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Abstract

Belief revision performs belief change on an agent’s beliefs when new evidence
(either of the form of a propositional formula or of the form of a total pre-order on
a set of interpretations) is received. Jeffrey’s rule is commonly used for revising
probabilistic epistemic states when new information is probabilistically uncertain.
In this paper, we propose a general epistemic revision framework where new evi-
dence is of the form of a partial epistemic state. Our framework extends Jeffrey’s
rule with uncertain inputs and covers well-known existing frameworks such as or-
dinal conditional function (OCF) or possibility theory. We then define a set of
postulates that such revision operators shall satisfy and establish representation
theorems to characterize those postulates. We show that these postulates reveal
common characteristics of various existing revision strategies and are satisfied by
OCF conditionalization, Jeffrey’s rule of conditioning and possibility conditional-
ization. Furthermore, when reducing to the belief revision situation, our postulates
can induce Darwiche and Pearl’s postulates C1 and C2.

Keywords Epistemic state; Epistemic revision; Belief revision; Probability updat-
ing; Iterated revision; Ordinal conditional function; Possibility theory; Jeffrey’s Rule

∗This paper is an extended version of a conference paper [44].
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1 Introduction
Information used in real applications is often uncertain, which reflects a kind of re-
liability of sources and sensors. In addition, knowledge bases are not static. There
are always new information that should be taken into account. In probabilistic frame-
works, these two aspects (i.e., uncertain and dynamic) are handled in homogeneous
way by representing uncertainty associated with information in the form of probability
distributions, and using different forms of conditioning for updating.

In Artificial Intelligent (AI) community, since 1985, the process of changing beliefs
with new information is known as belief revision. Belief revision [1, 28, 34] performs
belief change on an agent’s beliefs when new evidence is received. It has been observed
that a pure logic-based revision framework, e.g., AGM postulates based framework,
may permit some counterintuitive results in iterated revision1. As a result, revision on
epistemic states should be introduced accordingly [14, 4, 51, 5, 33, 42], etc.

However, in most of these research efforts, new evidence is still represented as a
propositional formula, not an epistemic state (even if initial epistemic state may be
a propositional formula or a totally pre-ordered relation on a set of possible worlds).
Therefore, these methods do not fully implement a revision that reflects the effect of
epistemic states, e.g., new information could be uncertain [14, 15]. Although an ef-
fort has been made to address this problem in a couple of papers (e.g., [4]), in which
new evidence is represented as a full epistemic state. The revision methods proposed
still cannot manage the strengths over partitions on a set of interpretations, which, in
probability or possibility settings, is already accomplished by Jeffrey’s rule [3]. That
is, we need to develop a revision framework which can deal with new information
with strengths that could be modeled by partial epistemic states similar to the probabil-
ity counterparts of Jeffrey’s rule. Here we should note that new information not only
comes from observations of the agent on the environment but can also be conveyed by
other agents where epistemic makes sense. So here we use partial epistemic states as
inputs which we aim to cover both situations, even if there might be some abuse of
concept.

Jeffrey’s rule is widely applied when an agent’s current belief and new evidence are
both modeled in probability measures. More precisely, in Jeffrey’s rule, the prior state
is a probability distribution representing an agent’s current beliefs or generic knowl-
edge whilst new evidence is a partial probability measure solely on a partitioned subsets
of the world. Similar strategies were also proposed for ordinal conditional functions
(OCFs) [58, 59], for possibility measures [19, 3], etc. However, despite of the need to
handle new, input information with strengths that may be present in different forms,
to the best of our knowledge, there does not exist a common revision strategy (and its
corresponding postulates) to address this issue. In another words, can we develop a
general revision framework that subsumes these individual revision strategies (in dif-
ferent frameworks) with a set of common postulates? A significant advantage of this,
if achievable, is to facilitate further understanding of the nature of revision, regardless
of which formalism may be deployed to represent an agent’s beliefs and new uncertain

1Note that AGM postulates are not designed for iterated revision. So it is not surprising they permit
counterintuitive results in iterated revision.
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evidence.
To answer this question, we first propose a framework to represent an agent’s epis-

temic beliefs, which generalizes various definitions of epistemic states in the literature
(e.g., a weighted formula [33, 48], a total pre-order [4], an OCF-based epistemic state
[49, 58, 59], a probability measure [30], a partial pre-order [45, 41], a mass function
[46, 47], etc). This framework takes inspirations from Jeffrey’s rule of conditioning
under uncertain inputs. We then investigate how a set of rational postulates should be
derived to regulate revision operators defined from this framework and provide rep-
resentation theorems for these postulates. We prove that these postulates are satisfied
by OCF conditionalization, possibility conditionalization, and most significantly Jef-
frey’rule of conditioning.

Our main objective of defining a general iterated revision framework is to imple-
ment the revision of an agent’s current beliefs (represented as a full epistemic state)
with new, uncertain evidence (represented as a partial epistemic state). In standard
AGM framework, there are no explicit representations of strengths associated with ini-
tial beliefs and inputs (even if any revision operator that satisfies AGM postulates is
implicitly based on some total pre-order on interpretations). Our framework, however,
supports the explicit representation of strengths which will help in determining the
result of revision.

Furthermore, we investigate the relationships between this general framework with
logic-based belief/epistemic revision, especially with Darwiche and Pearl’s (DP’s) be-
lief revision framework [14]. We prove that when reducing to the belief revision situa-
tion, our postulates can induce DP’s postulates C1 and C2.

To summarize, the main contributions of the paper are:

• Our definition of epistemic states subsumes many existing definitions of epis-
temic states.

• We provide a generalized revision strategy and corresponding postulates.

• We prove two presentations theorems which show clear and succinct kinematic
semantics in revision.

• We prove that our framework can recover many existing numerical revision op-
erators, e.g., Jeffrey’s rule, OCF conditionalization, possibilistic revision, etc.

• When an input is a formula, our postulates can induce all the AGM-KM postu-
lates and Darwiche and Pearl’s C1, C2 postulates.

In other words, our framework provides an important one step forward of extending
the various existing revision strategies and revision operators.

The rest of the paper is organized as follows. We provide the preliminaries and Jef-
frey’s rule in Section 2 and 3 respectively. In Section 4, formal definitions of epistemic
space and epistemic state are introduced. In Section 5, we propose a set of postulates
for epistemic revision and their corresponding representation theorems. In Section 6
and Section 7, we discuss how our framework subsumes existing revision strategies.
Finally, we conclude the paper in Section 8.
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2 Preliminaries
We consider a propositional language L defined on a finite set A of propositional atoms,
which are denoted by p, q, r etc. A proposition ϕ is constructed by propositional atoms
with logic connectives ¬,∧,∨,→ in the standard way. An interpretation ω (or possible
world) is a function that maps A onto the set {0, 1}. The set of all possible interpre-
tations on A is denoted as W . Function ω can be extended to any proposition in L in
the usual way. An interpretation ω is a model of (or satisfies) ϕ iff ω(ϕ) = 1, denoted
as ω |= ϕ. We use Mod(ϕ) to denote the set of models for ϕ. We write ϕ ⊢ ψ if
Mod(ϕ) ⊆ Mod(ψ) and ϕ ≡ ψ if Mod(ϕ) = Mod(ψ). Furthermore, we also take
the view that a proposition ϕ can be equivalently represented by a subset of the set of
possible worlds W . That is, for any proposition ϕ, there is a subset A of W such that
Mod(ϕ) = A. Let |A| denote the cardinality of A.

{A1, . . . , An} is a partition of set W iff ∀i, Ai ̸= ∅,
∪n
i=1Ai = W and for i ̸= j,

Ai ∩ Aj = ∅. For convenience, we also call {µ1, . . . , µn} a partition of set W when
{A1, . . . , An} is a partition and for any Ai, Mod(µi) = Ai, and hence any µi is
consistent.

Definition 1 A partition {B1, . . . , Bk} (resp., {ϕ1, . . . , ϕk}) is called a refinement of
partition {A1, . . . , An} (resp., {µ1, . . . , µn}) if ∀i, 1 ≤ i ≤ k, ∃j, 1 ≤ j ≤ n, s.t.
Bi ⊆ Aj (resp., ϕi ⊢ µj).

3 Jeffrey’s Rule
In probability theory framework, a well-known revision method is Jeffrey’s rule [32].

Definition 2 (Jeffrey’s rule) Let P be the prior probability distribution on W and
F = {µ1, . . . , µn} be a partition of W . Assume that a new piece of evidence gives
a probability measure (W,F , PF ) such that PF (µi) = αi ≥ 0, 1 ≤ i ≤ n with∑

1≤i≤n αi = 1. Then Jeffrey’s Rule revises P with PF with operator ◦p and obtains

(P ◦p PF )(w) = αiP (w)/P (µi) for w |= µi (1)

A conventional extension for Equation (1) is that if P (µi) = 0, then PF (µi) = αi
must be 0, and consequentlyαiP (w)/P (µi) is defined as 0 (otherwise it is not defined).
This setting is also proposed in [3] for possibility measures that an impossible event
should be always impossible. That is, if an event is impossible in terms of the initial
epistemic state, then it should also be impossible in the input.

Jeffrey’s rule revises the prior probability distribution P to P ′ given an uncertain
input with probabilities bearing on a partition of W . It produces a unique distribution
that satisfies the following two equations [12]:

P ′(µi) = PF (µi) = αi (2)

which shows that the new information is preserved and

∀µi,∀ϕ ⊢ µi, P (ϕ|µi) = P ′(ϕ|µi) (3)
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which states that the revised (new) probability distribution P ′ must retain the degree of
conditional probability of any event ϕ that implies µi.

Note that Equation (3) can be equivalently written as:

∀µi,∀ϕ, ϕ′ ⊢ µi,
P (ϕ)

P ′(ϕ)
=

P (ϕ′)

P ′(ϕ′)
(4)

This is often called probability kinematics [32, 12].
The following example shows how Jeffrey’s rule is applied.

Example 1 (Adapted from [3]) Let us consider the following example where we are
interested in knowing if a given researcher, named JM who works in a laboratory in
computer science, is attending a given conference. We are also interested in knowing
whether JM is lodging in the hotel recommended by the conference. Lastly, we would
like to know whether JM has a biometric passport. For simplicity, we only use the
following two variables to encode available information:

H: to express that JM booked a room in conference hotel,

B: to express that JM has a biometric passport.

The following probability distribution provides an encoding of our initial beliefs.

