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ABSTRACT

Human respiratory syncytial virus (HRSV) is the most important viral cause of severe respiratory tract disease in infants. Two
subgroups (A and B) have been identified, which cocirculate during, or alternate between, yearly epidemics and cause indistin-
guishable disease. Existing in vitro and in vivo models of HRSV focus almost exclusively on subgroup A viruses. Here, a recom-
binant (r) subgroup B virus (rHRSVB05) was generated based on a consensus genome sequence obtained directly from an unpas-
saged clinical specimen from a hospitalized infant. An additional transcription unit containing the gene encoding enhanced
green fluorescent protein (EGFP) was introduced between the phosphoprotein and matrix genes (position 5) of the genome to
generate rHRSVB05EGFP(5). The recombinant viruses replicated efficiently in both HEp-2 cells and in well-differentiated normal
human bronchial cells grown at air-liquid interface. Intranasal infection of cotton rats (Sigmodon hispidus) resulted in high
numbers of EGFP� cells in epithelia of the nasal septum and conchae. When administered in a relatively large inoculum volume,
the virus also replicated efficiently in bronchiolar epithelial cells and spread extensively in both the upper and lower respiratory
tracts. Virus replication was not observed in ciliated epithelial cells of the trachea. This is the first virulent rHRSV strain with the
genetic composition of a currently circulating wild-type virus. In vivo tracking of infected cells by means of EGFP fluorescence in
the absence of cytopathic changes increases the sensitivity of virus detection in HRSV pathogenesis studies.

IMPORTANCE

Virology as a discipline has depended on monitoring cytopathic effects following virus culture in vitro. However, wild-type vi-
ruses isolated from patients often do not cause significant changes to infected cells, necessitating blind passage. This can lead to
genetic and phenotypic changes and the generation of high-titer, laboratory-adapted viruses with diminished virulence in ani-
mal models of disease. To address this, we determined the genome sequence of an unpassaged human respiratory syncytial virus
from a sample obtained directly from an infected infant, assembled a molecular clone, and recovered a wild-type recombinant
virus. Addition of a gene encoding enhanced green fluorescent protein allowed this wild-type virus to be tracked in primary hu-
man cells and living animals in the absence of significant cytopathic effects. Imaging of fluorescent cells proved to be a highly
valuable tool for monitoring the spread of virus and may help improve assays for evaluating novel intervention strategies.

Human respiratory syncytial virus (HRSV) is the most impor-
tant viral cause of respiratory tract disease in infants (1).

HRSV infections are observed during seasonal outbreaks in winter
or during the rainy season in the tropics (2). The virus usually
causes a self-limiting upper respiratory tract (URT) infection, re-
sulting in rhinorrhea and other common cold-like clinical signs
(3). However, in a minority of cases the infection can also spread
to the lower respiratory tract (LRT), resulting in severe pneumo-
nia or bronchiolitis. Risk factors for developing severe LRT infec-
tions include prematurity, pulmonary or cardiac disease, compro-
mised immunity, and old age (4). Current treatment options are
limited, although a monoclonal antibody directed against the fu-
sion (F) glycoprotein has been developed for prophylactic use (5).
Despite significant efforts in vaccine development over the past 50
years, no HRSV vaccines are currently licensed (6). Limited avail-
ability of natural animal models of disease adds to the challenge of
developing vaccines and antivirals.

HRSV is a member of the family Paramyxoviridae, subfamily
Pneumovirinae, genus Pneumovirus (1). It is an enveloped virus
with a negative-sense, single-stranded RNA genome containing 10

transcription units. The glyco- (G) proteins facilitate virus attach-
ment and entry (1, 7), and the F glycoprotein is an important
target of virus neutralizing antibodies (8). Molecular epidemio-
logical studies have identified two HRSV subgroups (A and B),
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which cause indistinguishable disease and cocirculate during, or
alternate between, yearly outbreaks (9, 10).

