 2011). Homo sapiens sites containing such 
evidence appear in the Levant and North Africa, with 
perforated specimens coming from Es-Skhūl, Israel 
(135–100,000 bp), Oued Djebbana, Algeria (90–35,000 
bp) and Taforalt, Morocco (c. 82,000 bp) (Bouzouggar 
et al. 2007; Vanhaeren et al. 2006). Burnt fragments of 
Osilinus turbinatus of probable MIS 5 antiquity at the 
Haua Fteah, Libya (Barker et al. 2010; 2012) are nota
ble, as are edible species from deposits at Üçağızlı II 
(Turkey) (Stiner 2009) – though the species of hominin 
responsible is not known for certain in either case. The 
nature and frequency of mollusc exploitation remains 
at comparable levels during the early Upper Palaeo
lithic (e.g. Riparo Mochi, Italy; Üçağızlı I; Cueva de 
Nerja, Spain); there is no sudden jump until after the 
LGM, when the exploitation of molluscs increases in 
both frequency and intensity (Colonese et al. 2011). 

Fish represent an elusive category of food 
remains. Compared with South Africa (Erlandson 
2001) they appear only rarely from sites along the 
Mediterranean coast of the continent (e.g. Barker et al. 
2012), and are found infrequently at Middle Palaeo
lithic sites (Steele & Álvarez-Fernández 2011) – though 
trans-Saharan human dispersal is considered to have 
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been closely linked to the exploitation of aquatic fauna 
(Drake et al. 2011). According to Stiner (2005), fishing 
increased in importance only after 20,000 years ago, 
when marine species first make their appearance 
(Morales-Muñiz & Roselló-Izquierdo 2008); though 
see Bicho and Haws (2008). Álvarez-Fernández (2011) 
stated that for Cantabrian Spain, although bones of the 
anadromous salmon are found at Middle Palaeolithic 
sites, the first evidence for exclusively marine fish does 
not appear until the Late Glacial during the middle 
Magdalenian. Taphonomic issues affect the certain 
identification of fishing (Erlandson & Moss 2001; Fiore 
et al. 2004). Even the presence of pelagic fish remains 
cannot be taken at face value as bona fide evidence of 
deep-sea fishing capabilities (Anderson 2013). Isotopic 
studies concur that fish, including marine, did appear 
in people’s diet in Europe from the early Upper Pal
aeolithic onwards (Richards & Trinkaus 2009), but not 
among Neanderthals (Bocherens 2011). However, iso
topic signatures only highlight those food sources that 
were often consumed; other taphonomic constraints 
aside (e.g. introduction of remains by fish-eating rap
tors), the recovery of occasional marine fish finds still 
suggests periodic exploitation. 

Marine mammals represent a third line of 
evidence for the exploitation of marine resources. 
Seals and dolphin bones have been recovered from 
Mediterranean sites, albeit in low numbers: examples 
include the Middle Palaeolithic sites of Vanguard 
and Gorham’s caves, Gibraltar (Stringer et al. 2008); 
Sant’Agostino, Italy (Stiner 1994); the Middle Stone 
Age site of Mugharet el ‘Aliya (Morocco) (Steele 
& Álvarez-Fernández 2011); as well as during the 
Upper Palaeolithic, e.g. at Arene Candide, from Early 
Epigravettian levels (Cassoli & Tagliacozzo 1994). 
Frequent exploitation, though, seems again to arrive 
only during the Late Glacial (e.g. Álvarez-Fernández 
2011; Aura et al. 2009). The presence of cut-marks 
on seal bones strongly reinforces the likelihood of 
hominin exploitation, e.g. as at Gorham’s Cave and 
Sant’Agostino. Dolphins (Aguilar & Raga 1993), 
though, could have been scavenged from the strand
line, while the once ubiquitous monk seal (Monachus 
monachus) could have been encountered on open 
beaches (Johnson & Lavigne 1999). 

In sum, the evidence for sea crossings and marine 
exploitation paint a picture that parallels the current 
island evidence: a contrast between pre and postLGM 
human behaviour. Even so, there remain sufficient hints 
that perhaps opportunistic marine resource exploitation 
did feature in some fashion in preLGM subsistence 
strategies. This, together with mounting evidence for 
plant food use by Neanderthals (e.g. Brown et al. 2011; 
Henry et al. 2010; Lev et al. 2005) and early modern 

human groups (e.g. Weiss et al. 2004), highlights the 
significance of recovery bias and seemingly the impor
tance of diet breadth to Mediterranean populations 
compared with their more systematically studied north 
European neighbours (Stiner 2001; 2005). 

The acquisition of marine resources, though, 
does not imply seafaring; at best it provides a context 
for the development of seafaring. This leaves direct 
evidence of island occupation itself as potentially our 
most direct route to uncovering preLGM maritime 
activity. Island Archaeology in the Mediterranean has 
tended to suffer from the tyranny of the Neolithic, as 
the period of the first permanent island occupation 
(Dawson 2011; PhocaCosmetatou 2011a). Only in 
recent years have researchers become increasingly 
open to the idea of a preNeolithic and even presapiens 
presence on Mediterranean islands, a shift that per
haps partially owes its motivation to island discoveries 
made half a world away in Southeast Asia. Alongside, 
if not in consequence of, this interest have been calls 
for the adoption of new research approaches explicitly 
geared towards the robust and ideally in situ recovery 
of Mesolithic and Palaeolithic material (Ammerman 
2010; Panagopoulou et al. 2001; Strasser et al. 2010; 
2011). The unambiguous evidence for human presence 
on Mediterranean islands still dates to no more than c. 
16,000 years ago, but the voices across the water from 
the Pleistocene are getting louder. 

In this chapter we consider closely the variables 
affecting the preservation and recovery of Pleisto
cene island records in the Mediterranean, before 
approaching the matter of Palaeolithic island occupa
tion from a new perspective. If permanent settlement 
and trading networks typify island interaction in the 
Neolithic (Dawson 2011; PhocaCosmetatou 2011a) 
and purposeful seafaring and ‘foraging seascapes’ 
(Barker 2005) typify Mesolithic island use, what were 
the dynamics of that relationship before the LGM? 
If new approaches to surveying the land are paying 
dividends in terms of site recovery, what further 
reward may lie in linking Pleistocene islands to their 
glacial seas? We argue that the incorporation of marine 
with terrestrial biodiversity ‘hotspots’ from across the 
Mediterranean into an archaeological model permits 
two contentions relevant to Pleistocene island use. 

Firstly, and following the logic and findings of 
Médail and Diadema (2009) linking terrestrial biodi
versity hotspots and glacial refugia around the Medi
terranean (Fig. 6.1), we contend that marine biodiver
sity hotspots are likely to be associated with marine 
refugia. Secondly, an observed association between 
Palaeolithic sites and terrestrial refugial enclaves leads 
us to hypothesize that there would be an enhanced 
likelihood of occupation evidence in those areas where 
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terrestrial and marine zones of biodiversity overlap. 
We propose that under this ‘tiedbiome’ scenario cer
tain islands and archipelagos become incorporated 
within a wider geographic zone: one that encompasses 
land and sea within a speciesrich and resourcestable 
environment, factors attractive to promoting early 
human dispersal and island occupation. We use the 
term ‘occupation’ here to indicate human presence 
on a particular island without making any inference 
about the permanence of that stay, and to distinguish 
Palaeolithic maritime activities from more formalized 
colonization processes in later prehistory (Dawson 
2008). We suggest this offers a better way to under
stand the early human evidence that has thus far been 
discovered, and to begin building a robust predictive 
model to guide us towards future discoveries, instead 
of back-projecting Neolithic (or even Mesolithic) mod
els of more formal island exploitation and permanent 
settlement into the Pleistocene.

Taphonomic issues surrounding Pleistocene island 
occupation in the Mediterranean

Of the thousands of islands that dot the Mediter
ranean, 145 currently have evidence of prehistoric 
human occupation (Dawson 2011). Due to fluctuating 
sea levels, many present-day islands were attached to 
the mainland during periods of lower sea level. Our 
study will concentrate only on those islands that were 

separated from the mainland even during the LGM 
– when sea levels dropped to their lowest point (–125 
m). The great uncertainty that has surrounded past 
claims for the occupation of Mediterranean islands, 
and especially those prior to the LGM, stems from 
their failure to meet one or both of two widely used 
criteria (Price 1977, 69): namely, an undisputable 
Pleistoceneage context, either based on geological 
analysis or chronometric date; and the presence of 
diagnostic stone tools that are clearly characteristic 
of a Palaeolithic industry known from the mainland. 
Claims for finds of Pleistocene antiquity tend to fall 
into three main categories:
1. Lithic artefacts. Most reports are of surface scatters 

without any stratigraphic or chronological context. 
Lithics tend to comprise isolated finds in secondary 
deposits, and often lack diagnostic typological or 
technological features;

2. Human bones. Reports of human remains are often 
unable to provide robust provenance, associa
tions to cultural material or reliable chronometric 
antiquity;

3. Indirect evidence. This mainly appears as ‘features’ 
interpreted as being potentially of anthropogenic 
origin; or from palaeontological sites with no as
sociated hominin fossil or cultural material, but 
where evidence of substantial faunal turnover is 
attributed to the arrival of and subsequent preda
tion by hominins.