P (H ∧B) = 0.4, P (H ∧ ¬B) = 0.2, P (¬H ∧B) = 0.3, P (¬H ∧ ¬B) = 0.1

And assume that we have a new piece of information, where the director of lab-
oratory states that now booking the conference hotel is less plausible than booking a
non-conference hotel. This new information is represented by the following uncertain
input.

P ′(H) = 0.3, P ′(¬H) = 0.7

Then using Jeffrey’s rule, we get the revised probability distribution as follows.

(P ◦p P ′)(H ∧B) = 0.2, (P ◦p P ′)(H ∧ ¬B) = 0.1,

(P ◦p P ′)(¬H ∧B) = 0.525, (P ◦p P ′)(¬H ∧ ¬B) = 0.175

For the resulting epistemic state (P ◦p P ′), we have

(P ◦p P ′)(H) = P ′(H) = 0.3,

(P ◦p P ′)(¬H) = P ′(¬H) = 0.7.

In the context of H (resp. ¬H), the plausibility ordering between B and ¬B in the ini-
tial epistemic state is the same as that in the resulting epistemic state. Hence, Jeffrey’s
rule admits input while respecting the minimal change principle.
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4 Epistemic Space and Epistemic State
In order to define a general revision framework with uncertain input, we first provide
formal definitions of epistemic space and epistemic state. Let D denote an infinite2

set of values with two special elements ⊥,⊤ in D, and there is a total pre-order ≼D
on D (corresponding notations like ≺D, ≻D are defined as usual) such that ∀x ∈ D,
⊥ ≼D x ≼D ⊤. For example, if D = [0, 1], then we have ⊥ = 0 and ⊤ = 1. x ≼D y
can be seen as x is at most as preferred (or plausible, important, etc) as y.

4.1 Extension functions
Since a revision process usually involves some kind of set operation, so when strengths
are attached to formulae/sets (as mentioned before, a formula corresponds to a set),
we need some function being introduced to handle the operations on strengths of the
sets, in particular, a function that associates the strength of a set to the strengths of
its subsets. To this end, before defining epistemic states, we first define the notion of
extension function. A function f associating a value in D to a multi-set of values in
D is called an extension function if it satisfies

Identity f({x}) = x
Minimality f({x1, . . . , xk}) = ⊥ iff x1 = . . . = xk = ⊥
Monotonicity f({x}) ≼D f({x, y})

We do not define f : 2D → D since this function is not simply a mapping from 2D

to D, rather it is a mapping from any tuple of values from D to a value in D with the
tuple size varies. For instance, we can have f({x, x, x}) = x′, but ({x, x, x}) is not an
element of 2D. This also follows the definition of aggregation functions in [36].

For simplicity, if there is no confusion from the context, for f({x1, . . . , xk}) here-
after we will omit the multi-set sign and write it as f(x1, . . . , xk).

In [36], an aggregation function f is defined as a function associating a single
non-negative integer to a set of non-negative integers and satisfies the following three
properties:

Identity f(x) = x,
Minimality f(x1, · · · , xk) = 0 iff x1 = · · · = xk = 0,
Non-decreasingness If x ≼D y, then f(x1, · · · , x, · · · , xk) ≼D f(x1, · · · , y, · · · , xk).

An extension function is similar to an aggregation function in the sense that both
of them attempt to associate a set of values to a single value within a given domain.
The differences between them are (i) an extension function is defined on D instead of
a set of integers; and (ii) it satisfies the Monotonicity property above instead of the
Non-decreasingness property.

Note that Monotonicity property and Non-decreasingness property define two dif-
ferent classes of extension functions. For example, functions like median, mode satisfy

2Here we should note that the finiteness ofW and the infiniteness ofD are not inconsistent. For instance,
let W = {w1, w2}, then W is finite, but as we can define infinite numbers of probability functions on W ,
each value in D = [0, 1] can be obtained. So they are not inconsistent.
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Non-decreasingness but not Monotonicity and the function f in the following example
satisfy Monotonicity but not Non-decreasingness. In some sense, Monotonicity im-
poses more constraints on the set-structure of the functions than Non-decreasingness,
e.g., it excludes the mode function. In this paper, to prove the representation theorems,
we require the Monotonicity property instead of the Non-decreasingness property.

Example 2 Let D = {2a3b|a ∈ N, b ∈ N ∪ {∞}} such that ≼D is defined as
arithmetic ≥, ⊤ = 1, and ⊥ = ∞. Let f be defined as f(2a13b1 , · · · , 2an3bn) =
2min(a1,···,an)3min(b1,···,bn). Obviously, f satisfies Identity, Minimality and Mono-
tonicity, but f does not satisfy the Non-decreasingness property. For example, 4 ≺D 3,
but f(4, 9) = f(2230, 2032) = 1 ≻D 3 = f(3, 9) = f(2031, 2032).

4.2 Partial and full epistemic states
Now we define epistemic states and epistemic spaces, which are similar to the definition
of probability spaces and probability measures.

Definition 3 Let F be a partition of W , a partial epistemic state Φ on F is a map-
ping associating a value in D to each element of F .

If there is no confusion from the context, we simply call Φ a partial epistemic state.

Definition 4 A partial epistemic space is a tuple (W,F ,Φ, D, f), where:

• F is a partition of W ,

• Φ is a partial epistemic state, and

• f is an extension function.

Φ can be extended from F to 2F by f 3 such that for A1, · · · , Ak ∈ F , Φ(
∪k
i=1Ai) =

f(Φ(A1), · · · ,Φ(Ak)).

Note that it would be more accurate to use {A1, · · · , Ak} instead of
∪k
i=1Ai, but

as Ai ∩Aj = ∅ when i ̸= j, we simply use
∪k
i=1Ai.

Example 3 Let W = {w1, w2, w3} and a partition F on W be {{w1, w2}, {w3}}.
Also, let D = {Good, · · · , Neutral, · · · , Bad} be the (infinite) set of values with ⊥ =
Bad ≺D · · · ≺D Neutral ≺D · · · ≺D Good = ⊤ and f = max (f satisfies Identity,
Minimality and Monotonicity). Let Φ define the following mapping: Φ({w1, w2}) =
Good and Φ({w3}) = Bad, then (W,F ,Φ, D, f) is a partial epistemic space.

An epistemic space (W, {{w1}, ...{wn}},Φ, D, f) is a special case of partial epis-
temic space (W,F ,Φ, D, f) where the partition of W is the set of all singleton sets.
To differentiate the former from the latter, we call (W, {{w1}, ...{wn}},Φ, D, f) a full
epistemic space and its corresponding Φ a full epistemic state.

3Note that f is hence defined on 2F instead of on W . This is not a limitation since in our framework,
we only need the f values over 2F . In addition, a function over W always induces a unique function over
2F while the converse is not.
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Note that a partial epistemic state Φ such that Φ(A) = α, Φ(A) = β is not equal
to a full epistemic state Ψ such that ∀w ∈ A,Ψ(w) = a (e.g., in the probabilistic
case, a = α/|A|, and in the OCF case, a = α), ∀w ̸∈ A,Ψ(w) = b and Ψ(A) = α,
Ψ(A) = β by fΨ. For example, in probability theory, a probability measure P with
P ({man,woman}) = 0.8 does not mean P ({man}) = P ({woman}) = 0.4. In-
stead, from P ({man,woman}) = 0.8 we can obtain a family of possible probability
distributions over W = {man,woman}. So a partial epistemic state can not be en-
coded by a full epistemic state.

Obviously, if Φ is a probability measure (D = [0, 1], f is +), then the above
definition degenerates to the definition of probability space.

In this paper we use Φ,Ψ,Θ etc (possibly with a subscript) to denote an epistemic
state.

Literally, although there have been many papers focusing on epistemic revision
and merging, there does not exist a commonly accepted definition of epistemic state.
In some papers (e.g. [14]), no formal definitions of epistemic state are given, though
the concept is used. In papers like [4], the definition of epistemic state is always associ-
ated with an epistemic space which contains the observable parts of the epistemic state
and the projection function to obtain the observable parts. In papers for knowledge
base merging or arbitration (e.g., [39, 21]), knowledge bases play the role of epis-
temic states. In some other papers, definitions for epistemic states are mainly based
on plausibility orderings on possible worlds [49, 58, 59, 33], etc. In addition, concrete
representations like probability measures, OCFs, possibility measures could also be
considered as epistemic states.

It is easy to see that an epistemic state as a plausibility ordering can be induced
from a full epistemic state. That is,

Definition 5 For any full epistemic state Φ, an ordering ≤Φ between interpretations is
defined as ∀w,w′, w ≤Φ w

′ iff Φ(w′) ≼D Φ(w).

Furthermore, Def. 4 not only generalizes the notion of probability space, it also
takes definitions of OCFs (when D is set a set of ordinals with ⊤ = 0, ⊥ = +∞ and
≼D=≥, and f = min) and possibility measures (when D is [0, 1] and f = max)
as special cases. Therefore, Def. 4 indeed provides a general framework to model
epistemic states defined in different formalisms.

Value Φ(A) can be interpreted as an agent’s epistemic firmness on A. Note that
Φ(A) encodes all the information an agent provides on A, in particular, if the agent
changes the value Φ(A) while maintaining Φ(A) unchanged, we should consider that
the agent maintains its belief on A, despite that the agent has changed its belief on A.
Usually, constraints are placed on Φ(A) and Φ(A), e.g., if Φ is a probability measure,
then Φ(A) + Φ(A) = 1, or if Φ is an OCF , then min(Φ(A),Φ(A)) = 0. Here for
generality, we do not assume any constraints on Φ(A) and Φ(A).

Intuitively, the Minimality property of f , when considered in Def. 4, ensures that
if an agent thinks the true world is definitely not in a particular set, then the true world
should not be in any of its subsets, and vice versa, i.e., Φ(

∪k
i=1Ai) = ⊥ iff Φ(A1) =

· · · = Φ(Ak) = ⊥. Similar properties are also introduced in [13] as the impossibility
property and in [52] as the zero-preservation property. The Monotonicity property
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indicates that if A ⊆ B, then Φ(A) ≼D Φ(B), especially when Φ(A) is interpreted as
a kind of plausibility value (epistemic firmness) of A. This property is very similar to
Axiom A1: if A ⊆ B then Pl(A) ≤ Pl(B) for a plausibility measure Pl [26] which
was also mentioned in [30].

Parallel to probability theory, probability distributions are applied (and discussed)
more frequently than their corresponding probability spaces. In the following, most
of the time we will only mention epistemic states without explicitly discussing their
corresponding epistemic spaces too.

To ensure that a domain D contains sufficient but non-redundant elements, we im-
pose two requirements on D.