An improved understanding of HRSV pathogenesis would
facilitate the development of novel intervention strategies. This
requires virulent, well-characterized virus strains of known
provenance, which can be evaluated in disease-relevant in vitro
and in vivo model systems. Well-differentiated (wd) normal
human bronchial epithelial (wd-NHBE) cultures grown at air-
liquid interface (ALI) have been identified as a useful in vitro
model for HRSV as they contain ciliated cells which are natural
HRSV targets (11–13). Such cells provide a valuable bridge
from in vitro to in vivo studies. Cotton rats represent a highly
susceptible small-animal model for HRSV pathogenesis studies
(14). Recently, adult human volunteers were infected with
wild-type A strains to assess the effectiveness of HRSV antivi-
rals (15–17). Irrespective of the approach used, it is critical to
use naturally circulating viruses to ensure that study outcomes
can be correlated with clinical outcomes. A long-standing chal-
lenge in virology is that clinical isolates often fail to cause overt
cytopathic effect (CPE) in primary cells and in vivo; thus, in-
fected cells must be stained to monitor the infection. This is
challenging in vitro and magnified in vivo when low numbers of
infected cells are present in tissues, which must be examined
using ultrathin sections. These challenges have been addressed
by generating recombinant (r) viruses from clinical samples
and engineering them to express fluorescent proteins from an
additional transcription unit (ATU), permitting novel insights
into viral pathogenesis and targeted pathological assessment in
appropriate cell lines and animal models (18). To extend these
studies, we obtained the genome sequence of HRSVB05, a wild-
type subgroup B strain. Assembly of a full-length molecular
clone allowed the recovery of recombinant HRSVB05

(rHRSVB05) and insertion of an ATU containing the enhanced
green fluorescent protein (EGFP) open reading frame (ORF) at
position 5 between the phosphoprotein (P) and matrix (M)
genes led to the generation of rHRSVB05EGFP(5). We charac-
terized rHRSVB05 and rHRSVB05EGFP(5) in vitro and show
that it is virulent in vivo.

MATERIALS AND METHODS
Determination of a complete HRSV subtype B genomic sequence di-
rectly from clinical material. Deidentified clinical material was kindly
provided by Peter Coyle (Royal Victoria Hospital, Belfast, Northern Ire-
land). The sample was obtained from a tracheal rinse of an HRSV-positive
infant during the 2004-2005 HRSV season (HRSVB05). Total RNA was
extracted from clinical material (500 �l) using TRIzol LS reagent (Life
Technologies). First-strand cDNA was generated using a SuperScript III
first-strand synthesis system (Life Technologies) and negative-sense gene-
specific primers based on conserved regions of the HRSV subtype B ge-
nome. PCR primers were designed to amplify the complete viral genome
in six overlapping fragments. PCR was performed on the cDNA using
Phusion High-Fidelity DNA Polymerase (New England BioLabs). PCR
products were purified using a QIAquick PCR purification kit (Qiagen)
and sequenced using primers spanning the viral genome. Sequences were
assembled, and a consensus was determined using Lasergene, version 10
(DNASTAR). Primer sequences are available on request. rgRSV is a re-
combinant virus based on HRSV strain A2 (HRSVA2), which expresses
GFP from an ATU present at position 1 (promoter proximal of the ge-
nome (19).

Construction of rHRSVB05 minigenomic and antigenomic plasmids.
An HRSV minigenome plasmid, p(�)HRSVB05DI-EGFP, contained an
EGFP open reading frame (ORF) flanked by the viral 3= and 5= termini and

preceded upstream by a T7 promoter, guanine trinucleotide, and ri-
bozyme and followed downstream by a hepatitis delta virus ribozyme and
T7 terminator sequences. A negative-sense viral RNA was produced upon
transcription by T7 RNA polymerase. The minigenome construct was
synthesized by GeneArt Gene Synthesis (Life Technologies) and ligated
into a modified pBluescript vector (20). HRSV N, P, M2-1, and L expres-
sion plasmids were constructed in pCG(MPBS) (21). A full-length, anti-
genomic HRSV plasmid, pHRSVB05, was constructed following restric-
tion enzyme digestion and sequential ligation into the modified
pBluescript vector (20). The viral genome sequence was orientated with
respect to the T7 promoter to produce an antigenomic RNA upon tran-
scription. The full-length HRSV plasmid was modified to contain an ATU
encoding EGFP located between the P and M genes, pHRSVB05EGFP(5).