Figure 6.1. Locations of 48 of the 52 glacial terrestrial refugia and 10 biodiversity hotspots identified by Médail and 
Diadema (2009) (redrawn) – those not included lie outside the view of the current map. (Illustration: R. Rabett.)
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Rarely has there been any systematic excavation 
of purportedly early sites and we are still overreliant 
on inadequate hints and possibilities about early mari
time activities. There are a number of possible reasons 
for this situation. Island visits, if they occurred at all, 
may have been infrequent, ephemeral affairs, result
ing in very low archaeological visibility. Add to this 
the multiple variables affecting preservation and a 
research and survey agenda in the Mediterranean that 
has not been geared towards looking for Palaeolithic 
material in the first place, and we are left to wonder 
exactly what the existing patterns of recovery are 
actually telling us.

If we accept the plausibility that pre-LGM 
humans visited at least some Mediterranean islands, 
we must start by considering the taphonomic pro
cesses that could distort what few remains they 
might have left behind. The main geological factor 
is, without question, the effect of changes in sea level 
between the Pleistocene and the Holocene. During the 
last 150,000 years, allowing for several regression and 
transgression phases, sea levels were, on average, 40 
m lower than at present (Bailey & Flemming 2008). 
As a result, large tracts of land, some almost certainly 
available for human occupation, were exposed for 
long periods of time. The onset of deglaciation after 
the LGM c. 19,000 years ago heralded a substantial rise 
in global sea levels, including punctuated episodes of 
rapid inundation (e.g. Fairbanks 1989; Lambeck et al. 
2002). With the submergence of continental margins 
and lowlying insular plains, such as the Cycladic 
Plateau, across the Mediterranean a substantial por
tion of any coastal occupation was removed from the 
terrestrial site register. The net result is that evidence 
of marine resource exploitation will only be visible 
archaeologically from those locales where there has 
been tectonic uplift and/or from raised beaches left 
from interglacial highstands (Bailey 2010) – with 
some of these, such as the MIS 5e high-stand, hav
ing potentially washed out older sites from lower 
elevations (Stiner 2010). Thus, the discovery of island 
occupation dating to the Late Glacial and thereafter 
might itself be an artefact related to the latter-day 
stabilization of sea levels and, therefore, increased 
visibility (Knapp 2013; Stewart & Morhange 2009). 
Areas of steep coastal relief and tectonic uplift might 
better preserve palaeo-shorelines, though Bailey and 
Flemming (2008) have questioned this.

Calculating past sea levels is complicated by 
the fact that, in addition to local topography and 
bathymetry, eustatic change is affected by a range 
of other geological processes. Tectonic displacement 
in the Aegean, for example, led to sea levels during 
the LGM actually varying between –115 and –130 

m, compared with the eustatic value of –125 (Lam
beck 1996); between the Golfe du Lion and the Côte 
d’Azur during the LGM, levels varied from –105 to 
–115 m (Lambeck & Bard 2000). Tectonic movements, 
in particular, provide a substantial off-set that must 
be taken into account wherever possible – a primary 
cause of the uncertainty surrounding the status of Sic
ily as an island during the Pleistocene. In the Aegean, 
displacements range from 0.9 to 21 m (Perissoratis & 
Conispoliatis 2003). In the Gulf of Corinth, the MIS 5e 
shoreline is uplifted by 150 m (Armijo et al. 1996). In 
addition to uplift and subsidence, fluvial and coastal 
erosion processes must also be accounted for. Holo
cene deposition processes (alleviation and colluvia
tion) can bury sites under thick sediments and can 
themselves contribute to masking absolute changes 
in sea level (Correggiari et al. 2001; Perissoratis & 
Conispoliatis 2003).

The nature of the Palaeolithic record on Medi
terranean islands is also partly structured by the his
tory and preconceptions of archaeological research 
there. The accumulation of claims for an early human 
presence on islands, made since the early twentieth 
century, have been subjected to rigorous critique in 
recent decades (e.g. Cherry 1981; 1990; Ammerman 
& Noller 2005 cf. Simmons & Mandel 2007) resulting 
in a ‘loss of innocence’ for Island Archaeology. The 
fact that many finds were made by non-Palaeolithic 
archaeologists, without the support of geological 
experts, has compounded the problem. The absence of 
full publication of purported finds and the difficulties 
involved for specialists in tracking down and studying 
the material have meant it has often been impossible 
to provide a wellfounded assessment. As a result, 
reconsideration of evidence must often conclude 
with uncertainty. Occasionally, though, the baby does 
appear to have been thrown out with the bathwater, as 
claims of early island occupation have been subjected 
to a level of scrutiny probably greater than that for 
equivalent finds on the mainland. The Mesolithic site 
of Maroulas, Kythnos, provides an example. Cherry 
(1981) had dismissed as unsubstantiated early asser
tions for Mesolithic occupation and burials, only to 
be found wrong when a full excavation of Maroulas 
was commissioned and new radiocarbon dates cor
roborated the old ones (Sampson 2008b). 

The tide does now seem to be turning, with 
greater willingness to accept the ability of Palaeo
lithic groups to reach island settings, leading to four 
important theoretical developments. Firstly, there is 
renewed interest to explore the origins of seafaring 
and of maritime activities (e.g. Anderson et al. 2010; 
Broodbank 2006) and the maritime capabilities of 
early humans are increasingly accepted – or being 
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seriously discussed. Secondly, we no longer view 
smaller islands as necessarily unsuitable habitats for 
huntergatherers (PhocaCosmetatou 2011b). Thirdly, 
the study of early island occupation is increasingly 
coming under the direction of Palaeolithic archaeolo
gists, geologists and geomorphologists specializing 
in Quaternary studies (e.g. Panagopoulou et al. 2001; 
Strasser et al. 2010). Finally, recent initiatives have 
started to employ predictive models specifically tai
lored for identifying preNeolithic sites. Given that 
the majority of archaeological surveys in the Medi
terranean have been large in scale, diachronic and 
concerned with developments in later periods, neither 
survey design nor the significance of Palaeolithic finds 
has been a driving consideration. The differences in 
settlement systems and resource exploitation that exist 
between permanent communities of villagers and 
mobile huntergatherers mean that locales preferred 
by the former were not necessarily shared by the lat
ter. Recent attempts to target the earliest evidence of 
island use, by contrast, focus on particular regions 
that fit the requirements of predictive site-location 
models. These might be, for example, concentrated 
on the past distribution of resources tailored to the 
recovery of Mesolithic locales: namely, the interface 
between terrestrial and aquatic habitats in areas rich 
in small caves and rock-shelters and in close proxim
ity to freshwater wetlands along the coastal zones 
(Runnels et al. 2005). When this model was applied to 
southern Crete (Strasser et al. 2010), data on Mesolithic 
and Palaeolithic occupation started to flow in. The 
approach adopted by Ammerman (2010) focussed on 
carrying out fieldwork during different times of the 
year (winter for greater site visibility) and on different 
landforms (aeolianites), which had been avoided in 
past surveys because they were considered to be too 
marginal; choices that appear to have borne fruit with 
Ammerman’s discovery of Late Glacial sites at Nissi 
and Aspros on Cyprus. 

A feature common to both the above expeditions 
was that the localities they discovered yielded remains 
of Mesolithic and late Upper Palaeolithic occupation, 
but little evidence from later periods. This served as 
a demonstration that early huntergatherer landuse 
practices exhibited their own unique character that 
was not only different from later, more settled com
munities, but which was also underrepresented when 
recovery strategy focused on the Neolithic and later 
periods. This finding echoes biogeographic thinking: 
the autecological response of species means that the 
insularity of the same piece of land will mean dif
ferent things to different species (Haila 1990). As we 
wind back the clock, a similar distinction may also 
be expected to exist between post and preLGM site 

locations. Although Strasser et al. (2010) claim the 
discovery of Lower/Middle Palaeolithic stone tools, 
their sitelocation model was developed in relation 
to expectations of Mesolithic island use. To date there 
has not been a predictive model tailored to the glacial 
period of the Pleistocene. Just as new and targeted 
research has uncovered a preNeolithic presence on 
islands, it seems likely that, in the future, allowing for 
taphonomic constraints, the antiquity of island use 
may be pushed back further if sympathetic models are 
used. This chapter takes one step towards identifying 
one such model.