Definition 6 D is strict iff it satisfies the following

• for any W , ∀x ∈ D, ∃Φ, ∃A ⊆W s.t., Φ(A) = x.

• for any W , ∀x, y ∈ D and x ≼D y, ∃Φ, ∃A,B s.t. A ⊆ B ⊆ W , Φ(A) = x
and Φ(B) = y.

The intuition of the first condition is that D does not contain redundant elements. The
second condition corresponds to the Monotonicity requirement of f . Both conditions
are used to relate D to epistemic states. Observe that requiring D strict is not a major
issue because Φ is selected freely in the above definition (not restricted by D). That
is, D is independent of Φ. In addition, D is independent of W . In the following, we
always assume D is strict. This assumption is well fitted in many uncertainty represen-
tation formalisms. For example, as long as |W | > 1,D = [0, 1] is strict in probabilistic
and possibilistic settings.

4.3 Entailment of epistemic states
As W , D and f are assumed to be clear and unchanged throughout, an epistemic state
Φ defined on F is denoted as ΦF .

By abuse of notations, we also write ΦF (µ) = αwhen ΦF (A) = α andMod(µ) =
A, i.e., a proposition is assigned a plausibility value which is the value assigned to the
set of its models. In the following, we will use propositions rather than their corre-
sponding sets of models.

We define the entailment of epistemic states as follows.

Definition 7 Let ΦF1 and ΨF2 be two epistemic states, then ΦF1 entails ΨF2 , de-
noted as ΦF1 |= ΨF2 , iff F1 is a refinement of F2 and ∀µ ∈ F2, ΦF1(µ) = ΨF2(µ).

From this definition, we can see that if ΦF1 entails ΨF2 , then ΦF1 contains more
specific information than ΨF2 .

Note that each element µ of F2 is necessarily the union of several elements of F1.
Hence ΨF

1 (µ) can always be obtained using extension functions.

Example 4 Let W = {w1, w2} and f = +, ΦF1 be such that F1 = {{w1}, {w2}},
ΦF1({w1}) = 1, ΦF1({w2}) = 2 (hence ΦF1({w1, w2}) = 3), ΨF2 be such that
F2 = {{w1, w2}}, ΨF2({w1, w2}) = 3, then we have ΦF1 |= ΨF2 .
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In the rest of the paper, to differentiate, a full epistemic state will be represented
without a superscript describing a partition (e.g., Φ) and a partial epistemic state always
with a superscript describing a partition (e.g., ΨF ).

5 Revising Epistemic States by Partial Epistemic States

5.1 Epistemic Revision
5.1.1 Postulates

Motivated by the principle of Jeffrey’s rule on conditioning on probability spaces and
the ideal requirement that only the strengths of prior beliefs and evidence should de-
termine the outcome of belief revision [14], we propose the following constraints on
revision in our epistemic space framework.

• Revision should be focused on a full epistemic state (representing prior beliefs
or generic knowledge) revised by a partial epistemic state (representing a new,
uncertain input). This is the spirit of Jeffrey’s rule (revising a probability dis-
tribution with an uncertain input) and existing revision frameworks (e.g., prior
beliefs are total pre-orders whilst an input is a propositional formula). Hence we
use full epistemic states to encode current beliefs and partial epistemic states to
encode new, uncertain inputs.

• Only the strengths of beliefs and new evidence determine the outcome of revi-
sion. This is the main argument in [14]. This postulate is intuitively in agreement
with the Neutrality with respect to the intensity scale condition proposed in [17]
which says in a social choice scenario, an aggregation function should not de-
pend on the semantic meanings of a set of social choice functions, but only focus
on their intensities of choices.

• New, most recent evidence has the priority. For one-shot revision, this is ex-
plained as that new evidence is preserved.

In addition, we also have a default assumption that an impossible event in the initial
epistemic state should also always be impossible in the revision. That is,

Impossibility Preservation for any µ ∈ F , if Φ(µ) = ⊥, then ΨF (µ) = ⊥.

This is a requirement of consistency between the initial state and the input, just similar
to the settings for Jeffrey’s rule and revision of possibility measures in [3].

Based on these constraints, we propose the following three postulates. Let ◦ be a
revision operator.

ER1 If Φ is a full epistemic state and ΨF is a partial epistemic state, then Φ ◦ΨF is
a full epistemic state.
Explanation: This postulate suggests that the revision operator ◦ is a mapping
from a full epistemic state and a partial epistemic state to a full epistemic state.
Again, it is worth pointing out that Φ and ΨF share the same D,W and f . This
postulate can be called Preservation.
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ER2 Φ ◦ΨF |= ΨF .
Explanation: New evidence is preserved. More precisely, ΨF can be recovered
from Φ ◦ ΨF with the extension function f . By convention, this postulate can
be called Success.

ER3 For any µ ∈ F , and µ′ ∈ F ′, if Φ(µ) = Φ′(µ′) and ΨF (µ) = Ψ′F ′
(µ′), then

for ψ ⊢ µ and ψ′ ⊢ µ′, (Φ ◦ΨF )(ψ) = (Φ′ ◦Ψ′F ′
)(ψ′) iff Φ(ψ) = Φ′(ψ′).

To get a better understanding, ER3 can be stated with two separate steps as fol-
lows:
For any µ ∈ F , and µ′ ∈ F ′, if

• Φ(µ) = Φ′(µ′) and

• ΨF (µ) = Ψ′F ′
(µ′)

Then (Φ ◦ΨF )(µ) = (Φ′ ◦Ψ′F ′
)(µ′).

More generally, we require: for ψ ⊢ µ and ψ′ ⊢ µ′,

(Φ ◦ΨF )(ψ) = (Φ′ ◦Ψ′F ′
)(ψ′) iff Φ(ψ) = Φ′(ψ′).

Explanation: This postulate implements the constraint that the strengths of be-
liefs and evidence determine the outcome of revision. More specifically, as ev-
idence ΨF (resp. Ψ′F ′

) provides no information on ψ (resp. ψ′) directly, the
only information related to ψ (resp. ψ′) is µ (resp. µ′) as ψ ⊢ µ (resp. ψ′ ⊢ µ′),
so the strength of ψ (resp. ψ′) after revision should only rely on its own strength
before revision and the strengths of µ (resp. µ′) before and after revision.

ER3 stems from Equation (4) of Jeffrey’s rule. If we let Φ = Φ′, ΨF = Ψ′F ′
,

µ = µ′, then ER3 is reduced to:

∀µ and ∀ϕ, ϕ′ ⊢ µ, (Φ ◦ΨF )(ψ) = (Φ ◦ΨF )(ψ′) iff Φ(ψ) = Φ(ψ′).

Comparing to Equation (4), Φ ◦ ΨF can be viewed as the counterpart of the
revised probability distribution P ′ in Equation (4) and Φ as P . From this point
of view, ER3 can be seen as an extension of Equation (4) to the epistemic state
case. In addition, this postulate is intuitively in agreement with the Neutrality
with respect to the intensity scale condition proposed in [17] which says in a so-
cial choice scenario, an aggregation function should not depend on the semantic
meanings of a set of social choice functions, but only focus on their intensities
(numerical values in [0, 1]) of choices.

A simple proposition induced from ER1 and ER2 is stated as follows.

Proposition 1 Let Φ be a full epistemic state, then Φ ◦ Φ = Φ.

11



5.1.2 Relationship with the AGM-KM postulates

In this subsection, we will make some remarks about the relationship between
our postulates and the AGM-KM postulates [1, 34].

In [1], a set of belief revision postulates are proposed and in [34], this set of
postulates are reformulated. In [14], Darwiche and Pearl presented a series of
beautiful examples to illustrate the weakness of AGM-KM postulates on iterated
belief revision.

But we should point out that the comparison with AGM-KM postulates and Dar-
wiche and Pearl’s postulates [14] have been done in two parts in this paper. Here
in Section 5 we do a simple comparison aiming to show what is the counterpart
of each the standard AGM-KM postulates and DP’s postulates in our framework,
and whether they can be defined in our framework. This is also a way to justify
our postulates. Later in Section 7, we will provide a detailed comparison be-
tween the AGM-KM (and DP) framework and our framework which shows that
when reducing to the belief revision situation, our postulates induce the same
belief set as done by the AGM-KM (and DP) postulates.

Darwiche and Pearl recommended that to ensure the rational preservation of con-
ditional beliefs4during (iterated) belief revision, a revision process shall perform
operations on epistemic states not just on their belief sets.

With this intention, they modified the AGM-KM postulates to obtain a set of
revised postulates in which an agent’s original belief is in the form of epistemic
states and new evidence is a propositional formula. The revised postulates for
epistemic revision are

R1 Φ ◦ µ implies µ.
R2 If Φ ∧ µ is satisfiable, then Φ ◦ µ ≡ Φ ∧ µ.
R3 If µ is satisfiable, then Φ ◦ µ is also satisfiable.
R4 If Φ1 = Φ2 and µ1 ≡ µ2, then Φ1 ◦ µ1 ≡ Φ2 ◦ µ2.
R5 (Φ ◦ µ) ∧ ϕ ⊢ Φ ◦ (µ ∧ ϕ).
R6 If (Φ ◦ µ) ∧ ϕ is satisfiable, then Φ ◦ (µ ∧ ϕ) ⊢ (Φ ◦ µ) ∧ ϕ.

Here, Φ (possibly with a subscript) stands for an epistemic state5 and µ and ϕ
are propositional formulae. Φ ◦ µ is an epistemic state after revising Φ with
revision operator ◦ by µ. When Φ is embedded in a propositional formula, it
is used to stand for Bel(Φ) (its belief set which is a formula) not an epistemic
state for simplification purposes, for example, Φ ∧ ϕ means Bel(Φ) ∧ ϕ. These

4Let ψ and α be two propositional formulae and let ◦ be a belief revision operator, the revision of ψ by
α is a new propositional formula and is denoted as ψ ◦ α. β|α is a conditional belief of ψ if ψ ◦ α ⊢ β.
Please refer to [55, 27, 38, 6, 8, 2] for detailed studies of conditionals in belief revision.

5It did not explicitly define what an epistemic state is in [14], but it can be considered as an agent’s current
beliefs together with the relative plausibility orderings of possible worlds (represented by a total pre-order
on W ) which are inconsistent with the current beliefs.
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postulates are natural extensions of the AGM-KM postulates to epistemic revi-
sion except that postulate (R4) is a weaker version of the original KM postulate6

which states that if two equivalent formulae are revised by two other equivalent
formulae respectively, then the revised results should be equivalent. Since differ-
ent epistemic states can have the same belief set, (R4) requires that not just the
two initial belief sets, but the two epistemic states must be identical:7 Φ1 = Φ2.
It was argued in [33] that since there was no formal definition on epistemic states
in [14], it was not possible to define the equivalence of two such states. So (R4)
is changed into

R4′ If µ1 ≡ µ2, then Φ ◦ µ1 ≡ Φ ◦ µ2.