Development of a minigenome assay and recovery of rHRSV. Con-
fluent HEp-2 cells (ATCC, CCL-23) were infected with recombinant vac-
cinia virus MVA-T7 for 1 h at 37°C. Inoculum was aspirated, and Lipo-
fectamine 2000 (Life Technologies) was used to transfect plasmid
mixtures containing N, P, M2-1, L, and full-length or minigenome con-
structs. After 18 h the transfection mix was removed and replaced with
OptiMEM (2 ml) (Life Technologies) containing 2% (vol/vol) fetal bo-
vine serum (FBS). Cells were incubated for up to 7 days at 37°C with 5%
(vol/vol) CO2. Supernatants from cells transfected with full-length con-
structs were used to infect fresh HEp-2 monolayers, and the presence of
virus was confirmed by immuno-plaque assay, fluorescence, or CPE ob-
served by phase-contrast microscopy. Cells, transfected with the HRSV
minigenome construct, were observed daily by fluorescence microscopy
to detect EGFP expression. Virus stocks were prepared in HEp-2 cells.
Virus titers were determined by endpoint titration in HEp-2 cells.

In vitro infection assays and virus characterization. Growth kinetics
was assessed by infection of HEp-2 cells at a multiplicity of infection
(MOI) of 0.1. Triplicate samples were scraped, sonicated, and centri-
fuged to remove cellular fragments; the supernatant was snap-frozen
as cell-free virus stock. Virus present in the sample for each time point
was determined by endpoint titration in HEp-2 cells. Titers are ex-
pressed as 50% tissue culture infectious doses (TCID50) calculated by
the Reed and Muench method (22). To determine glycosaminoglycan
(GAG) indices, CHO cells expressing GAG or GAG-deficient cells were
infected and analyzed by flow cytometry (23). wd-NHBE cells were
cultured in 12-mm/0.4-�m-pore-size inserts (Corning) at ALI (24).
The apical surfaces of cells (estimated to contain 105 cells exposed at
the surface) were infected at 25 to 26 days after growth at ALI. After 1
h of incubation at 37°C, inoculum was removed, and the apical sur-
faces were washed three times with Dulbecco’s phosphate-buffered
saline (DPBS) (500 �l). At 2 days postinfection (d.p.i.), DPBS (500 �l)
was added to the apical compartment, and the cells were incubated at
37°C. After 10 min the DPBS and growth medium were harvested from
the apical and basolateral compartments, respectively, for virus isola-
tions and quantitative PCR (qPCR). Subsequently, automated whole-
well scans were made by confocal laser scanning microscopy (CLSM)
with an LSM700 system fitted on an Axio Observer Z1 inverted micro-
scope (Zeiss), followed by semiautomated enumeration of EGFP-pos-
itive (EGFP�) cells (DotCount; MIT, Boston, MA). Viruses were
titrated in HEp-2 cells using 10-fold (growth kinetics) or 3-fold (apical
rinse) dilutions in flat-bottom 96-well plates and cultured for 5 to 7
days at 37°C. The presence of HRSV genomes in samples was deter-
mined by TaqMan reverse transcription-PCR (RT-PCR) as previously
described (25) with slight modifications. A quantified positive control
for HRSV B (Vircell) was added to express the results in genome equiv-
alents. The cycle threshold (CT) value was calculated automatically
when the fluorophore signal (6-carboxyfluorescein [FAM] for HRSV
A and tetramethylrhodamine [TAMRA] for HRSV B) was detected
above the background level and was used to give a quantitative indi-
cation of viral copy numbers. All in vitro experiments were performed
at least three times. Statistical analyses were performed with SPSS,
version 20.0.
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HRSV immuno-plaque assay. Serial 10-fold dilutions of HRSV were
prepared in OptiMEM. Confluent HEp-2 cells cultured in 24-well plates
were infected with each dilution (200 �l) for 1 h at 37°C. Inoculum was as-
pirated, and 0.8% carboxy-methylcellulose (2 ml) (Sigma), in OptiMEM
containing 2% (vol/vol) FBS, was added. Overlay medium was removed at
4 to 5 d.p.i., and cells were fixed in cold 80% (vol/vol) methanol for 1 h at
4°C. Plates were washed in distilled water and blocked with 5% (wt/vol)
milk for 30 min. Goat anti-HRSV (Ab20745-1; Abcam) diluted 1:100 in
blocking solution (200 �l) was added. Following 1 h of incubation at
room temperature with rocking, plates were washed in distilled water,
and rabbit anti-goat horseradish peroxidase (HRP) conjugate (Ab6741;
Abcam) diluted 1:100 in blocking solution (200 �l) was added. Following
1 h of incubation at room temperature, plates were rinsed, and binding of
the HRP-conjugated antibody was detected using 4-chloro-1-naphthol
(200 �l), which was converted to produce a gray/black pigment (Pierce).