Terrestrial–marine biodiversity and Pleistocene 
island occupation

Under the fluctuating climatic conditions of the Pleis
tocene, the three principal southern European penin
sulas of Iberia, Italy and the Balkans have featured 
strongly as providing refugial environments (e.g. 
Hewitt 1999; 2000; Taberlet et al. 1998). These represent 
geographic areas of relative ecological stability, afford
ing suitable habitats for the longterm (ideally through 
glacialinterglacial cycles) persistence and survival of 
populations more or less in the same place (Tribsch & 
Schönswetter 2003; Tzedakis et al. 2013). The impor
tance of refugia in human evolution, geographical 
range and speciation is increasingly recognized (e.g. 
Bailey et al. 2008; Barker et al. 2009; Basell 2008; Carrión 
et al. 2011; Gamble et al. 2004; Stewart & Stringer 2012; 
Tourloukis & Karkanas 2012). In the Mediterranean, 
the late persistence of Neanderthals across southern 
Europe has been correlated to suitable refugial con
ditions (e.g. Delson & Harvati 2006; Finlayson 2008). 
During the LGM, repetitive occupation and dense 
site distribution have also been found to coincide 
with the geographical distribution of glacial plant 
refugia in the Adriatic region (PhocaCosmetatou & 
Spry-Marqués, forthcoming) and during the Middle 
and Upper Palaeolithic across Iberia (Bradtmöller et 
al. 2012; Schmidt et al. 2013). 

The palaeobotanical record suggests that refugia 
constituted restricted geographical areas scattered 
across multiple regions (Magri 2008). Fifty-two puta
tive plant refugia, associated with ten biodiversity 
hotspots, have been identified across the Mediter
ranean (Fig. 6.1; Médail & Diadema 2009). Although 
the spatial delimitation of refugial locales has proven 
a challenge, these authors identified a range of differ
ent types, including midaltitude areas, deep gorges 
and valley bottoms, which would also have differed 
in size. Many refugia are located close to the present-
day coastlines, and with lower sea levels during the 
LGM these restricted geographical areas could have 
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been more extensive. Animal refugia, also identified 
across the three peninsulas of southern Europe, tend to 
be broader in their geographical delimitation (Hewitt 
2000; Sommer & Zachos 2009). No geographical 
delimitation of marine refugia has yet been attempted 
– although their existence is mooted through phylo
geographic studies (see below) – and the concept of 
tied refugia has only begun to be explored on land 
(e.g. GarcíaBarros et al. 2002). 

We base our model on the simple principle that 
the longterm persistence of refuge habitats in the 
Mediterranean is tied to the geographic relationship 
between land and sea. For example, the maintenance of 
the terrestrial refugium in the Ioannina basin of west
ern Greece is strongly predicated by the orographic 
uplift of moisturecharged air from the waters of the 
Ionian Sea under both modern and glacial conditions 
(Tzedakis et al. 2002). Conversely, the rich biodiversity 
of coldtemperate marine species in the Ligurian Sea 
and Golfe du Lion relies on the continued presence of 
cold mistral winds funnelling down the Rhône and 
Garonne Valleys (Astraldi et al. 1995). We develop this 
relationship with reference to spatial studies compiled 
recently for modern marine biodiversity and end
emism across the Mediterranean (e.g. Boudouresque 
2004; Coll et al. 2010; 2012). The primary concern of 
these reports is future conservation rather than past 
evolutionary change. Nonetheless, they provide valu
able evidence germane to our proposed model. 

In order to identify areas of the Mediterranean 
that are likely to have hosted marine refugia, we 
build on two conclusions that have been reached 
through land-based studies: firstly, the established 
link between terrestrial species endemism and glacial 
refugia (e.g. López-Pujol et al. 2011; Schönswetter 
et al. 2005; Tribsch & Schönswetter 2003); secondly, 
the degree of concordance that exists between phy
logeographicbased plant refugia and biodiversity 
‘hotspots’ (sensu Myers 1988; 1990) – namely, areas 
of high species richness and pronounced endemism 
that are also under threat of destruction (Médail & 
Diadema 2009; Tzedakis 2009). The reasoning we 
employ is as follows: if we can identify marine bio
diversity hotspots, these locales are more likely to be 
associated with marine refugia than other areas of the 
Mediterranean.

Overall, present marine biodiversity of the Medi
terranean is strongly influenced by its relationship to 
the Atlantic, from which it is said to have received a 
‘diversity pump’ from the Pliocene onwards (Bianchi 
& Morri 2000). As a result of this, the sea’s own com
plex geological history and the impact of changing 
environmental conditions, the Mediterranean contains 
species belonging to several different biogeographic 

categories: temperate species, panoceanic species, 
endemics (palaeoendemic species (of possibly Tethyan 
origin) and neoendemics mainly of postPliocene 
origin), subtropical Atlantic species (thought to be 
interglacial remnants), boreal Atlantic species (consid
ered to be glacial remnants), Atlantic migrants (par
ticularly in Alboran Sea) and, since the opening of the 
Suez Canal in 1869, also what are called ‘Lessepsian’ 
migrants from the Red Sea.

Allowing for the fact that far less biological 
research has taken place in the east than in the west 
Mediterranean (Clusa et al. 2013; Gaetner et al. 2007), 
modern marine fish biodiversity appears most pro
nounced in the coastal waters of the western basin 
compared with the eastern – as delimited by the Strait 
of Sicily (Coll et al. 2010; 2012). The Adriatic and west
ern coastal waters of Greece show only slightly lower 
levels of biodiversity; the Aegean, Turkish, Levantine 
and North African coasts (with the exception of the 
gulfs of Hammamet and Gabès, off the coast of Tuni
sia) are less diverse again. By contrast, evidence of 
marine fish endemism favours higher trends in the 
eastern Mediterranean (Coll et al. 2010) and, as with 
marine species richness, there is a pronounced drop
off in numbers away from coastal waters.

Phylogeographic studies into marine fish spe
cies show repeatedly that genetic distinctiveness 
exists between western and eastern populations, 
with further population subdivisions appearing in 
the eastern Mediterranean. Examples of such stud
ies include the eastern sea bass (Dicentrarchus labrax: 
Bahri-Sfar et al. 2000), bluefin tuna (Thunnus thynnus 
thynnus: Carlsson et al. 2004), parrot fish (Sparisoma 
cretense) and wrasse (Thalassoma pavo: Domingues et 
al. 2008), the European anchovy (Engraulis encrasicolus: 
Magoulas et al. 2006), as well as the swordfish (Xifias 
gladius: Viñas et al. 2010). The greater genetic diver
sity exhibited in the eastern basin is attributed to the 
likelihood that this part of the Mediterranean hosted 
the greater proportion of marine refugia during the 
last glacial period due to warmer and more stable sea 
surface temperatures (SSTs) (see Hayes et al. 2005; 
Thiede 1978). This conclusion is independently sup
ported by the phylogeography of marine animals. For 
example, new genetic evidence presented by Clusa 
et al. (2013) for the loggerhead turtle (Caretta caretta) 
has challenged prevailing wisdom that this marine 
reptile only entered the Mediterranean within the last 
12,000 years (Bowen et al. 1993). Drawing on the highly 
philopatric behaviour of the species and the mtDNA 
structuring this creates, Libya, western Greece and 
eastern Turkey have been identified as the three locales 
of highest genetic diversity and deepest antiquity for 
the loggerhead turtle – with each predating the LGM. 
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The proposed Late Pleistocene antiquity (c. 30,000 
years) of Caretta caretta nesting grounds in western 
Greece (see Margaritoulis 2000), as well as probably 
older rookeries along the coasts of Libya and eastern 
Turkey, have been taken as evidence that these may 
have represented refugial areas during the last glacia
tions (Clusa et al. 2013).

Combined data on biodiversity and threat levels 
for several taxonomic groups of marine fauna from 
across the Mediterranean are presented in Coll et al. 
(2012). They employ an overlap index (OI) to express 
the degree to which these two variables intersect for 
different taxa, from a <25 per cent overlap (OI25) to 
≥75 per cent (OI75). Reading these data in combina
tion with those for fish endemism – i.e. in accordance 
with Myers’ (1988) definition of a biodiversity hotspot 
– indicates the following with respect to the possible 
location of marine refugia (Fig. 6.2). 

Species richness (cumulative data from 
1980s–2000s) for fish is highest (nos. species or 
NTAXA: 340–375) in the waters off the Iberian and 
Tyrrhenian coasts, and in the central waters of the 
Golfe du Lion. Rates of endemism reach their highest 
(NTAXA: 37–45) only in the last of these areas, though, 
with marginally lower rates for the coastal waters of 

the Tyrrhenian and Ligurian seas, the Côte d’Azur 
and points around the Balearic rim (i.e. NTAXA: 
29–36) and midrange values along the remainder of 
the Iberian coast (NTAXA: 20–28). Points along all of 
these coasts have an OI50 value. From this, we might 
presume that a refugial area may exist in the general 
vicinity of the Golfe du Lion (I) and the Balearics (II). 
The coastal waters from the Gulf of Tunis east to the 
Gulf of Hammamet (III) and the southeast Aegean, 
off the Turkish coast (IV), have a comparatively high 
level of species richness (NTAXA: 253–339) and a high 
diversitythreat index (OI50–75) (particularly focussed 
off the Tunisian coast), with mid-range rates of end
emism (NTAXA: 20–28). Finally, the north and central 
Adriatic (V), Ionian coast (VI), the western Aegean – 
off Euboea and Attica (VII) – and the northeast Aegean 
(VIII) exhibit slightly lower species richness (NTAXA: 
237–315), but a comparatively high level of endemism 
(NTAXA: 29–45) (especially along the Balkan coast of 
the Adriatic where endemism reaches NTAXA: 37–45) 
and a second level diversitythreat index of OI50. Each 
of these areas may have been associated with marine 
fish refugia. More detailed calculations are needed to 
rank these candidates properly; here, we seek simply 
to highlight their presence.  