Obviously, ER2 is a straightforward generalization of R1, whilst ER1 extends R3
in the epistemic revision situation where new evidence is also an epistemic state.
ER3, however, not only generalizes R4, but also is a key characteristic postulate
of revision considering with strengths of beliefs and evidence. Actually this
postulate shows that we do not need to care about the semantics of propositional
formulae, but only their syntactical relations and their strengths determine the
revision result.

There are no obvious generalizations for R5 and R6 in our postulates, because
the conjunction of two formulae (for two belief sets) used in DP postulates is
hardly generalizable on epistemic revision in our framework. In another words,
the conjunction of two epistemic states are undefinable 8. For instance, let W =
{w1, w2, w3}, and let ΦF ({w1, w2}) = ΦF ({w3}) = α and ΨF ′

({w1}) =
ΨF ′

({w2, w3}) = β be two epistemic states, then it is not obvious how to define
the conjunction of ΦF and ΨF ′

.

As for postulate R2, the following proposition shows why we do not need to
provide a separate postulate as its generalization.

Proposition 2 Let Φ be a full epistemic state, ΨF be a partial epistemic state
and ◦ be an epistemic revision operator satisfying ER1-3. For any µ ∈ F , if
Φ(µ) = ΨF (µ), then ∀ϕ ⊢ µ, Φ(ϕ) = (Φ ◦ΨF )(ϕ).

This proposition shows that when ER1-3 hold, then if new evidence is partially
consistent with the prior state, then the consistent part is not changed, which can
be seen as an extension of R2.

6The postulate can be written as: If ψ1 ≡ ψ2 and µ1 ≡ µ2, then ψ1 ◦ µ1 ≡ ψ2 ◦ µ2.
7In [29], an example nicely illustrating the difference between the original postulate and R4 is as follows.

Two jurors in a murder trial possess different biases; juror l believes “A is the murderer, B is a remote but
unbelievable possibility while C is definitely innocent”. Juror 2 believes “A is the murderer, C is a remote but
unbelievable possibility while B is definitely innocent”. The two jurors share the same belief set represented
by the consequences of “A is the only murderer”. A surprising new piece of evidence now states: “A is not
the murderer” (A has produced a reliable alibi). Clearly, any rational account of belief revision should allow
juror 1 to uphold a different belief set from juror 2. Here the two jurors have the same belief set but different
epistemic states.

8In a similar sense, in [18], it is argued that the case of expansion never occurs for probability functions.
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5.2 Iterated Epistemic Revision

5.2.1 Postulates

In this subsection, we propose postulates for iterated epistemic revision. Here
the constraint that new, most recent evidence has the priority can also be ex-
plained under the context that when two pieces of new information happen to
have the same partition F (which implies that both pieces of evidence refer to
the same sets of hypotheses) but with different strengths of belief on them, then
the most recent evidence overrules the previous one (as the latter (evidence) is
assumed to represent the most recently received (and acceptable) information
about a situation).

We have

ER4 Φ ◦ΨF ◦ΘF = Φ ◦ΘF .
Explanation: W.r.t. the same hypotheses with different strengths, the latest
evidence overrules previous ones.
Note that in ER4, by the default assumption, for any µ ∈ F , if Φ(µ) = ⊥,
then we must have ΨF (µ) = ⊥ and ΘF (µ) = ⊥. Again this is for the
consistency between the initial epistemic states and the inputs.

ER4* Φ◦ΨF ◦ΘF ′
= Φ◦ΘF ′

where partition F ′ is a refinement of partition
F .
Explanation: The latest fine-grained evidence overrules old ones.
By the default assumption mentioned in Section 5.1 (Impossibility Preser-
vation), in ER4*, for any µ ∈ F , if Φ(µ) = ⊥, then we must have
ΨF (µ) = ⊥. In addition, from Φ(µ) = ⊥, for any ϕ ⊢ µ, we must
have Φ(ϕ) = ⊥ (Minimality property in Section 4.1), then if ϕ ∈ F ′, it
should be ΘF ′

(ϕ) = ⊥ (Impossibility Preservation again). Therefore, Im-
possibility Preservation is also respected by ER4*. These two postulates
can be called Iteration postulates.

Example 5 (Example 1 Cont’) Recall the initial probability distribution for whether
JM is lodging in a conference hotel and whether he has a biometric passport is:

P (H ∧B) = 0.4, P (H ∧ ¬B) = 0.2, P (¬H ∧B) = 0.3, P (¬H ∧ ¬B) = 0.1

and the new evidence gives:

P ′(H) = 0.3, P ′(¬H) = 0.7

Now assume that the secretary of the director tells us that she remembers JM
had booked a conference hotel. This information is represented by the following
input:

P ′′(H) = 0.9, P ′′(¬H) = 0.1

Then from Jeffrey’s rule, we can easily have the follows:

(P ◦p P ′ ◦p P ′′)(H ∧B) = 0.6, (P ◦p P ′ ◦p P ′′)(H ∧ ¬B) = 0.3,
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(P ◦p P ′ ◦p P ′′)(¬H ∧B) = 0.075, (P ◦p P ′ ◦p P ′′)(¬H ∧ ¬B) = 0.025

(P ◦p P ′ ◦p P ′′)(H ∧B) = 0.6, (P ◦p P ′′)(H ∧ ¬B) = 0.3,

(P ◦p P ′′)(¬H ∧B) = 0.075, (P ◦p P ′′)(¬H ∧ ¬B) = 0.025

That is, P ◦p P ′ ◦p P ′′ = P ◦p P ′′.

Probabilistic revision by Jeffrey’s rule is an example that follows all the above ER
postulates.

5.2.2 Relationship with DP’s iterated postulates

To regulate iterated epistemic revision to preserve conditional beliefs, Darwiche and
Pearl gave the following four additional postulates which are for four disjoint types of
conditional beliefs.

C1 If α ⊢ µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.
C2 If α ⊢ ¬µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.
C3 If Φ ◦ α ⊢ µ, then (Φ ◦ µ) ◦ α ⊢ µ.
C4 If Φ ◦ α ̸⊢ ¬µ, then (Φ ◦ µ) ◦ α ̸⊢ ¬µ.

Φ ◦ α ⊢ β here stands for Bel(Φ ◦ α) ⊢ β.
As C1-C4 play an important role in the rest of the paper, here we repeat their ex-

planations given in [14]. C1 states that when two pieces of evidence arrive, the second
being more specific than the first, the first is redundant; that is, the second evidence
alone would yield the same belief set. C2 says when two contradictory pieces of evi-
dence arrive, the last one prevails; that is, the second evidence alone would yield the
same belief set. C3 describes an evidence µ should be retained after accommodating
more recent evidence α that implies µ given current beliefs. C4 gives that no evidence
can contribute to its own demise. If µ is not contradicted after seeing α, then it should
remain un-contradicted when α is preceded by µ itself.

In our framework, ER4 and ER4* are closely related to C1 and C2, but in general
ER4 does not imply C1 and C2 while ER4* does.

5.3 Representation Theorems
In this subsection, we present our two representation theorems which provide semantic
interpretations for postulates. For convenience, we recall Darwiche and Pearl’s repre-
sentation theorems [14].

In [14], two representation theorems are given to characterize the two sets of pos-
tulates, i.e., R1-R6 and C1-C4. First we introduce the definition of faithful assignment.

Definition 8 ([34, 14]) Let W be the set of all worlds (interpretations) of a proposi-
tional language L and suppose that the belief set of any epistemic state belongs to L.
A function that maps each epistemic state Φ to a total pre-order ≤Φ on worlds W is
said to be a faithful assignment if and only if:
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1. w1, w2 |= Φ only if w1 =Φ w2.
2. w1 |= Φ and w2 ̸|= Φ only if w1 <Φ w2.
3. Φ ≡ Ψ only if ≤Φ=≤Ψ where Ψ is also an epistemic state.

Here w1 <Φ w2 iff w1 ≤Φ w2 and w2 ̸≤Φ w1, w1 =Φ w2 iff w1 ≤Φ w2 and
w2 ≤Φ w1.

Theorem 1 ([14]) A revision operator ◦ satisfies postulates R1-R6 if and only if there
exists a faithful assignment that maps each epistemic state Φ to a total pre-order ≤Φ

such that:
Mod(Φ ◦ µ) = min(Mod(µ),≤Φ).

Theorem 2 ([14]) Suppose that a revision operator ◦ satisfies postulates R1-R6. The
operator satisfies postulates C1-C4 iff the operator and its corresponding faithful as-
signment satisfy:

CR1 If w1 |= µ and w2 |= µ, then w1 ≤Φ w2 iff w1 ≤Φ◦µ w2.
CR2 If w1 |= ¬µ and w2 |= ¬µ, then w1 ≤Φ w2 iff w1 ≤Φ◦µ w2.
CR3 If w1 |= µ and w2 |= ¬µ, then w1 <Φ w2 only if w1 <Φ◦µ w2.
CR4 If w1 |= µ and w2 |= ¬µ, then w1 ≤Φ w2 only if w1 ≤Φ◦µ w2.

In [14], the proof of this representation theorem shows that an epistemic revision
operator ◦ satisfies postulate Ci iff condition CRi is satisfied, 1 ≤ i ≤ 4.

Now we present our representation theorems. In order to establish them, we need
to define the retentive and conductive operators on D.

Definition 9 An operator ⊖ defined on D is called retentive if for any a1, a2, b1, b2 ∈
D s.t. a1 ≼D a2, b1 ≼D b2, the following statement holds:

If a1 ⊖ a2 = b1 ⊖ b2
and a2 = b2,

then a1 = b1.

The word retentive here intuitively means that when eliminating the equivalent sec-
ond operands, the equivalence is still retained for the first operands.

Definition 10 An operator ⊖ defined onD is called conductive if for any a1, a2, a3, b1,
b2, b3 ∈ D s.t. a1 ≼D a2 ≼D a3, b1 ≼D b2 ≼D b3, the following statement holds:

If a1 ⊖ a3 = b1 ⊖ b3
and a2 ⊖ a3 = b2 ⊖ b3,

then a1 ⊖ a2 = b1 ⊖ b2.

The word conductive here intuitively means that when eliminating same items from
two equations (the second operands in both the first and second equations), the remain-
ing operands can be combined naturally to form a new equation.