In vivo infection experiment. Six groups of six female, 3- to 4-week-
old cotton rats were infected intranasally with 104 TCID50 of rHRSV in
an inoculum volume of 10 �l or 100 �l to target the URT or LRT
predominantly (26). Animals (n � 3/group) were euthanized by ex-
sanguination at 4 or 6 d.p.i. The right lung was inflated with 2% (wt/
vol) agarose (Sigma-Aldrich), sliced, and submerged in medium (27).
Postmortem nasopharyngeal washings were collected, and the left lung
was prepared for qPCR. Nasal concha, nasal septum, and agarose-
inflated right lung (27) were screened and scored for microscopic flu-
orescence (AxioVert 25; Zeiss). Mann-Whitney U tests were used to
compare differences between groups, and a P value of �0.05 was con-
sidered statistically significant.

Immunohistochemical (IHC) analysis of formalin-fixed tissues.
Paraffin-embedded tissues were processed as previously described (28).
HRSV-infected cells were detected using a polyclonal rabbit antibody to
EGFP (Invitrogen). All fluorescently stained slides were assessed, and dig-
ital fluorescent images were acquired with a Leica DF digital camera using
Leica FW4000 software.

Confocal laser scanning microscopy. Nasal tissues and agarose-in-
flated lung slices were fixed with phosphate-buffered saline (PBS) con-
taining 4% (wt/vol) paraformaldehyde, permeabilized with PBS contain-
ing 0.1% (vol/vol) Triton X-100 for 30 min, counterstained with the far-
red nuclear counterstain TO-PRO3 (Invitrogen) or 4=,6=-diamidino-2-
phenylindole (DAPI; Vectashield), and directly analyzed for EGFP
fluorescence by an LSM700 system (Zeiss) or Leica SP5 microscope (Leica
Microsystems). Three-dimensional (3D) images and movies were gener-
ated using Zen (Zeiss) or LCS (Leica) software.

Nucleotide sequence accession number. The complete genome se-
quence of HRSVB05 is available from GenBank under accession number
KF640637.

RESULTS
Generation of a wild-type, subgroup B BA rHRSV. Total RNA
was extracted directly from a tracheal rinse sample obtained from
an infant infected with HRSV, and high-fidelity RT-PCR and
rapid amplification of cDNA ends (RACE) were used to generate
amplicons using previously described methods (29). The consen-
sus genome sequence indicated that the virus belonged to the Bue-
nos Aires (BA) genotype of HRSV subgroup B. This genotype was
first detected in Argentina in 1999 and is characterized by a 60-
nucleotide duplication in the G gene (30). Viruses of the BA ge-
notype have become the dominant global HRSV subtype B geno-
type (31, 32), although why this is the case is unclear. Eukaryotic
expression plasmids encoding HRSVB05 nucleocapsid (N), phos-
pho- (P), and M2-1 and large (L) proteins and a negative-sense
minigenome (HRSVB05DI-EGFP) were constructed (Fig. 1A), and
a replication/transcription assay was established to optimize the
conditions required to generate rHRSVB05. Most negative-strand
reverse genetics systems utilize T7 RNA polymerase to generate a