Figure 6.2. Comparison of putative marine fish biodiversity hotspots with reported terrestrial (plant) hotspots. (1) 
High and Middle Atlas; (2) Baetic-Rifan complex; (3) Maritime and Ligurian Alps; (4) Tyrrhenian Islands; (5) south 
and central Greece; (6) Crete; (7) south Anatolia and Cyprus; (8) Syria–Lebanon–Israel; (9) Cyrenaica; (10) Kablies–
Numidie–Kroumirie (after Médail & Diadema 2009); (I) Golfe du Lion; (II) Balearic Sea; (III) Gulf of Tunis to the Gulf 
of Hammamet; (IV) southeast Aegean; (V) Adriatic; (VI) south Ionian islands; (VII) western Aegean (off Euboea and 
Attica); (VIII) northeast Aegean (based on Coll et al. 2010; 2012). (Illustration: R. Rabett.)
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An important constraint affecting the general 
location of these putative glacial marine refugia is that 
all of the identified marine hotspots are in close associ
ation with continental shelves. These would have been 
at least partly emergent during the last glacial. How 
the drop in sea level and change in conditions would 
have altered the glacial distribution of biodiversity is 
a critical matter, but one which, unfortunately, is still 
not well understood (see Bianchi & Morri 2000; Patar
nello et al. 2007). Occasionally, however, we do have 
glimpses of local responses to glacial cycles, as the 
example of sand smelt (Atherina sp.) shows (Congiu 
et al. 2002). The low genetic divergence between the 
Adriatic and Ionian populations of this fish possibly 
indicates that progressive reduction in the exposure 
of the Adriatic plain during deglaciation encouraged 
expansion of the sand smelt up from the Ionian Sea 
(Kraitsek et al. 2012). The tentative conclusion that we 
might draw is that at least some marine refugial locales 
probably endured the minima of the last glaciation in 
adjacent habitats, which are today deeper portions of 
the continental shelf.

To add an independent line of evidence in 
support of these predictions we have mapped the 

distribution pattern of loggerhead turtle and monk 
seal (Monachus monachus) populations (Fig. 6.3), both 
of which nest on land. Their current distribution 
coincides not only with certain marine biodiversity 
hotspots (as one might expect), but also strongly with 
terrestrial hotspots. The phylogeographic data for 
Caretta caretta were presented above; the only excep
tion in the concordance data for this species appears 
to be the Libyan centre. This is removed eastwards 
from the Cyrenaican hotspot to the vicinity of Sirte; 
however, the geographic extent and significance of 
rookeries along this coast (including Cyrenaica) is still 
being determined (Saied et al. 2012).

The current distribution of the highly endan
gered Monachus monachus includes the BaeticRifan 
complex coastal area, the Gulf of Tunis, Cyrenaica, 
northern Sardinia, the central Balkan coast of the 
Adriatic, the Ionian coastline, the Aegean and south
ern Anatolian coasts (Masseti 2012; Panou et al. 1993). 
While this represents the current distribution pattern 
of monk seals, we note from studies examining recolo
nizing populations out of terrestrial refugia that such 
expanding groups are more liable to become extinct 
than to track a retreating habitat when climatic change 

Figure 6.3. Current distribution of the loggerhead turtle (Caretta caretta) (white squares) and Mediterranean monk 
seal (Monachus monachus) (shaded grey). Square size equates with average number of nests per season: >1000, 101–
1000, 21–100 and 1–20 (largest to smallest); the question marks for Libya and Lebanon are estimated number of nests; 
the most ancient lineages appear from Libya, western Greece and eastern Turkey (Clusa et al. 2013). Monk seal data 
after Masseti (2012). Note the broad correlation with known terrestrial (plant) hotspots of biodiversity in all cases except 
Libya, and the possible ties to selected marine (fish) biodiversity hotspots (grey circles) from Figure 6.2. (Illustration: R. 
Rabett.)
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prompts refugial confinement (Hewitt 1999; Stewart 
et al. 2010). Following this reasoning, we suggest that 
although monk seal populations were once ubiquitous 
around Mediterranean coasts (Johnson & Lavigne 
1999), much of that range may represent an extension 
out of cores of highest resilience (e.g. Pastor et al. 2007): 
namely, those areas that persist today despite human 
and other impact. 

This preliminary assessment of hotspot concord
ance between terrestrial and marine biomes suggests 
that we might expect the south-central Greek ter
restrial plant hotspot (5 & 6; Fig. 6.2) of Médail and 
Diadema (2009) to extend into the Ionian (VI) and 
west Aegean (VII) seas, as well as from land into the 
waters off southern Anatolia (7 and IV). On the North 
African coast, the Kabylies–Numidie–Kroumirie (10) 
botanic hotspot may be extended off the coast of Tunis 
(III) and may become incorporated into the eastern 
extreme of the terrestrial Tyrrhenian islands zone 
(4), as does that associated with the Balearic Sea (II). 
Only the potential marine biodiversity hotspots in the 
vicinity of Côte d’Azur–Golfe du Lion (I), the Adriatic 
(V) and northeast Aegean (VIII) do not appear to link 
immediately to a terrestrial partner. The Maritime 
and Ligurian Alps locale (3) identified by Médail and 
Diadema (2009) could qualify in the case of (I), but 
there is reason to query this. 

The Golfe du Lion is one of the coldest parts of 
the Mediterranean today (Astraldi et al. 1995; Coll et 
al. 2010) and was equally so under glacial conditions 
(Hayes et al. 2005). In contrast to the terrestrial biodi
versity hotspots and glacial refugia defined by Médail 
and Diadema (2009), which relate to thermophilous 
and mesophilous plant species, this area of the Medi
terranean is marked by a bias towards cold-temperate 
species. This raises the possibility that it is related to 
an ‘interglacial refugium’ (see Bennett & Provan 2008) 
for mesophilous or even psychrotolerant marine biota. 
This does not preclude the importance of this environ
mental setting to early human groups – as we discuss 
below. What it does underscore is the point that glacial 
conditions will not necessarily have prompted the 
constriction of all habitat cores within a region.  

Pleistocene island occupation: a tied-biome 
perspective

In this final section we examine the relevant archaeo
logical evidence from each major island or archipelago 
in the Mediterranean. The credibility of each record is 
reviewed from the perspective and expectations of our 
tiedbiome model. All are incorporated within wider 
terrestrial biodiversity hotspots. The largest insular 
landmasses of the Pleistocene Mediterranean – the 

islands of ‘Corsardinia’, Sicily, Crete and Cyprus – 
together with the Balearics are all known to have 
hosted terrestrial plant refugia (Fig. 6.1). None of these 
islands includes a hotspot for marine biodiversity, 
though Sicily and the Balearics are arguably the most 
closely linked to one. The Ionian and Aegean islands 
are notable in that they appear to fall within the sphere 
of marine biodiversity hotspots, as well as being linked 
to a terrestrial one. The Adriatic marine hotspot (V) 
did not include any islands during periods of low sea 
levels; with the possible exception of the tiny island of 
Palagruža (Forenbaher & Kaiser 2011), all other islands 
in this sea would have been incorporated into the 
exposed Great Adriatic Plain during the last glacial, 
and thus not considered further here. 

Corsica and Sardinia
An Early Holocene Mesolithic presence on both 
Corsica and Sardinia is now firmly established (e.g. 
Depalmas 2013; Lugliè 2013). Under fully glacial 
conditions these islands would have formed a single 
landmass lying 7–15 km off the Italian coast (Shack
leton et al. 1984). Claims for a postLGM Upper Pal
aeolithic human presence are, unfortunately, highly 
questionable. Salotti et al. (2008) have argued for an 
anthropic origin to a bone accumulation at the A 
Teppa di U Lupinu cave (Corsica), based primarily on 
purportedly burnt bones. The extremely rich (>1 mil
lion fragment) bone accumulation consists primarily 
of micro-mammals (shrews, lagomorphs, field mice). 
Despite the authors’ valiant – and guarded – argu
ment for human consumption, we feel this is unlikely, 
based on such a faunal composition. Their dates, rang
ing from c. 19,000 to 6600 cal. bp, are consistent with 
a mixed assemblage, and were taken on the bones 
themselves (apart from two on charcoal, dating to the 
Holocene, when artefacts attest to a human presence). 
The claimed burning on 5–10 per cent of the bones 
appears to be manganese staining. 