The retentive requirement specifies how to remove equivalent item in one equation
and the conductive requirement tells how to remove same items from multiple equa-
tions to form a new equation.
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There are many concrete retentive and conductive operators, for example, if ⊖ is
the subtraction (‘-’) or division (‘/’) operator in mathematics, then it is retentive and
conductive. Also, if D = {0, 1, · · · , n − 1}, where n is a natural number, then ⊖
defined as x⊖ y = (x− y)mod n is also retentive and conductive.

Theorem 3 A revision operator ◦ satisfies postulates ER1-ER4 iff there exists a reten-
tive operator ⊖ defined onD such that for any full epistemic state Φ and any epistemic
state ΨF , ∀µ ∈ F and ∀ϕ ⊢ µ,

(Φ ◦ΨF )(µ) = ΨF (µ)

and
(Φ ◦ΨF )(ϕ)⊖ (Φ ◦ΨF )(µ) = Φ(ϕ)⊖ Φ(µ).

This theorem is a direct extension of Jeffrey’s rule, as can be seen from the simi-
larity between the two equations in the theorem and Equation (2) and Equation (3) of
Jeffrey’s rule (where ⊖ is division). If the epistemic states in this theorem are prob-
ability measures, then we immediately obtain the two requirements used for defining
Jeffrey’s rule.

To some extent, this theorem shows how minimal change happens during epistemic
revision in the sense that it preserves a kind of distance based on ⊖ (although ⊖ is
not constructively given). Furthermore, evidently (Φ ◦ ΨF )(µ) = ΨF (µ) and (Φ ◦
ΨF )(ϕ) ⊖ (Φ ◦ ΨF )(µ) = Φ(ϕ) ⊖ Φ(µ) are counterparts of Equation (2) and (4),
respectively. As mentioned before, Equation (2) and (4) are necessary and sufficient
conditions for Jeffrey’s rule to yield a unique distribution. Therefore, this theorem
presents a generalization of Jeffrey’s rule.

With postulates ER1-ER3 and ER4*, we get the following representation theorem.

Theorem 4 A revision operator ◦ satisfies postulates ER1-ER3 and ER4* iff there
exists a retentive and conductive operator ⊖ defined on D such that for any full
epistemic state Φ and any epistemic state ΨF , ∀µ ∈ F and ∀ϕ ⊢ µ, (Φ ◦ΨF )(µ) =
ΨF (µ) and (Φ ◦ΨF )(ϕ)⊖ (Φ ◦ΨF )(µ) = Φ(ϕ)⊖ Φ(µ).

Example 6 (An instance of revision operator) LetW = {(a, b)|a ∈ N, b ∈ N∪{∞}},
D = {2a3b|a ∈ N, b ∈ N∪{∞}} such that ≼D is defined as the arithmetic ≥, ⊤ = 1,
and ⊥ = ∞. Let f be defined as f(2a13b1 , · · · , 2an3bn) = 2min(a1,···,an)3min(b1,···,bn)

and Φ be such that Φ((a, b)) = 2a3b. Let a new piece of evidence taken on partition
F = {µ1, · · · , µn} be such that ΨF (µi) = αi, 1 ≤ i ≤ n, then we can define a
revision operator ◦n as

(Φ ◦n ΨF )(w) = αiΦ(w)/Φ(µi) for w |= µi

◦n also satisfies postulates ER1-ER4 and ER4*, and f satisfies the Monotonicity
Property but not the Non-decreasingness property.
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Example 7 (An instance of an improvement operator) Improvement operators are in-
troduced in [37] with a Weak Primacy of Update intuition such that the plausibility
of the new information must be increased after the improvement, instead of having to
be accepted as in the AGM framework. Let D = {1, 12 ,

1
4 , · · · ,

1
2i , · · · , 0}, f = max

and ⊖ = / (division) in theorem 4, for any epistemic state Φ and any formula µ, let
a partial epistemic state (ΨF ) such that (ΨF )(µ) = Φ(µ) and (ΨF )(¬µ) = Φ(¬µ)

2
represents µ, then it is easy to check that ◦ reduces to an improvement operator for Φ
and µ.

6 Comparison with numeric revision strategies

6.1 Jeffrey’s rule
Since our framework aims to extend Jeffrey’s rule, in this section, we look into how
the postulates we proposed on iterated epistemic revision would coincide with Jeffrey’s
rule of conditioning.

Formally, let P be a prior epistemic state which is a probability distribution on W ,
and a new piece of evidence shows that a partition F = {µ1, · · · , µn} of W should
take new probabilities as PF (µi) = αi, 1 ≤ i ≤ n with

∑
1≤i≤n αi = 1.

Let P be a probabilistic epistemic state (i.e., a probability distribution extended to
2W by f = +), and PF be a probabilistic partial epistemic state, an epistemic state
revision operator • constructed from Jeffrey’s Rule (i.e. Definition 2) is defined as
follows

(P • PF )(w)
def
= PF (µi)

P (w)

P (µi)
for w |= µi. (5)

We use the table below to compare our framework with Jeffrey’s rule.

Our Framework Jeffrey’s Rule
W W
D [0,1]
f +

Φ (Epistemic state) P
ΨF (Evidence) PF

ΨF (µi) = αi, 1 ≤ i ≤ n PF (µi) = αi, 1 ≤ i ≤ n

(Φ ◦ΨF )(form(w))⊖ (Φ ◦ΨF )(µi) = Φ(form(w))⊖ Φ(µi)
(P◦pPF )(w)

(P◦pPF )(µi)
= P (w)

P (µi)

Table 1: Comparison between our framework and Jeffrey’s rule

Table 1 clearly shows that how our framework is reduced to the probability case
and recovers Jeffrey’s framework.

The following theorem shows that the above revision operator for probability up-
dating satisfies our postulates.

Theorem 5 The revision operator • defined in Equation (5) satisfies postulates ER1-
ER4 and ER4*.
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In fact, Equation (2) of Jeffrey’s rule can be directly recovered by postulate ER2,
whilst Equation (3) of Jeffrey’s rule, i.e., the probability kinematics, is implied in the
ER postulates.

6.2 OCF Conditionalization and Possibility Revision
OCF conditionalization: An OCF [58] κ is a function from a set of possible worlds
W to the set of ordinals with κ−1(0) ̸= ∅. It can be extended to a set of propositions
as κ(µ) = minw|=µκ(w). Given κ as the prior OCF, F = {µ1, · · · , µn} as a partition
and a new piece of evidence as λF (µi) = αi, 1 ≤ i ≤ n s.t. min1≤i≤n(αi) = 0, then
the conditionalization of κ w.r.t λF is

(κ ◦c λF )(w) = αi + κ(w)− κ(µi) for w |= µi (6)

If we consider the conditionalization operator ◦c as a revision operator, then Equa-
tion (6) can be seen as a revision strategy, and we have

Theorem 6 The revision operator ◦c defined in Equation (6) satisfies postulates ER1-
ER4 and ER4*.

Possibility revision: A possibility distribution [20] π is a mapping from W to
[0, 1]. It induces a possibility measure Π and a necessity measure N as follows:

Π(µ) = maxw|=µπ(w) and N(µ) = 1−Π(¬µ).

Π(µ) estimates to what extent an agent believes µ can be true whileN(µ) estimates
the degree the agent believes that µ is necessarily true.

One of the possibility conditioning methods is defined as

Π(ϕ|µ) def= Π(ϕ ∧ µ)
Π(µ)

(7)

A counterpart of Spohn’s (µ, α)-conditionalization was suggested in [20] in possi-
bility theory such that if new evidence suggests that Π′(µ) = 1 and Π′(¬µ) = 1 − α
(which implies N ′(µ) = α), then the belief change can take the following form

Π′(w) =

{
Π(w|µ) for w |= µ
(1− α)Π(w|¬µ) for w ̸|= µ

(8)

This simple revision operator can be easily generalized to a more complex situation
which is a counterpart of Jeffrey’s Rule and Spohn’s general conditionalization. For-
mally, let Π be a prior epistemic state which is a possibility measure (Π can be seen as
defined on W and extended to 2W by f = max), and let F = {µ1, · · · , µn} be a par-
tition of W , the partial epistemic state for new evidence is defined as Π′F (µi) = αi,
1 ≤ i ≤ n with max1≤i≤nαi = 1.

Hence an epistemic revision operator ◦′p in possibility theory can be constructed by
a generalization of Equation (8) as follows

(Π ◦′p Π′F )(w)
def
= αi

Π(w)

Π(µi)
for w |= µi. (9)

19



The following theorem shows that the above revision operator for possibility revi-
sion satisfies our postulates.

Theorem 7 The revision operator ◦′p defined in Equation (9) satisfies postulates ER1-
ER4 and ER4*.

7 Comparison with Logic-based Iterated Belief/Epistemic
Revision

In this section, we compare our framework with other logic-based (iterated) belief revi-
sion frameworks. To do so, we need to ensure that each epistemic state has a non-empty
belief set, hence we exclude epistemic states with empty belief sets.

Definition 11 Let ΦF be a partial epistemic state and µ be any propositional formula
that is a disjunction of some formulae in F . ΦF is said to satisfy the Maximality
property iff ΦF satisfies ΦF (W ) = ⊤, and ΦF (µ) = ⊤ iff ∃ϕ ∈ F , ϕ ⊢ µ, ΦF (ϕ) =
⊤.

Particularly, if Ψ is a full epistemic state and µ is any propositional formula, Ψ satis-
fies the Maximality property iff it satisfies Ψ(W ) = ⊤, and Ψ(µ) = ⊤ iff ∃w |= µ,
Ψ(w) = ⊤. For instance, OCF and possibility measures satisfy the Maximality prop-
erty.

In this section, if there is no other specification, we always take the Maximality
property as a default assumption.

Now we can define the belief set of an epistemic state as follows.

Definition 12 Let ΦF be a partial epistemic state which satisfies property Maximality,
then its belief set Bel(ΦF ) is defined as

Bel(ΦF ) = {µ : ΦF (µ) = ⊤} (10)

In other words, the belief set of an epistemic state (with property Maximality) is the set
of propositions with a plausibility value ⊤. An alternative but not equivalent, weaker
definition of belief set is Bel(ΦF ) = {µ : ΦF (µ) > ΦF (¬µ)}. In the following,
we only concentrate on epistemic states with non-empty belief sets. We can prove that
the definition of entailment on epistemic states generalizes the classical definition of
entailment on beliefs of epistemic states.

Proposition 3 Let ΦF1 and ΨF2 be two epistemic states, if ΦF1 |= ΨF2 , then∨
Bel(ΦF1) ⊢

∨
Bel(ΨF2).