full-length viral antigenomic RNA. Since T7 RNA polymerase ini-
tiates most efficiently on a stretch of guanine residues, efficient
rHRSVA2 rescue has previously been achieved by inserting three
guanine nucleotides between the T7 promoter and the HRSV
leader (Le) sequence (33–35). However, it is not clear whether this
sequence is copied during viral replication. To negate this possi-
bility, a hammerhead ribozyme (36) was inserted after the T7 pro-
moter and three guanine nucleotides, which, along with the hep-
atitis delta ribozyme at the other end of the minigenome, allowed
posttranscriptional cleavage to generate precise, authentic trailer
(Tr) and Le termini at the ends of the minigenome (Fig. 1A).
EGFP� cells were observed following transfection of the five plas-
mids into HEp-2 cells, indicating that the genomic termini and
helper plasmids were functional (Fig. 1B). No EGFP-positive cells
were observed when the L protein expression plasmid was omitted
(Fig. 1B, �L), indicating that EGFP expression was driven exclu-
sively by the viral RNA-dependent RNA polymerase (Fig. 1B).
Based on these findings a positive-sense full-length genome
plasmid (pHRSVB05) was constructed, and rHRSVB05 was re-
covered following transfection into HEp-2 cells (Fig. 1C). Im-
portantly, it was not necessary to mutate nucleotide 4 of the Le
sequence to achieve efficient rescue as has been described for
rHRSVA2 (33, 37), which demonstrates the biological impor-
tance of using authentic wild-type sequences. Full-genome
consensus sequencing of the recombinant virus showed that no
mutations had been introduced compared to the consensus
sequence of the clinical specimen (data not shown). Indirect
immunofluorescence (Fig. 1D and E) and in situ plaque stain-
ing (Fig. 1F and G) using an anti-HRSV F glycoprotein anti-
body permitted the detection of foci of infection. The full-
length HRSV plasmid was modified by insertion of an ATU
encoding EGFP at position 5 in the genome (Fig. 1H), and
rHRSVB05EGFP(5) was recovered (Fig. 1I). High levels of EGFP
expression were obtained, and both single and fused infected
cells were detected by UV microscopy (Fig. 1I). Thus, an
rHRSVB05 virus genetically identical to a clinical isolate was
successfully generated that can be tracked in living cells in the
absence of any overt CPE.

Growth characteristics of rHRSVB05 in transformed and pri-
mary human cells. HEp-2 cells were infected with rHRSVB05 or
rHRSVB05EGFP(5) at an equivalent multiplicity of infection
(MOI). Both B05-based viruses displayed similar growth kinetics,
reaching equivalent peak titers of 106 TCID50/ml (Fig. 1J). It has
been reported that HRSV strains differ in their binding affinity to
glycosaminoglycan (GAG) moieties on the cell surface (19, 23).
Both rHRSVB05 and rHRSVB05EGFP(5) displayed low GAG de-
pendency indices (Fig. 1K). In contrast, rgRSV had a high GAG
dependency index.

Primary NHBE cells were differentiated at ALI to form polar-
ized ciliated, nonciliated, basal, and goblet cells with functional
tight junctions. These wd-NHBE cells were infected at an MOI of
0.01, 0.1, or 1, resulting in a dose-dependent number of infected
cells 2 d.p.i. (Fig. 2A). Similar to previous observations with re-
combinant HRSV A2 strains in differentiated epithelial cells (12),
CPE was not observed. Virus loads in apical rinses were deter-
mined both by virus isolation (Fig. 2B) and qPCR (Fig. 2C). No
reproducible differences in virus loads were determined between
cultures infected with rHRSVB05 and rHRSVB05EGFP(5). Virus
loads determined by qPCR showed a good correlation with the
numbers of EGFP� cells. Neither released virus nor virus genome

Recombinant HRSV Subgroup B Expressing EGFP
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was detected in the basolateral compartment (data not shown).
This is consistent with the epitheliotropic nature of HRSV.

rHRSVB05 efficiently infects cotton rats. Cotton rats were in-
fected intranasally with 104 TCID50 of rHRSVB05 or
rHRSVB05EGFP(5) in a low volume (10 �l) to target the URT.
Animals were sacrificed at 4 or 6 d.p.i., and unfixed respiratory
tracts were screened by UV microscopy. High numbers of
EGFP� cells were detected at 4 d.p.i. in the nasal cavity of
rHRSVB05EGFP(5)-infected animals (Fig. 3A). Discrete tracks
of fluorescent cells were present in the epithelium of the nasal
septum, reminiscent of what was previously observed in

wd-NHBE cells (12). No EGFP� cells were detected microscopi-
cally in trachea or lungs. Pathological assessment and immuno-
histochemistry (IHC) in 7-�m formalin-fixed lung sections indi-
cated that both viruses predominantly infected ciliated respiratory
epithelial cells (Fig. 3B) and caused destruction of the epithelium
(Fig. 3C).