At Corbeddu cave, in Sardinia a human pha
lanx has been excavated from below a thick layer of 
endemic deer bones belonging to the species Mega-
loceros cazioti and dated stratigraphically to the LGM 
(Sondaar et al. 1995). The absence of any associated 
lithics in that or the bone layer above, together with 
a lack of any anthropogenic modification of the deer 
bones themselves, leaves it questionable whether any 
weight should be given to the apparent antiquity of 
the isolated phalanx and with it any sustained LGM 
human presence on the island. The purported lithics 
from an adjacent part of the cave, dated to 17,000–8000 
bp (Klein Hofmeijer et al. 1989), are not considered 
particularly convincing as artefacts. Finally, a laminar 
stone tool industry has been recovered from aeolian 
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deposits at the site of Santa Maria Is Acquas in south
west Sardinia and dated to 12,000±3000 bp by OSL 
(Mussi 2007) – the previous estimate of its antiquity, 
based on geological association, was, seemingly, older: 
25,000–18,000 years ago (see Knapp 2013). 

The genetic evidence also seems equivocal on 
the matter of an early presence of modern humans 
on Sardinia. Pala et al. (2009) argued that structure 
within the mtDNA haplogroup U5b3 is suggestive 
of people moving to Sardinia c. 9000–7000 years ago, 
a result that would fit with the current Mesolithic 
archaeological evidence. By comparison, a study of 
the Y-chromosome haplogroup I-M26 (Contu et al. 
2008) has suggested an older legacy, with evidence for 
a founder effect on Sardinia 16,000–25,500 years ago.

PreLGM, evidence for the Corsardinia landmass 
is highly contentious. Approximately 30 waterrolled 
stone tools were collected along the river banks 
near Riu Altana (Sardinia); flake based, they have 
been described as ‘ancient Clactonian’ (Martini & 
Ulzega 1992; Palma di Cesnola 1996), but this can
not be verified. Lithics from the open-air site of Sa 
Pedrosa-Pantallinu (Sardinia), although themselves 
also originally attributed to an ‘Evolved Clactonian’ 
type industry of the Middle Pleistocene (Martini & 
Ulzega 1992), have been attributed to a period post-
dating 35,000 years ago, on typological grounds and 
laminar component (Aureli 2012). Another openair 
site, Sa Coa de Sa Multa, was termed a ‘lithic extrac
tion site or workshop’ and also attributed to the Lower 
Palaeolithic (Martini & Ulzega 1992; Palma di Cesnola 
1996). Apart from a lack of chrono-stratigraphic con
text, concerns have been raised that these tools are 
scarcely retouched (Mussi 2002), are rich in cortex and 
are located on a flint outcrop also used in Neolithic 
times (Broodbank 2006). Lastly, Coscia Cave (Corsica), 
which has produced no evidence of stone tools, has a 
reputed human presence c. 60,000 years ago based on 
possibly allochthonous stone pieces, ‘fire structures’ 
and a large concentration (>1000 fragments) of male 
deer bones and antlers (Bonifay et al. 1998). No Middle 
Palaeolithic contexts, putative or otherwise, have been 
uncovered on the Sardinian part of the palaeo-island 
(Palma di Cesnola 1996).

The possibility of an early hominin presence on 
Corsardinia has been proposed on palaeontological 
grounds. Sondaar & Van der Geer (2002; 2005) have 
argued that punctuated faunal turnovers here during 
the Early Middle Pleistocene and later Middle Pleisto
cene, c. 450,000 bp, were restricted to large herbivores 
and are difficult to account for without hominin colo
nization and subsequent predation of these animals. 
However, the Palaeolithic archaeology linked to both 
periods (and to the Late Pleistocene) from locales on 

the island remains controversial. Insularity, cold tem
peratures (Bigg 1994) and a tightly coastal biodiversity 
lead us to suspect that Corsardinia would have been 
less likely to have been visited from the Italian main
land, at least during the Late Pleistocene (post40,000 
years ago), where LGM sites are also scarce (Phoca
Cosmetatou & Spry-Marqués forthcoming). 

Maritime activity during the Upper Palaeolithic 
reaching out to the western side of Corsardinia from 
the Golfe du Lion–Côte d’Azur area might be plausi
ble, given finds from Cosquer Cave (Calanque de Mor
giou near Marseilles, France), a site occupied before, 
during and after the LGM. Among the images on the 
decorated walls at Cosquer are several engravings of 
fish and marine mammals and paintings of the great 
auk (Pinguinus impennis) (Clottes et al. 1997; Lambeck 
& Bard 2000). Bones of the auk have also been recov
ered from the Palaeolithic levels at Arene Candide, 
while several other Upper Palaeolithic sites are also 
known from along this part of the coastal margin and 
narrow continental shelf (Clottes & Courtin 1996) – all 
indications of comparatively early maritime activity if 
not seafaring. The distance across the open sea to reach 
the northwest coast of Corsardinia, against the coun
ter-clockwise current of Iberian gyre (Fig. 6.4), would 
still have been of the order of 160–200 km – probably 
too far. A sea crossing from the North African coast 
via the Gulf of Tunis marine hotspot may have been 
closer, but would also have been hampered by prevail
ing currents parallel to the North African coastline.

Balearic Islands
The current archaeological picture from the most 
remote island archipelago in the Mediterranean, the 
Balearics, is that they were not colonized by people 
until the MidHolocene (Palmer et al. 1999; Ramis et al. 
2002) – the latest arrival on any principal island group 
in the Mediterranean (Broodbank 2013). The closest 
mainland refugium to these islands is in the coastal 
uplands south of Valencia (Fig. 6.1). The coastal area 
north and south of Valencia is bordered by a species-
rich broad and shallow continental shelf. Although 
there has been longstanding interest in fossiliferous 
Pleistocene vertebrate deposits from the Balearics 
(Bate 1914), there is no evidence of human activity 
within them. This is perhaps all the more surprising, 
given the long presence of human occupation at the 
site of Cova Cendres on the Valencia coast from the 
Upper Palaeolithic to the Bronze Age and the clear 
visibility of the Balearic island of Eivissa (Ibiza) from 
this coast (Bellard 1995). Our model suggests that ear
lier occupation should have been possible. So it may 
yet prove; however, the weight of available evidence 
currently says otherwise. Interestingly enough, the 
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source area for colonization of these islands, when it 
did occur, is thought to have been from the Golfe du 
Lion region (marine hotspot I), following prevailing 
winds and sea currents, and not from the much closer 
(c. 70 km) Iberian mainland (Alcover 2008). Although 
the southerly flow of the Iberian gyre runs between 
the Spanish coast and the Balearics today (Vergnaud-
Grazzini et al. 1988), the simulation by Mikolajewicz 
(2011) suggests that this may not have been the case 
under glacial conditions (see Fig. 6.4). If his model is 
accurate, the waters out to the Balearics would have 
been not only resourcerich, they could also have been 
easily plied by Pleistocene seagoers, leaving the late 
appearance of people here even more puzzling.

Sicily
The earliest securely documented human presence on 
Sicily is dated to after the LGM, to c. 16,700 cal. bp at 
the site of Grotta dell’Acqua Fitusa (Mussi 2007). Based 
on both the archaeological and palaeoanthropological 
characteristics of various Late Epigravettian sites also 
known from the island – including human remains 
from Grotta di San Teodoro (c. 14,000–10,000 bp) – the 
late Upper Palaeolithic occupation of Sicily is thought 
to have spread from mainland South Italy (D’Amore 
et al. 2009; Mannino et al. 2011; 2012). The authentic
ity of the site of Fontana Nuova (Chilardi et al. 1996), 
attributed to the Aurignacian, has been questioned, 
based on an absence of absolute dates, faunal associa
tions and on typological grounds (Martini et al. 2007). 
The provenance of the human skeletal remains is also 
doubtful (D’Amore et al. 2009). No Middle Palaeolithic 
sites have been discovered in Sicily, though a number of 
localities along fluvial terraces in the western part of the 
island have yielded water-rolled surface finds that have 
been attributed to a Lower Palaeolithic ‘Clactonian’-like 
industry (Palma di Cesnola 1996). Claims for stone tools 
of Lower Palaeolithic age have been cast into doubt by 
Villa (2001) as they occur in regions of the island which 
would not have been exposed as land at that time. 

The Pleistocene vertebrate fossil record from 
Sicily provides a valuable window into its complex 
insular history. From an ‘oceanic-like island’ during 
the Lower Pleistocene, giving rise to the Monte Pel
legrino faunal complex (drawing taxa from a number 
of sources including via a possible late Miocene land
bridge to North Africa), through varying degrees 
of isolation to the Late Pleistocene Castello faunal 
complex, concurrent with the first confirmed appear
ance of the Epipalaeolithic, Sicily’s fauna became 
increasingly biodiverse and less endemic through time 
(Marra 2005; 2013). 

If the strong currents of the Messina Straits 
between the island and mainland Italy (Mussi 2007) 

were almost impassable when open, it seems increas
ingly likely that the first modern human arrivals 
entered Sicily via a land-bridge, probably during the 
LGM. Establishing the existence of such a land-bridge, 
however, has been fraught with problems. Principal 
among these has been that this tectonically highly 
active area has witnessed an uplift of 90 m during the 
last 100,000 years (Ferranti et al. 2006; Lambeck et al. 
2004). It is only recently that the credibility of such a 
land-bridge has started to become more firmly estab
lished in the literature (Antonioli et al. 2012). 