This proposition shows that our postulate ER2 is truly an extension of the success
postulate of KM postulates [34].
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7.1 DP’s Iterated Belief Revision
In this subsection, we aim to compare our framework with Darwiche and Pearl’s iter-
ated belief revision framework [14]. We show that only half of the DP postulates (C1
and C2) are covered by our framework.

For convenience, we use ∆Fµ to denote a partial epistemic state such that its
corresponding partition Fµ is Fµ = {µ,¬µ}, and the values are ∆Fµ(µ) = ⊤,
∆Fµ(¬µ) ≺D ⊤ (∆Fµ(¬µ) can be any value in D other than ⊤). Hence we have
Bel(∆Fµ) = {µ}. In the following, we use ∆Fµ to encode new evidence where in
logic-based revision frameworks, e.g., [14], etc, new evidence is simply represented as
a single formula µ.

In addition, we use notation Γµ to denote a partial epistemic state such that its
partition FΓµ = {µ,¬µ} and Γµ(µ) = ⊤, Γµ(¬µ) = ⊥. Note that Γ is different from
the notation ∆. Based on Γ, we have the following definition.

Definition 13 Let w1, w2 be two possible worlds of W , ◦ be an epistemic revision
operator satisfying all the ER postulates, and Φ be a full epistemic state. We define
w1 ≤Φ w2 if (Φ ◦ Γform(w1,w2))(w1) = ⊤9. Also, w1 <Φ w2 iff w1 ≤Φ w2 and
w2 ̸≤Φ w1, and w1 =Φ w2 iff w1 ≤Φ w2 and w2 ≤Φ w1.

Conventionally, we just write ≤Φ instead of writing ≤◦,Φ.
w1 ≤Φ w2 shows thatw1 is more plausible thanw2 in epistemic state Φ. Intuitively,

if some wis are the “most likely”, i.e., Φ(wi) = ⊤, then we should expect that for any
wj , wi ≤Φ wj . This is verified by the following proposition.

Proposition 4 Let Φ be a full epistemic state, if Φ(w1) = ⊤, then w1 ≤Φ w2 for any
w2 ∈W .

Proposition 5 Let Φ be a full epistemic state, then ≤Φ defined based on Definition 13
is a total pre-order.

The following definition of faithful assignment is a counterpart of that in [34].

Definition 14 Let W be the set of all possible worlds and E be the set of all full epis-
temic states. A function that maps from each full epistemic state Φ in E to a total
pre-order ≤Φ on W is called a faithful assignment if and only if:

1. If Φ(w1) = Φ(w2) = ⊤, then w1 =Φ w2.

2. If Φ(w1) = ⊤ and Φ(w2) ̸= ⊤, then w1 <Φ w2.

3. If Φ ≃ Ψ, then ≤Φ=≤Ψ where Ψ ∈ E is also a full epistemic state and Φ ≃ Ψ
means that ∀w ∈W , Φ(w) = Ψ(w).

The following proposition shows that our Definition 13 from Φ to ≤Φ is a faithful
assignment.

9This definition is more general than the definition that w1 ≤Φ w2 iff Φ(w2) ≼D Φ(w1). And this
definition is sufficient for our purpose to compare with DP’s postulates. Furthermore, this definition is still
valid when ≼D is not a total pre-order. Also note that this definition is intuitively similar to the one defined
in [34].
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Proposition 6 The mapping from each full epistemic state Φ to ≤Φ based on Definition
13 is faithful.

Theorem 8 Let Φ be a full epistemic state, µ be a propositional formula and ◦ be an
epistemic revision operator, if ◦ satisfies postulates ER1-ER3 and ER4*, then we have

Mod(Bel(Φ ◦∆Fµ)) = min(Mod(µ),≤Φ), and

C1* If α ⊢ µ, then Bel(Φ ◦∆Fµ ◦∆Fα) = Bel(Φ ◦∆Fα).

C2* If α ⊢ ¬µ, then Bel(Φ ◦∆Fµ ◦∆Fα) = Bel(Φ ◦∆Fα).

This theorem shows that the belief set from epistemic revision on an epistemic state Φ
with ∆Fµ is equal to the belief set from belief revision on Φ with formula µ. It also
reveals that our revision postulates imply DP’s iterated belief revision postulates C1
and C2. Furthermore, this theorem, together with Proposition 5 and Proposition 6, also
conclude that our postulates (ER1-ER3, ER4*) indeed imply R1-R6 when epistemic
states have belief sets.

In general our postulates do not induce C3 and C4. In the epistemic states settings,
C3 and C4 can be re-written as follows.

C3* (Φ ◦∆α)(µ) = ⊤, then (Φ ◦∆µ ◦∆α)(µ) = ⊤.

C4* (Φ ◦∆α)(¬µ) ̸= ⊤, then (Φ ◦∆µ ◦∆α)(¬µ) ̸= ⊤.

Example 8 A father believes that his child X is clever(c) (i.e. as X usually gets high
marks in exams) and very honest(h) (so he thinks X gets high marks not by cheating).
His epistemic state at that time can be described by an ordinal conditional function κ
such that κ(c, h) = 0, κ(¬c, h) = 3, κ(c,¬h) = 10 and κ(¬c,¬h) = 15. Now some
event made the father realized that the child told a little lie, still he believes that his
child is largely honest but his belief in the child’s dishonesty increased. This leads to a
new kappa function κ′(h) = 0 and κ′(¬h) = 2. Then he revised his original epistemic
state to κ′(c, h) = 0, κ′(¬c, h) = 3, κ′(c,¬h) = 2 and κ′(¬c,¬h) = 7.

Let µ = h, ∆µ be such that ∆µ(µ) = 0 and ∆µ(¬µ) = 2, w1 = {¬c, h}, w2 =
{c,¬h}, α = form(w1, w2) and ∆α be such that ∆α(α) = 0 and ∆α(¬α) = 2.
Then we can easily check that (κ ◦∆α)(µ) = ⊤ and (κ ◦∆α)(¬µ) ̸= ⊤, but we have
(Φ ◦ ∆µ ◦ ∆α)(µ) ̸= ⊤ and (Φ ◦ ∆µ ◦ ∆α)(¬µ) = ⊤ which contradict to C3* and
C4*, respectively.

The revision in the above example is in fact an extension of classical revision in
the sense that the propositional part of new information is consistent with the prior
state10 but the strengths on some propositions are different. This is a natural exten-
sion, at least not surprising, as a revision is to revise the prior information with new
information in the sense that new information is inconsistent with the prior informa-
tion. In a belief revision setting, information is only represented as a formula, hence

10This situation is also considered in the non-prioritized revision in [22] which gives the following pos-
tulate. Let A and K both be a set of sentences, if A ⊆ K, and K ̸|= ⊥, then K ◦ A = K. In [59], this
situation is named “reconstructing” in an OCF setting.
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the inconsistency appears in the form of logical inconsistency of formulae. While in an
epistemic revision setting, information is a formula plus its epistemic firmness, hence
the inconsistency can also appear as that the same formula having different epistemic
firmness, and therefore, needs a revision. This is also suggested in [9] that one might
revise one’s epistemic commitments without thereby revising one’s beliefs. Our frame-
work can encode this kind of revision but DP framework does not accept this. In this
kind of revision, postulates C3 and C4 do not hold.

7.2 Three Kinds of Iterated Revision Strategies
In [24], a review of belief change literature is presented, among which three well-
known revision strategies are mentioned, i.e., the conservative revision, moderate revi-
sion and radical revision.

In [8], natural revision, or conservative revision is proposed that after revision, only
the rank of the most plausible worlds of the evidence is changed to most plausible in
the revised beliefs. That is, let ◦N be the natural revision operator, Φ be the initial
state, µ be the evidence, w1, w2 be any of the most plausible world of µ, i.e., w1, w2 ∈
min(Mod(mu),≤Φ), and w′

1, w
′
2 be any other worlds, then natural revision can be

described by the following revised plausibility orderings:

w1 =Φ◦Nµ w2, w1 <Φ◦Nµ w
′
1, and w

′
1 ≤Φ◦Nµ w

′
2 iff w′

1 ≤Φ w
′
2.

It is not difficult to see from Example 8 that our framework does not extend natural
revision.

In [50, 51], revision of epistemic entrenchment is proposed which in fact revises
a full epistemic state by a full epistemic state in a lexicographic way. Epistemic en-
trenchment considers a kind of partial preorder based strength, but it still cannot express
strengths in a general manner. Lexicographic revision is also called moderate revision.
In moderate revision, we usually consider the Recalcitrance (Rec) postulate [51] and
Independence (Ind) postulate [5, 33] as follows:

Rec If α ̸⊢ ¬µ, then (Φ ◦ µ) ◦ α ⊢ µ.

Ind If Φ ◦ ¬α ̸⊢ ¬µ, then (Φ ◦ µ) ◦ ¬α ⊢ µ.

We can also prove that these two postulates do not hold when epistemic revision
is reduced to belief revision. Note that from the semantics, it is easy to see that Rec
implies Ind which implies C3 and C4. Hence it is natural that in Example 8, the same
settings of Φ, α and µ also show that postulates Rec and Ind do not hold.

It is interesting to investigate further why postulates C3, C4, Rec, and Ind do not
hold. We believe that the problem is rooted from postulate R*2. Postulate R*2 says
that if the new information µ is consistent with the prior belief Bel(Φ) of the prior
epistemic state Φ, then the belief set of revised epistemic state is the conjunction of
the belief set of prior state and the new information (i.e., µ ∧ Bel(Φ), the consistent
part). Note that R*2 simply ignores the inconsistent part (i.e., µ ∧ ¬Bel(Φ) and ¬µ ∧
Bel(Φ)). In a belief revision situation, this ignorance does not affect the revision result
as the result only contains the consistent part. However, in our epistemic revision
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situation, as we want to get a full epistemic state after revision (hence the revision
result should consider both the consistent and the inconsistent part), this ignorance
should be properly handled. Example 8 shows that the belief set is not changed, but the
firmness of other formulae are weakened. R*2 cannot distinguish these two situations,
so C3, C4, Rec, and Ind are all failed here.

However, it is worth pointing out that the above investigation does not against it-
erated revision axioms in belief revision, since in belief revision, the belief set is the
main set that axioms are designed for. But in epistemic revision, not only the belief set
but also the revision strategy need to be considered too. Therefore, it is expected that
some axioms for belief revision will not be suitable for epistemic revision.

Let ◦L be the lexicographic revision operator, it is not difficult to show the follow-
ing results.