In order to target both the URT and LRT, cotton rats were
intranasally infected with 104 TCID50 in a larger volume (100 �l)
(26). Macroscopically, fluorescence levels in the nasal concha and
nasal septum were indistinguishable between animals infected
with the low- or high-volume inoculum, and no EGFP� cells were

FIG 1 Development of a reverse genetics system for HRSVB05. (A) Schematic representation of HRSV eukaryotic N, P, M2-1, and L protein expression constructs
and minigenome HRSVB05DI-EGFP showing the Le sequence, EGFP gene, and Tr sequence. (B) Phase-contrast and UV photomicrographs of HEp-2 cells at 2
days posttransfection with p(�)HRSVB05DI-EGFP and helper plasmids with (�L) and without (�L) the L protein expression clone. (C) Schematic represen-
tation of the rHRSVB05 genome. (D and E) Detection of the F glycoprotein of rHRSVB05 syncytia by indirect immunofluorescence. A negative control omitted
the primary monoclonal antibody (E). (F and G) Detection of HRSVB05 by immuno-plaque assay. (H) Schematic representation of the rHRSVB05EGFP(5)
genome. (I) Phase-contrast and fluorescent photomicrographs of rHRSVB05EGFP(5)-infected HEp-2 cells. (J) Growth curves determined by 10-fold titrations
at four consecutive days on HEp-2 cells. (K) CHO cells expressing GAG and cells deficient in GAG were infected, and ratios were calculated and expressed as a
GAG index Data are presented as geometric mean titers � standard errors. d.p.i., days postinfection; CMV, cytomegalovirus.
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detected in the trachea. However, vastly different outcomes were
observed when the lungs from infected animals were removed,
inflated with agarose, sectioned, and screened for fluorescence.
Infection with rHRSVB05EGFP(5) resulted in high numbers of
EGFP� cells at 4 d.p.i. in the epithelium of the bronchi and bron-
chioles in the lung slices (Fig. 3D). The number of EGFP� cells in
the LRT was lower at 6 d.p.i.

Virus loads were determined in nasal lavage samples (Fig. 3E
and F) and lung tissue (Fig. 3G and H) by virus isolation (Fig. 3E
and G) or qPCR (Fig. 3F and H) for animals infected with a low
(Fig. 3, hatched columns) or high (Fig. 3, nonhatched columns)
volume of intranasal inoculum. The results corroborated the mac-
roscopic observations that high viral loads were detected in the
URT of all animals (Fig. 3E and F) while only in animals inocu-
lated with a high volume were significant virus loads detected in
the LRT (Fig. 3G and H).

Detection of rHRSVB05EGFP(5) in the respiratory tract by
optical sectioning. The power of targeted pathology in under-
standing the spatial dynamics and pathological consequences of
rHRSVB05EGFP(5) infection is evident when standard IHC in
7-�m formalin-fixed lung sections (Fig. 4A and B) is compared
with optical sectioning of living tissues immediately after necropsy
(Fig. 4C to G). More infected cells were detected in agarose-in-
flated lung slices reconstructed in three dimensions using confocal
laser scanning microscopy (CLSM) than by IHC, and sheets of
infected luminal epithelial cells of bronchi and bronchioles were
present (Fig. 4C). Small numbers of individual cells in the paren-
chyma of the lung were also present (Fig. 4C, inset and asterisk).
These cells could not be phenotypically characterized by IHC due
to the section size and lower level of sensitivity due to back-
grounds. Optical sectioning also allows greater cellular resolution
since EGFP floods the cytoplasm of the cell, meaning that fine

processes and cell-to-cell contacts were readily visible (Fig. 4D and
E, arrow).

DISCUSSION

We have developed a reverse genetics system based on an HRSV
subgroup B clinical isolate and generated rHRSVs with or without
an additional transcription unit encoding EGFP to study viral
pathogenesis in the cotton rat model. Use of rHRSVB05EGFP(5)
allowed sensitive detection of infected cells both in vitro and in
vivo in the early stages of infection in the absence of CPE. HEp-2
cells were suitable for virus passage in vitro, and the genomes were
genetically stable: after 10 serial passages in HEp-2 cells, consensus
sequencing revealed no mutations. In addition, the growth kinet-
ics of rHRSVB05 and rHRSVB05EGFP(5) were comparable, sug-
gesting that insertion of an ATU into the HRSV genome did not
result in virus attenuation. Laboratory-adapted viruses generated
by extensive passage through a variety of disease-relevant and
-nonrelevant cells and tissues have traditionally been used to de-
velop molecular clones (34, 38–40).