A combination of Sicily’s geological past, 
endemic fauna in the Lower and Middle Pleistocene, 
inundated ‘Lower Palaeolithic’ locales, no verified 
Middle Palaeolithic and increasing faunal links to 
Calabrian Italy all seem to argue against the existence 
of any significant connection to North Africa during 
its history (Villa 2001). However, provenance of the 
typetaxon Palaeoloxodon falconeri of Sicily’s Middle 
Pleistocene Spinagallo faunal complex to the African 
side of the Sicilian-Tunisian isthmus is still entertained 
as a possibility (Bonfiglio et al. 2002). Phylogenetic 
relationships between a range of nonmammalian 
fauna (amphibians, reptiles, butterflies, zygaenid 
moths and dragonflies) also show a degree of affinity 
across the Strait of Sicily (though less so than across 
the Straits of Gibraltar), with North Africa providing a 
reservoir of genetic diversity in these taxa and a source 
for European re-colonization after the Pleistocene 
(Husemann et al. 2014; Stöck et al. 2008). 

Both the terrestrial and marine biodiversity hot
spots along the North African coast as far as the Gulf of 
Gabès establish the importance of this maritime mar
gin – confirmed by the presence of hinterland refugia 
(Husemann et al. 2014; Médail & Diadema 2009). Sig
nificance is further implied by the pre-LGM antiquity 
of turtle populations (Clusa et al. 2013) along the Libyan 
coast and potential significance of the Tunisian Shelf 
as a principal foraging area for Caretta caretta (Casale 
et al. 2013). There are, however, no firm indications as 
yet that humans crossed the Strait of Sicily during the 
Pleistocene. Lowered sea levels, coupled with a more 
arid climate and enhanced evaporation, would have 
increased the velocity of the twoway current through 
the Strait (Mikolajewicz 2011; Muerdter & Kennet 
1983), potentially making any crossing hazardous. On 
the basis of the model presented here, we hypothesize 
that the discovery of early human seagoing activi
ties in this part of the central Mediterranean remains 
plausible, however (see Flemming et al. 2003). Islands 
within these straits, notably Pantalleria, but also now
submerged flat islets (see Abbate & Sagri 2012; Shack
leton et al. 1984, fig. 2) and potentially even Malta and 
Gozo (often part of Sicily during Pleistocene) may yield 
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evidence of that activity. The long controversy linked 
to the ‘Neanderthal’ molars reported by Keith (1918) 
from within the Maltese palaeofauna sequence at Ghar 
Dalam cave (Hunt & Schembri 1999) may be worth 
revisiting (cf. Bonanno 2011; Boulinier 2004; Kupczik 
& Hublin 2010). Further investigation on Sicily itself 
may also prove fruitful.

Crete
Crete has remained an island separated from the 
mainland across the last five million years (Lykousis 
2009). The first robust evidence for the arrival of peo
ple here has, for a long time, been during the Early 
Neolithic (Broodbank & Strasser 1991). Past claims for 
Palaeolithic-like tools from the island, and even an ana
tomically modern human skull in a breccia provision
ally dated to c. 51,000 years ago, have been dismissed 
(Strasser et al. 2010). Recent finds, however, have placed 
Crete back at the centre of debates on Pleistocene island 
occupation. 

Over the course of three years, three reports have 
emerged relating to separate sites, all claiming Mid
dle or even Lower Palaeolithic stone tools. All suffer, 
though, from the same problem of being surface finds. 
Twentytwo artefacts collected from secondary depos
its on a slope in the area of Loutro (southeast Crete) 
have been attributed to the late Lower Palaeolithic or 
early Middle Palaeolithic, based on the tool types – 
including purportedly a hand-axe, picks and chopping 
tools (Mortensen 2008). Although Mortensen coun
tered claims that his finds might be geofacts, Strasser 
et al. (2010) continued to voice concern about their 
authenticity. A fascinating discovery from Gavdos, an 
islet presently 40 km south of Crete, which has always 
been separate from its large neighbour, consists of 
numerous stone tools discovered at openair localities 
across the island; a fifth of them are attributed to the 
Lower Palaeolithic and Mesolithic periods (Kopaka 
& Matzanas 2009). Predominantly made on local raw 
materials, including limestone and black flint, these 
tools are divided into a chronological sequence of five 
groups based on technotypological characteristics 
and patination. In the absence of stratigraphic context 
or any other more reliable dating method, we await 
proof of their antiquity. 

Possibly the most compelling and most thor
oughly studied finds from this latest raft of discoveries 
consist of more than 400 artefacts made of quartz and 
quartzite from the Plakias region of southern Crete 
(Strasser et al. 2010; 2011). They have been classified 
as Palaeolithic, based on techno-typological differ
ences from Mesolithic assemblages identified during 
the same survey, similarities to known mainland 
Palaeolithic assemblages and through geological con

text – namely, an association with marine terraces and 
palaeosols, providing a date ante quem for the material 
of 107,000 years ago (on the basis of the geological 
stratigraphy) or 130,000 years (based on palaeosol 
maturity). The question here is not the authenticity 
of the tools but their extrapolated age. The excava
tors acknowledge that the artefacts lay in a secondary 
deposition and were found on marine terraces of dif
ferent ages, so caution continues to be required here. 

Despite the island being wellapportioned with 
palaeontological assemblages (Reese 1996), the lack 
of evidence for any direct association between fau
nal material and cultural remains – or clear signs of 
human activity, such as burning, butchery or frag
mentation patterns – leaves opinion divided as to the 
possibility of early occupation on Crete, with many 
arguing against the possibility (e.g. Hamilakis 1996; 
Mavridis 2003). 

Although well known as a botanical hotspot 
and refugial location, with many endemic mammal 
species, Crete is not highlighted as an area of pro
nounced marine biodiversity or endemism. Our model 
suggests that the most likely corridor of maritime 
movement towards Crete would have been through 
the comparatively rich island waters that lie off the 
southeast Anatolian coast, bridging terrestrial and 
marine biodiversity hotspots (Fig. 6.2). Exploitation 
of these waters, moderately favourable currents on 
the Levantine gyre (Fig. 6.4) and c. 40 km (Rhodes 
to Karpathos and Kasos to Elasa, Crete) inter-visible 
stretches (Schüle 1993) between islands (themselves 
worth considering for early occupation) would make 
this access route plausible over the last 70,000–190,000 
years – the range of time that Strasser et al. (2010; 2011) 
propose. Island hops would be shorter (c. 10–25 km 
for a route from the Peloponnese via Kythira and 
Antikythira to Crete (Agria Gramvousa). Fish bio
diversity around these islands is not published and 
that of the open sea is otherwise low. The westcentral 
Greece marine biodiversity hotspot is also much fur
ther removed to the north, making this perhaps a less 
likely Pleistocene route to Crete. Lastly, the fact that 
all of the most recent purported Palaeolithic discov
eries lie along and off the southern coast may imply 
that early occupation of the island was initially one 
with a maritime orientation. The simulation of LGM 
sea circulation (Mikolajewicz 2011) predicts that the 
principal current passing parallel to Crete would 
have been along its northern shore; only during the 
Holocene, and probably linked to the opening of the 
straits to the Black Sea, does this current shift, passing 
along Crete’s southern shore (see Vergnaud-Grazzini 
et al. 1988). This could be taken as indirect evidence 
in support of the antiquity of the new Palaeolithic site 
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record, assuming a similar current shift during the 
last interglacial. Equally, it does not wholly remove 
the possibility that these apparently old sites were 
part of the Holocene Mesolithic dispersal along these 
shores that Strasser and colleagues have confidently 
identified. We wonder if these sites, Palaeolithic and 
Mesolithic, might signal episodic arrivals along the 
southern shore during interglacial periods when the 
current was favourable for landfall here.

Cyprus
Early claims for finds of Upper Palaeolithic appear
ance have been made on Cyprus, including at Kyrenia 
and at Tremithos Valley; but both were considered 
not sufficiently diagnostic and of questionable prov
enance (Simmons 1999). Simmons (1999) also consid
ers atypical the five lithic artefacts from the Moronou 
River near Zygi attributed to the Middle Palaeolithic. 
Adovasio et al. (1975) reported the discovery of 62 tools 
from Ayios Mamas of purported Middle Palaeolithic 
age; but a lack of illustrations of any of the pieces, 
their recovery locale – eroding out of gravels – and the 
presence of Neolithic ground stone tools amongst the 
finds, leaves the distinct possibility of assemblage mix
ing, which challenges the likelihood of a Palaeolithic 
age. Later surveys in the area failed to verify their 
claims, as neither deposits of clearly Pleistocene antiq
uity nor any clearly Palaeolithic finds were recovered 
(Knapp 2013). Common to all these locales has been, 
again, a lack of stratigraphic or chronological control 
(Kardulias & Yerkes 2012).