Proposition 7 Let Φ be the initial state, µ be the evidence, then we have Φ ◦N µ ≡
Φ ◦L min(Mod(µ),≤Φ).

The last one, radical revision, or irrevocable revision, is in fact conditioning. A
radical revision on evidence µ can be translated in our epistemic revision framework
as revision on evidence Γµ which is defined in Section 7.1, before Definition 13.

7.3 Revising Full Epistemic States by Full Epistemic States
A set of axioms (i.e., REE*1-REE*4, REE*It) for characterizing iterated revision of
full epistemic states (total pre-orders) by full epistemic states was presented in [4] as
follows.

REE*1 Φ ◦Ψ |= Ψ
REE*2 If Φ ∧Ψ is consistent, then Φ ◦Ψ ≡ Φ ∧Ψ
REE*3 If Ψ is consistent, then Φ ◦Ψ is consistent
REE*4 If Ψ1 ≡ Ψ2, then Φ ◦Ψ1 ≡ Φ ◦Ψ2

REE*It (Φ ◦Θ) ◦ Γ ≡ Φ ◦ (Θ ◦ Γ)

Similarly, here an epistemic state Φ embedded in a formula stands for Bel(Φ).
The following result presents the relationship between the REE Axioms and our

postulates.

Proposition 8 A revision operator ◦ satisfying REE*1-4 and REE*It also satisfies
ER1-2 and ER4*.

ER3 is not mentioned in the above proposition since it is not interpretable (e.g., Φ(µ),
etc) in the settings of [4]. In addition, the converse is false. This is not surprising since
the framework of [4] leads to a unique solution.

7.4 Iterated Conditional Revision
In [35], conditional preservation for belief revision is studied through the link of Ram-
sey Test [54]. This paper introduces an algebraic structure A = (A ,≤A ,⊕,⊙, 0A , 1A )

24



(readers can refer to [35] for details) which is a nice morphism to probabilistic alge-
bra. They also introduced a notion conditional valuation function enforcing algebraic
properties on A which makes A almost the full morphism to probabilistic algebra.
Based on this algebraic structure, in [35], epistemic states are defined as logic formu-
lae equipped with conditional valuation functions, and then iterated conditional belief
revision is axiomatized and investigated, showing that, with proper definitions, all the
DP postulates (adapted in a conditional form) can be recovered. It is not so surprising
since the algebraic structure defined in [35] is more specific than the definition of epis-
temic state in our paper. However, this also suggests that the framework in [35] may
be too strict as recovering all the DP postulates implies rejecting Example 8 in Section
7.1 where our framework allows. Nevertheless, the algebraic structure is a good hint
on developing future extensions of our framework to yield a unique solution for belief
revision.

7.5 Two-dimensional Belief Revision
In [10, 25, 57, 56], two kinds of two-dimensional belief revision, revision by com-
parison and bounded revision, are introduced. Unlike our epistemic states approach
which is largely quantitatively, the two-dimensional revision lies between quantitative
and qualitative approaches in that they do not use numbers and still able to specify the
extent or degree to which a new piece of information is to be accepted [57]. But since
two-dimensional revision only imposes a constraint on the acceptance degree of new
information and another given formula, it does not have the same expressive power as
our epistemic states revision does, although it is better than that of traditional belief
revision.

7.6 Revision on possibility functions
[3] studies revision on possibility functions and proposes five axioms for the revision
process. Let Π be the prior possibility function, F = {µ1, · · · , µn} be a partition
of W , ΠI be the possibility function defined over 2F such that ΠI(µi) = λi with
maxiλi = 1, ◦P be any revision operator on possibility functions and Π′ = Π ◦P ΠI
be the possibility function after revision, then the five axioms are listed as follows:

A1: Consistency Π′ is a possibility function
A2: Priority to Input ∀µi,Π′(µi) = λi
A3: Faithfulness ∀w,w′ |= µi, if Π(w) ≥ Π(w′), then Π′(w) ≥ Π′(w′)
A4: Inertia ∀µi, if Π(µi) = λi, then ∀w |= µi, Π′(w) = Π(w)
A5: Impossibility Preservation If Π(w) = 0, then Π′(w) = 0

According to [3], A1 means that the revised state is consistent, A2 is the success pos-
tulate, A3 says the new function keeps the previous relative order between models of
each µi, A4 illustrates that means that when the partial epistemic state is in agreement
with prior possibility levels of µi, then revision does not affect models of µi, and A5
restricts that impossible worlds remains impossible after revision. These axioms are
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basic principles a revision strategy on possibility functions should satisfy. However,
they do not lead to a unique solution for revision.

We can see that the revision operator defined in Section 6.2 satisfies all the axioms.

7.7 Probabilistic Revision using Counterfactual Probabilistic Func-
tions

In [40], belief revision using counterfactual probabilistic functions, or Popper func-
tions, is proposed. In this approach, each probability function is attached with a unique
Popper function which determines the revised probability function. In [7], this ap-
proach is extended to revision by probabilistic ordinal conditional functions, which is
also associated with corresponding Popper functions. However, in [7], it shows that
this Popper function approach has an unattractive feature that the relationship between
a Popper function and its revision can be arbitrary. In addition, in both papers, it is the
ranks of possible worlds (determined by a simple plausibility ordering, or an pre-given
OCF), rather than the strengths (i.e., the probability values), that play a role in revision.

7.8 Other research works on belief revision
Apart from the research works addressed above, there are still a lot of other papers
proposing alternative belief revision models that are relevant or partially relevant to our
revision framework. In [11], it proposes a way to deal with contradicting information
by considering a support ordering on that information. In [23], a framework of belief
revision is proposed where the epistemic input is a pair < A, i > where A is a set
of sentences and i represents the layer of the stratified belief base to be revised. In
some sense, the layer of the stratified belief base to be revised can be seen as the set of
beliefs (with the same strength) to be affected by the revision process. In [16], revision
postulates are verified in situations that new evidence (a formula) is accepted only when
its certainty degree exceeds some confidence level c, and it shows that in this case,
many revision postulates do not hold. In [43], a revision framework is investigated
where the revision result is determined by the strength of information instead of the
arrival order, and shows that it actually leads to a merging operator.

8 Conclusion
Jeffrey’s rule is a well-known and important rule that guides the probability kinematics.
It can also be seen as a revision strategy for probability measures. Due to its importance
in revision and practical usage, OCF and possibility measures, etc, have introduced its
counterparts to serve as their revision strategies. But since these counterparts are all
for particular kinds of epistemic states, an investigation of extending Jeffrey’s rule to
generalized epistemic states is desirable.

In this paper, we have proposed a general definition of epistemic states and studied
its revision strategy where new, uncertain evidence is represented as a partial epistemic
state. We introduced a formal definition of epistemic state which can cover a variety

26



of definitions of epistemic states in the literature. A set of epistemic revision postu-
lates and their corresponding representation theorems were then provided from which
we can recover several well-known revision strategies including Jeffrey’s probabilistic
kinematics and the revision of full epistemic states by full epistemic states. A compar-
ison with logic-based belief revision frameworks was also presented.

When reducing to the belief revision situation by Darwiche and Pearl (where new
evidence is a propositional formula and each epistemic state has a belief set), our pos-
tulates subsume two of the DP’s postulates while other remaining postulates are not
suitable for iterated epistemic revision.

The underlying assumption of belief revision is that the most recent evidence has
the highest priority. This assumption has its drawbacks. Darwiche and Pearl realized
this issue and concluded that a natural way to resolve this is to allow the outcome of
belief change depends on the strength of evidence triggering the change. In the Future
work section [14], they briefly discussed an idea of using multiple revision operators
◦m instead of a single revision operator, where ◦m means revising an epistemic state
with evidence having strength m. However, how to design such operators and how to
manage a sequence of revision operators ◦m1 , ◦m2 , ..., ◦mn remain to be investigated.

The assumption of giving priority to the most recent evidence is also questioned in
[15]. To get around this assumption, iterated revision is taken as a prioritized merging
where a set of evidence is prioritized according to their reliabilities rather than the time
points these pieces of evidence arrive. The revised (or the merged) result is a consistent
belief set such that when a more reliable piece of evidence is inconsistent with a less
reliable piece of evidence, then the reliable evidence should be preserved in the belief
set.

A minor drawback with the method in [15] is that it should preserve all the previous
pieces of evidence to form a prioritized observable base before merging. But usually
(or from a limited memory perspective) revision is only based on current state and
recent evidence. In [42], a belief change framework is proposed to deal with the belief
revision on epistemic states that the uncertain input is not surely accepted which does
not need to record all the previous pieces of evidence.

In the literature, the success postulate, i.e., giving new information primacy, is also
violated by non-prioritized belief revision operators11 (cf. [31, 24] for an overview).
However, usually strength does not play a role in non-prioritized belief revision. Also,
non-prioritized revision is more closely to fusion than revision. Let K be the initial
state and µ be the evidence, a simple example of non-prioritized revision gives K ◦
µ∨ µ ◦K where ◦ is an ordinary revision operator. The difference between fusion and
non-prioritized revision is largely the starting point.

For our future work, we will investigate belief expansion and contraction in our
epistemic framework. Furthermore, study on revising a partial epistemic state with a
partial epistemic state with some additional constraints (e.g., maximum-entropy) is also
an interesting topic. Finally, postulational approaches to belief revision are criticized
in [53] that belief revision operators defined in these approaches are in fact ill-defined,
and belief revision hence should be better studied with an independently motivated
epistemological theory. We are interested in whether this conclusion still holds on our

11In fact, it is the definition of non-prioritized revision [24].
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epistemic revision.
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Appendix
Proof of Proposition 1: From ER2, we have Φ ◦ Φ |= Φ. From ER1, we have

Φ ◦ Φ is a full epistemic state. From Definition 7, it is easy to see that the only full
epistemic state that entails Φ is Φ itself. Hence we have Φ ◦ Φ = Φ.

Proof of Proposition 2: By Proposition 1, we know Φ ◦ Φ = Φ. Therefore, by
setting Φ and Φ′ to Φ, ΨF to ΨF , Ψ′F ′

to Φ, µ and µ′ to µ, and ψ and ψ′ to ϕ in ER3,
we immediately get (Φ ◦ΨF )(ϕ) = (Φ ◦ Φ)(ϕ) = Φ(ϕ).

Proof of Theorem 3: The proof is similar to the one in [34] and [14]. (⇒) Suppose
there is a revision operator ◦ satisfying postulates ER1-ER4. ∀µ ∈ F , (Φ◦ΨF )(µ) =
ΨF (µ) is ensured by ER1.