HRSV spread in differentiated human airway epithelial (HAE)
cells has been described as a “comet-like” spread, driven by the
directionality of the beat of the cilia (12). Equivalent “comets”
were present in the nasal conchae of infected cotton rats, demon-
strating that these are relevant in vivo and not an in vitro artifact.
Such localized virus spread has significant implications for the
development and delivery of HRSV antivirals. We used the model
to mirror the 1 to 2% of human cases where virus triggers bron-
chiolitis or severe pneumonia by varying the inoculation volume
to target mainly the URT or concurrently the URT and LRT. In-
terestingly, rHRSVB05EGFP(5) predominantly infected cells
throughout the main branches of the bronchial tree, resulting in
illumination of the bronchial tree. This aspect of HRSV pathogen-
esis has not previously been recapitulated in an animal model of
HRSV or, to the best of our knowledge, in animals infected with
any virus. Preferential infection of bronchial and bronchiolar ep-
ithelial cells mirrors the natural target cells of HRSV in humans
(41). Moreover, at 4 d.p.i. rHRSVB05EGFP(5) titers were similar to
those obtained from patients or volunteers infected with HRSV
(15, 16, 42). This illustrates the strength of the cotton rat model
and shows the power of targeted pathology using EGFP-express-
ing recombinant viruses, which is only feasible due to the possi-
bility of identifying infected tissues for blocking and processing
immediately after necropsy.

Whereas existing in vitro and in vivo models of HRSV have
focused mainly on subgroup A viruses, our recombinant virus
is based on a subgroup B strain (31). Antigenic differences
between the two subgroups of HRSV are predominantly medi-
ated by the highly variable G gene (10) and might facilitate
evasion of host immune responses (43). Despite these differ-
ences, infections with HRSV of either subgroup cause indistin-
guishable disease (1). Although outside the scope of under-
standing primary pathogenesis, this system should permit
fitness experiments between viruses with and without the in-
sertion in the G protein. This could explain why the BA viruses
have outcompeted all other subgroup B HRSVs.

Reverse genetics of nonsegmented negative-strand RNA vi-
ruses has come a long way in the last 20 years following the recov-
ery of rabies virus (44). The challenges of generating recombinant
viruses are far from trivial, and much has been achieved with the
original rHRSV systems (19, 34). Given the significant investment

FIG 2 Infection of primary wd-NHBE cells grown at ALI with rHRSVB05 or
rHRSVB05EGFP(5). (A) Fluorescent photomicrographs and absolute counts
of EGFP� cells/well for MOIs of 0.01, 0.1, and 1. (B) Virus isolations of corre-
sponding apical rinses. (C) Genome equivalents in apical rinses measured by
qPCR. Data are presented as geometric mean titers � standard errors. ND, not
determined.
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of time in establishing reverse genetics systems, there tends to be a
large activation energy required to develop second- or third-
generation systems. This is particularly true for HRSV, and,
although tractable second-generation systems have been devel-
oped (45, 46), no group has successfully generated a virulent
rHRSV fully reflecting the sequence of a current, clinically rel-
evant, wild-type strain and studied primary pathogenesis in
this key small-animal model. In addition, in vitro and in vivo

models employing subgroup B HRSV strains have been scarce;
these will be of crucial importance for preclinical testing of the
effectiveness of new intervention strategies. It is vital to extend
ongoing studies and move in the direction of reverse genetics
systems based on clinical isolates grown in disease-relevant
cells. Only then will it be possible to understand HRSV patho-
genesis fully and systematically to test novel interventions. The
recombinant B05 viruses will help in this endeavor, and these

FIG 3 Intranasal infection of cotton rats with rHRSVB05 or rHRSVB05EGFP(5). (A) Fluorescence microscopy showing high levels of infection in the nasal
septum of cotton rats at 4 d.p.i. with rHRSVB05EGFP(5), with comet-like formations of EGFP� cells. (B and C) Hematoxylin and eosin staining and IHC
photomicrographs of the tissues described in panel A showed destruction of epithelia (arrows). (D) In animals infected with a high (100 �l) inoculum
large numbers of EGFP� cells were also observed in the epithelium of bronchus and bronchioles, illuminating the bronchial tree. Virus loads were
determined in nasal lavage samples (E and F) and lung tissue (G and H) by virus isolation (E and G) or qPCR (F and H) for animals infected with a
low-volume (10 �l) or high-volume (100 �l) intranasal inoculum. Asterisks indicate virus loads lower than 102 TCID50 (virus isolation) or 104 genome
equivalents (qPCR) per gram of lung tissue.
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should be augmented by the establishment of equivalent sys-
tems for subgroup A clinical isolates.
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