A late Upper Palaeolithic human occupation 
of Cyprus has now been more firmly established, 
with at least three sites (Aspros, Nissi and Akrotiri) 
attributed to the Younger Dryas (c. 12,800–11,700 cal. 
bp) (Ammerman 2010; Simmons 1999; 2011). Using 
data from these, Ammerman (2010) has argued for 
a scenario of short, seasonal visits exploiting marine 
resources. The oldest and most thoroughly dated, 
Akrotiri, is located on the southernmost peninsula 
of the island – potentially well served by the smaller 
current circulating within the interglacial Levantine 
gyre (Vergnaud-Grazzini et al. 1988), but less clearly so 
under fully glacial conditions. The oldest unproblem
atic charcoal sample from this site has yielded a date of 
c. 12,692±77cal. bp (ETH-7189) (Simmons 1991; calibra
tion using the Fairbanks 0107 curve). The assemblage, 
though, was found to contain few microliths, elements 
that are otherwise ubiquitous from contemporary 
contexts on the mainland. There continues to be a 
lively debate about the anthropogenic nature of the 
two major (and very different) components of the 
large faunal assemblage from Akrotiri, and the role 
of humans in the extinction of the island’s dwarf hip
popotamus and elephant endemics (e.g. Ammerman 
& Noller 2005; Knapp 2010; Simmons & Mandel 2007; 
Sondaar & Van der Geer 2002).

Evidence for a human presence on Cyprus 
significantly older than the Younger Dryas has yet 
to be demonstrated. Within the parameters of our 
model, although Cyprus is encompassed within an 
area of plant biodiversity containing several refugia 

Figure 6.4. LGM coastal configuration and predicted major currents for the Mediterranean Sea (based on combined 
information from Mikolajewicz 2011; Shackleton et al. 1984; Van Andel & Shackleton 1982). (Illustration by R. Rabett.)
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on the Anatolian mainland and one in the Troodos 
Mountains in the southwest of the island, its strongly 
endemic mammalian fauna carries an extremely low 
biodiversity (Marra 2005). Cyprus’s herpetofauna is 
more diverse but contains, by comparison, only one 
endemic species (Coluber cypriensis) (Corti et al. 1999). 
Drawing on Coll et al. (2010), marine fish biodiversity 
around the island is lower than in the Levantine coastal 
waters, with again comparably few endemic species. 
While at this stage we should not rule anything out, 
this island is removed by some distance from the near
est marine hotspot (off the southeast Anatolian coast) 
and lies seemingly outside the sphere of influence 
that a tied-biome corridor may have afforded during 
the preLGM. On these grounds, occupation during 
the Younger Dryas may be as early as we can expect 
from Cyprus.

The Ionian Islands
Central-southern Greece emerges as a key area with 
a tied-biodiversity zone incorporating a terrestrial 
hotspot bordered on either side by marine hotspots. 
Although Palaeolithic finds have been recorded from 
Corfu, Lefkada and Meganisi (Dousougli 1999; Galani
dou 2011; Kourtessi-Philippakis 1999; 2011), all would 
have been connected to the mainland during periods 
of lower sea levels. Only the Ionian islands of Cephal
lonia, Ithaki and Zakynthos, forming a single island 
during the Pleistocene, were apparently separated 
from the mainland by c. 5–15 km (Ferentinos et al. 
2012; Shackleton et al. 1984; Van Andel & Shackleton 
1982; though, see Lykousis 2009). 

Notable for its largely continental fauna (Mas
seti 2012), which includes the Balkan mole (Talpa 
stankovici), an animal unlikely to have arrived by any 
means other than landconnected migration, isolated 
examples of palaeoendemic flora and fauna such as 
the fir Abies cephalonica (Politi et al. 2009; Scaltsoy
iannes et al. 1999) and the Balkan wall lizard Podarcis 
taurica (Poulakakis et al. 2005) are known from modern 
Cephallonia. Both support the longerterm insularity 
hypothesis for this island. A refugial setting is also 
supported by phylogenetic data for Caretta caretta, 
the island’s high rainfall, mountainous and wooded 
interior and its close association to a glacial refuge 
area on the adjacent mainland coast. 

While putative Middle Palaeolithic tools have 
been found at open-air sites on Zakynthos (Kourtessi-
Philippakis 2011), Cephallonia has been the most 
extensively explored of the three islands (though this 
still amounts to a comparatively limited undertak
ing) and Palaeolithic stone tools have been identified 
at a number of localities. The most extensive work to 
date has been that of Kavvadias (1984), centred on the 

northern cape of Fiskardo, where he recovered a rich 
surface concentration of stone tools and collected over 
200. Subsequent salvage works have uncovered more 
and a high concentration of lithics is still to be found 
in the area today, which is increasingly under threat 
of housing development (Phoca-Cosmetatou & Rabett, 
pers. observ. 2013). Attributed to the Middle Palaeo
lithic, these stone tools suffer from the same handicap 
as so many other assemblages: no stratigraphic con
text. The paucity of soil present due to surface erosion 
also makes geological assessment difficult. Other 
Palaeolithic localities, also predominantly attributed to 
the Middle Palaeolithic, have been recorded at Mounta 
and Skala in the southeast of the island in the valley 
overlooking the town of Sami, in the East (Ankel 1973; 
Randsborg et al. 2002). Cephallonia is still considered 
the best prospect for Neanderthal island occupation in 
the Mediterranean (Broodbank 2013) and is the focus 
of research into this possibility by the current authors 
(see Phoca-Cosmetatou & Rabett in press).

The Aegean Islands
On the Aegean side of Greece, high fish species end
emism and diversity are to be found along the western 
coastal waters, as far north as the western edge of 
Thessaly, and including the Northern Sporades island 
group (principally Skiathos, Skopelos, Alonnisos, 
Kyra Panagia, Yioura and Skyros). None of the major 
islands of the northeast Aegean (e.g. Thassos, Limnos, 
Samothraki or Gökçeada) – our marine biodiversity 
hotspot VIII – was separated from the continent dur
ing the last glacial (Perissoratis & Mitropoulos 1989; 
Van Andel & Shackleton 1982). This area is connected 
to neither a terrestrial refugium nor an associated 
biodiversity hotspot. A claim for Middle Palaeolithic 
material from Agios Eustratios to the southeast (as 
yet unpublished) (Laskaris et al. 2011) may have been 
insular and will be of considerable interest when 
available. 

Surface finds from the northern arc of the Spo
rades have been assigned to the Palaeolithic (Sampson 
1996). Systematic work on Alonnisos has yielded 
mixed Middle Palaeolithic and Mesolithic-like stone 
tools in secondary deposition; but an excavation of 
the sedimentary sequence was not able to clarify the 
provenance of the stone tools (Karkanas 2013; Panago
poulou et al. 2001). During periods of lower sea level, 
many of the Sporades appear to have formed a long, 
narrow peninsula (Perissoratis & Conispoliatis 2003). 
Interestingly, though, the high level of species end
emism and low frequency of vascular plants on Yioura 
have been cited as evidence for this island’s longterm 
separation from any other landmass, with the possible 
exception of Kyra Panagia (Kamari et al. 1988). This 
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leaves the door open for some of the northern Spo
rades to have harboured early human occupants while 
the islands were in insular state, a situation echoed 
by the longstanding claims of Palaeolithic artefacts 
on Skyros (Cherry 1981; 1990). Together with its own 
small archipelago of islets, Skyros unquestionably 
comprised an island setting during the last glacial 
(Lykousis 2009); then, as now, it was c. 40 km off the 
coast of Euboea. Re-investigation of this island-group 
and further work on Yioura with the aim of extending 
the Early Holocene occupation already established at 
the Cave of the Cyclops (Sampson 2008b) would be 
encouraged, given the expectations of the model we 
have presented.

Turning to the south, the lower sea levels of the 
last glacial meant that the Cyclades archipelago would 
have formed the heights of a substantial indented 
isle: the Cyclades Plateau (or ‘Cycladia’). None of the 
surviving peaks of that large island has yielded any 
evidence of a Palaeolithic presence to date, despite 
a history of detailed surveys. With so much of the 
Cyclades Plateau now inundated, at least part of the 
reason for this may be preservation. The potential for 
underwater archaeology to recover fragments of an 
early occupation has been broached (Kapsimalis et al. 
2009). The recovery of stone tools from Melos, one of 
the many smaller islands lying off the then Cycladian 
shoreline, but which has lost far less of its Pleistocene 
surface area as a result of sealevel rise, is a case in 
point for the preservation argument. 

Chelidonio (2001) reported the recovery of 126 
stone tools from Melos. All but one were surface 
finds made on beach pebbles of vitreous rhyolite. The 
exception is made on obsidian. (The earliest evidence 
of Melian obsidian, one of the primary sources for 
this volcanic stone in the Mediterranean, otherwise 
comes from c. 12,000 cal. bp levels at Franchthi, imply
ing transportation from the island: Runnels 1995). 
Among the finds, Chelidonio reported choppers and 
chopping tools, flakes, scrapers and cores, all of which 
he characterized as expedient tools. The use of cen
tripetal and discoid knapping techniques led him to 
assign a Middle Palaeolithic identity and date to this 
assemblage. Although his claim was met with some 
scepticism and the possibility of their being Mesolithic 
artefacts has been raised (in Chelidonio 2001), we find 
little in the local record of the Mesolithic to support 
this and are inclined to agree with other commenta
tors (Broodbank 2006; 2013; Harvati et al. 2009; Knapp 
2013) in seeing these finds as credibly Palaeolithic. A 
comparison of the Melian finds to other Mesolithic 
Aegean assemblages (e.g. Maroulas, Kythnos; Cave of 
Cyclops, Yioura; Kerame, Ikaria) highlights the differ
ences between them. All three Mesolithic assemblages 

have a strong component of obsidian tools (although 
stratigraphic provenance at Yioura is questionable; 
Sampson et al. 2012), with principal lithic raw materi
als otherwise being local flint and quartz; microliths 
are present whereas the big core tools that Chelidonio 
reported are not, though at Kerame 3 cores made on 
rhyolite are reported (Sampson 2008a,b; Sampson 
et al. 2012). Fish biodiversity and rates of endemism 
appear at somewhat reduced rates in the vicinity of the 
Cyclades compared with the coastal waters of main
land Greece; nonetheless this area gives every indica
tion of being part of a marine biodiversity hotspot: in 
which case, the lowered sea levels and wide exposure 
of the shallow Cyclades Plateau – perhaps especially 
on its more protected western shores – could have 
resituated those productive waters into its bays and 
among its neighbouring islands.

Conclusion: towards a Pleistocene Island 
Archaeology

Over the last 40 years, there have been major shifts in 
approaches to islands and Island Archaeology, with 
researchers increasingly realizing the complex inter
play between land and sea, environment and culture, 
seafaring and colonization (Phoca-Cosmetatou 2011a). 
Lively debate in response to themes in island biogeog
raphy has taken place on notions of isolation and inter
action, on the role of physical and social boundaries 
and on island identity (e.g. Broodbank 2000; Eriksen 
1993; Erlandson 2008; Horden & Purcell 2000; Knapp 
2008; Rainbird 2007; Robb 2001). These concerns are 
primarily relevant in the context of establishing and 
maintaining permanent island settlements and the 
way in which these create and transform island soci
eties – a process that in the Mediterranean occurred 
during the Neolithic (Broodbank 2013; Dawson 2011; 
PhocaCosmetatou 2011a).

The exploration of a preNeolithic human pres
ence on Mediterranean islands has only recently 
begun to emerge as a field of enquiry, and has arisen 
through a conscious shift in research priorities and 
modified theoretical approach away from island colo
nization (e.g. Cherry 1990) to themes such as ‘maritime 
activity’ (Broodbank 2006) and the origins of seafar
ing (Anderson et al. 2010). Notions of island identity, 
insularity and full-scale colonization are recognized 
as less appropriate themes for earlier periods. The 
largescale multiperiod surveys, typical for study
ing later prehistoric and classical periods, are also 
less well aligned to the geography and distribution 
of earlier evidence. This fact, we have argued here, 
has at least partly shaped the scale and nature of 
recovery of an island Palaeolithic. With Palaeolithic 
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archaeologists now taking the lead for the first time, 
the focus of investigation has become the initial visita
tion and exploration of islands for reasons including 
the utilization of island resources. Interdisciplinary 
projects employing ecologically and geologically 
informed models have tailored survey and reconnais
sance to the specific parameters of earlier occupation 
(Ammerman 2010; Broodbank 2006; 2013; Knapp 
2013; Strasser et al. 2010; 2011). This has proven espe
cially productive for locating a substantial Mesolithic 
island prehistory, which few anticipated existed in 
the Mediterranean (Ammerman 2010; Depalmas 2013; 
Panagopoulou et al. 2001; Sampson 2008a,b; Samp
son et al. 2012; Strasser et al. 2010). New Palaeolithic 
finds that have been made alongside this search have 
become headline grabbers, but concrete evidence of 
island use still only extends back to c. 16,000 years 
ago and mostly later, possibly associated with the 
climatic downturn of the Younger Dryas. Most of the 
Palaeolithic evidence remains, as it always has done, 
hampered by find locales being in areas of secondary 
deposition, by assemblages comprising only surface 
scatters, and over-reliance on typologically-driven 
relative chronologies. Absolute dates continue to 
elude. Unarguably, the reorientation in method and 
approach has produced some of the most compelling 
Palaeolithic evidence to date and encourages us not 
to be overwhelmed by the substantial preservation 
issues that affect the integrity of the earliest records. 
We are left to wonder if the antiquity of the first strong 
evidence of island use more accurately reflects the 
timing when conditions and shorelines last stabilized 
than it does the first appearance of people on islands. 
Irrespective of this, fragmentary evidence hinting at a 
much older history has appeared whichever recovery 
criteria have been used by previous island investiga
tors. This is certainly encouraging. We have argued, 
though, that there has still been little systematic effort 
to conceptualize and design a specifically Palaeolithic 
approach with which to interrogate the island record. 
In this paper we have taken, we hope, some first steps 
towards addressing that.

The logic we have followed is simple. There is 
good evidence that Palaeolithic groups, including 
Neanderthals, favoured the stable resources and 
equitable conditions of terrestrial refugia. Ecological 
studies have demonstrated a link between the distri
bution of biodiversity hotspots and the occurrence of 
these refugia. With our interest directed towards the 
accessibility and use of island contexts, we have sought 
first to extrapolate this relationship to marine settings, 
marking the locations of marine biodiversity hotspots 
using the same criteria (endemism, biodiversity and 
threat). We have hypothesized that within the vicinity 

of these marine hotspots there should be marine refu
gia – areas of longterm stability. The existence of such 
places within the Mediterranean is supported by proxy 
through phylogeographic studies and through tertiary 
observations showing a correspondence in distribution 
patterns of marine animals, which exploit both land 
and sea environments, to biodiversity hotspots. Our 
contention is that those areas where there is overlap 
between marine and terrestrial hotspots (and hence 
implied refugia), and where there are islands that have 
been separated from the mainland during the Upper 
Pleistocene, will provide the best candidates on which 
to find compelling evidence of Palaeolithic island use.

In the western Mediterranean there are two areas 
that exhibit an immediate association between marine 
and terrestrial biodiversity hotspots. The Balearics 
remain an enigma. All of the conditions examined 
here are right for the early appearance of humans 
in this archipelago and yet the current state of evi
dence places this as the last major island group to be 
inhabited in the Mediterranean. Possibly the heavily 
unbalanced nature of the fauna here simply meant 
that these islands were never attractive to early visita
tion. The straits between Tunisia and Sicily may have 
confronted early human groups with a substantial 
obstacle. Island-hopping, though, would have been 
possible, and further investigation of islands within 
this area (including Sicily) would surely be a valuable 
exercise. Despite their individual or combined size, we 
suspect that the preLGM Upper Pleistocene occupa
tion evidence on Corsica and Sardinia may remain 
controversial in the absence of any marine biodiversity 
hotspot linking this landmass to any adjacent main
land. It definitely does not preclude the possibility 
of an Early or Middle Pleistocene hominin presence, 
as both the record of faunal turnovers and the lithic 
record may attest; however, close attention needs to 
be paid to the earlier history of continental links to 
the Italian mainland if we are to propose even more 
ancient movements to these islands by sea.

Turning east, we have raised queries about 
the likelihood of occupation on Cyprus being older 
than the Epipalaeolithic which has already been 
discovered, because of its isolation from the kind of 
corridor of movement that a marine hotspot would 
have afforded. Based on our model, Crete may offer 
greater likelihood of early occupation owing to its 
association with the tiedbiome between terrestrial 
southwestern Anatolia and the southeast Aegean 
(VII). The discovery of all the new purported Pal
aeolithic sites on the southern coast may be linked to 
changes in the prevailing off-shore current between 
the north (under glacial conditions) and south (under 
interglacial ones) of the island, leading us to specu
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late that seagoing movements in the Pleistocene and 
Early Holocene may have been strongly affected by 
prevailing currents. Of all the Ionian Islands, the 
Cephallonia–Ithaki–Zakynthos landmass continues 
to be considered the most likely place in the Mediter
ranean to find substantial evidence for Neanderthal 
island presence, and has some of the most persistent 
evidence of Middle Palaeolithic artefacts. Marine 
and terrestrial biodiversity hotspots overlap on the 
western margin of central Greece, implying longterm 
resource stability. A similarly tiedbiome along the 
eastern margin of central Greece lends credibility to 
the Middle Palaeolithic assemblages from Melos and 
highlights possibilities for neighbouring islands that 
were not part of the Cycladian Plateau. It also justifies 
returning to the Palaeolithic artefacts from Skyros and 
possibly other Sporades islands. 

While, undoubtedly, there is a need to refine the 
geographic resolution of apparent areas of overlap 
between marine and terrestrial data defined in the 
model that we have presented here, our primary goal 
has been to draw attention to the existence of such a 
link. A much more systematic treatment of these data 
is clearly required before any definitive conclusions 
can be drawn. For example, one valuable addition 
would be to create a detailed picture of the locality 
of Pleistocene continental shelves in order to obtain 
a more accurate sense of where fish species richness 
was likely greatest. Tying marine and terrestrial 
biomes gives reason for optimism that such research 
into Pleistocene island occupation will be rewarded.
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