For any x, y ∈ D s.t., x ≼D y, as D is strict, we have ∃Φ, A,B s.t., A ⊆ B,
Φ(A) = x and Φ(B) = y. Let Mod(A) = ϕ1 and Mod(B) = ϕ2 (hence ϕ1 ⊢ ϕ2),

we rewrite Φ(ϕ1) = x and Φ(ϕ2) = y, then we define x⊖y def= (Φ◦Γϕ2)(ϕ1) (see the
definition of Γ in Section 7.1). Later we will show that this definition is independent
of Φ, ϕ1, ϕ2.

As Γϕ2 is a partial epistemic state (since ϕ2 is satisfiable), from ER2, Φ ◦ Γϕ2 is a
full epistemic state, so our definition holds.

Now first we prove that for any ΨF s.t. ϕ2 ∈ F , we have (Φ ◦ Γϕ2)(ϕ1) =
(Φ ◦ΨF ◦ Γϕ2)(ϕ1).

From the Minimality property, we get that Γϕ2 is equal to an epistemic state ΘF

such that ΘF (ϕ2) = ⊤ and ∀ψ ∈ F , ψ ̸= ϕ2, ΘF (ψ) = ⊥. Hence by ER4, we
immediately know that (Φ ◦ Γϕ2)(ϕ1) = (Φ ◦ΨF ◦ Γϕ2)(ϕ1) does hold.

Then we prove that ⊖ is independent of Φ, ϕ1 and ϕ2. It suffices to prove that
∀Φ,Ψ, ∀ϕ1 ⊢ ϕ2, ψ1 ⊢ ψ2, if Φ(ϕ1) = Ψ(ψ1) and Φ(ϕ2) = Ψ(ψ2), then Φ(ϕ1) ⊖
Φ(ϕ2) = Ψ(ψ1)⊖Ψ(ψ2), or (Φ ◦ Γϕ2)(ϕ1) = (Ψ ◦ Γψ2)(ψ1).

From ER1, (Φ ◦ Γϕ2)(ϕ2) = ⊤ = (Ψ ◦ Γψ2)(ψ2), then by setting Φ to Φ, Φ′

to Ψ, ΨF to Γϕ2 , Ψ′F ′
to Γψ2 , µ to ϕ2, µ′ to ψ2, ψ to ϕ1 and ψ′ to ψ1 in ER3, we

immediately know that (Φ ◦ Γϕ2)(ϕ1) = (Ψ ◦ Γψ2)(ψ1). Thus Φ(ϕ1) ⊖ Φ(ϕ2) =
Ψ(ψ1)⊖Ψ(ψ2) which implies ⊖ is independent of Φ, A,B.

Now we prove that ⊖ is retentive. Suppose Φ and Ψ are two epistemic states,
and ϕ1, ϕ2, ψ1, ψ2 are propositions s.t. ϕ1 ⊢ ϕ2, ψ1 ⊢ ψ2. Then we need to show
if Φ(ϕ2) = Ψ(ψ2) and Φ(ϕ1) ⊖ Φ(ϕ2) = Ψ(ψ1) ⊖ Ψ(ψ2) (i.e., (Φ ◦ Γϕ2)(ϕ1) =
(Ψ ◦ Γψ2)(ψ1)), it should be Φ(ϕ1) = Ψ(ψ1).

As (Φ ◦ Γϕ2)(ϕ2) = (Ψ ◦ Γψ2)(ψ2) = ⊤, by setting Φ to Φ, Φ′ to Ψ, ΨF to
Γϕ2 , Ψ′F ′

to Γψ2 , µ to ϕ2, µ′ to ψ2, ψ to ϕ1 and ψ′ to ψ1 in ER3, we really get
Φ(ϕ1) = Ψ(ψ1).

Finally we show that ∀ϕ ⊢ µ, (Φ ◦ΨF )(ϕ)⊖ (Φ ◦ΨF )(µ) = Φ(ϕ)⊖ Φ(µ).
In fact, we have (Φ◦ΨF )(ϕ)⊖(Φ◦ΨF )(µ) = (Φ◦ΨF◦Γµ)(ϕ) and Φ(ϕ)⊖Φ(µ) =

(Φ ◦ Γµ)(ϕ), and notice that we have already proved Φ ◦ ΨF ◦ Γµ = Φ ◦ Γµ in the
above.

(⇐) Suppose there is a retentive operator ⊖ defined for any x ≼D y on D which
satisfies (Φ ◦ΨF )(ϕ)⊖ (Φ ◦ΨF )(µ) = Φ(ϕ)⊖ Φ(µ) for ϕ ⊢ µ ∈ F .

(ER1) Φ ◦ΨF |= ΨF .
Follows immediately from ∀µ ∈ F , (Φ ◦ ΨF )(µ) = ΨF (µ) and the ex-
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tension function f .
(ER2) If Φ is a full epistemic state and ΨF is a partial epistemic state, then Φ◦ΨF

is a full epistemic state.
Let ϕj ∈ µ be a formula such that Mod(ϕj) = {wj}, then from (Φ ◦

ΨF )(ϕj)⊖ (Φ ◦ΨF )(µ) = Φ(ϕj)⊖Φ(µ) and ⊖ is retentive, we have (Φ ◦ΨF )(ϕj)
is well defined. Thus Φ ◦ΨF is a full epistemic state.

(ER3) For any µ ∈ F , and µ′ ∈ F ′, if Φ(µ) = Φ′(µ′) and ΨF (µ) = Ψ′F ′
(µ′),

then for ψ ⊢ µ and ψ′ ⊢ µ′, (Φ ◦ΨF )(ψ) = (Φ′ ◦Ψ′F ′
)(ψ′) iff Φ(ψ) = Φ′(ψ′).

From ER1 and ΨF (µ) = Ψ′F ′
(µ′), we know that (Φ ◦ ΨF )(µ) = (Φ′ ◦

Ψ′F ′
)(µ′). Then we have:

1. If (Φ ◦ΨF )(ψ) = (Φ′ ◦Ψ′F ′
)(ψ′), then we get

Φ(ψ)⊖ Φ(µ) = (Φ ◦ΨF )(ψ)⊖ (Φ ◦ΨF )(µ)

= (Φ′ ◦Ψ′F ′
)(ψ′)⊖ (Φ′ ◦Ψ′F ′

)(µ′)

= Φ′(ψ′)⊖ Φ′(µ′).

Now as ⊖ is retentive and Φ(µ) = Φ′(µ′), we obtain Φ(ψ) = Φ′(ψ′).

2. If Φ(ϕ) = Φ′(ϕ′), then similarly, it is easy to show that (Φ ◦ ΨF )(ψ) = (Φ′ ◦
Ψ′F ′

)(ψ′).

(ER4) Φ ◦ΨF ◦ΘF = Φ ◦ΘF .
First we prove that ∀ϕ ⊢ µ ∈ F , (Φ ◦ ΨF ◦ ΘF )(ϕ) = (Φ ◦ ΘF )(ϕ).

From ER1, we have (Φ ◦ ΨF ◦ ΘF )(µ) = ΘF (µ) = (Φ ◦ ΘF )(µ), hence as ⊖
is retentive, it is equal to prove that (Φ ◦ ΨF ◦ ΘF )(ϕ) ⊖ (Φ ◦ ΨF ◦ ΘF )(µ) =
(Φ ◦ΘF )(ϕ)⊖ (Φ ◦ΘF )(µ).

As (Φ ◦ΨF ◦ΘF )(ϕ)⊖ (Φ ◦ΨF ◦ΘF )(µ) = (Φ ◦ΨF )(ϕ)⊖ (Φ ◦ΨF )(µ) =
Φ(ϕ) ⊖ Φ(µ) and (Φ ◦ ΘF )(ϕ) ⊖ (Φ ◦ ΘF )(µ) = Φ(ϕ) ⊖ Φ(µ), we easily get that
they are equivalent.

For an arbitrary ϕ, without loss of generality, suppose F = {µ1, · · · , µn}, we have
ϕ = ϕ ∧ (µ1 ∨ · · · ∨ µn) = (ϕ ∧ µ1) ∨ · · · (ϕ ∧ µn), as ∀i, 1 ≤ i ≤ n, ϕ ∧ µi ⊢ µi,
we know that (Φ ◦ ΨF ◦ ΘF )(ϕ ∧ µi) = (Φ ◦ ΘF )(ϕ ∧ µi), thus according to the
extension function f , we get (Φ ◦ΨF ◦ΘF )(ϕ) = (Φ ◦ΘF )(ϕ).

Proof of Theorem 4: (⇒) As ER4* is a stronger version of ER4, from Theorem
3, we immediately get a retentive operator ⊖ as defined in the proof of Theorem 3. The
remain problem is to show that ⊖ is conductive.

Suppose Φ and Ψ are two epistemic states, and ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3 are proposi-
tions s.t. ϕ1 ⊢ ϕ2 ⊢ ϕ3, ψ1 ⊢ ψ2 ⊢ ψ3. We need to show if Φ(ϕ1)⊖Φ(ϕ3) = Ψ(ψ1)⊖
Ψ(ψ3), and Φ(ϕ2)⊖Φ(ϕ3) = Ψ(ψ2)⊖Ψ(ψ3), then Φ(ϕ1)⊖Φ(ϕ2) = Ψ(ψ1)⊖Ψ(ψ2).

From the definition of ⊖ in the proof of Theorem 3, we just need to prove that if
(Φ ◦ Γϕ3)(ϕ1) = (Ψ ◦ Γψ3)(ψ1), and (Φ ◦ Γϕ3)(ϕ2) = (Ψ ◦ Γψ3)(ψ2), then (Φ ◦
Γϕ2)(ϕ1) = (Ψ ◦ Γψ2)(ψ1).

From the Minimality property, we get Γϕ2 = ΘF ′
such that F ′ = {ϕ2, ϕ3 ∧

¬ϕ2,¬ϕ3} and ΘF ′
(ϕ2) = ⊤, ΘF ′

(ϕ3 ∧ ¬ϕ2) = ⊥ and ΘF ′
(¬ϕ3) = ⊥. While

for Γϕ3 , the corresponding FΓϕ3 = {ϕ3,¬ϕ3}, hence it is easy to check that F ′ is a
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refinement of Fϕ3
, therefore, from ER4*, we have (Φ ◦ Γϕ3 ◦ Γϕ2) = (Φ ◦ Γϕ2). And

similarly (Ψ ◦ Γψ3 ◦ Γψ2) = (Ψ ◦ Γψ2).
Thus as (Φ ◦ Γϕ3)(ϕ1) = (Ψ ◦ Γψ3)(ψ1), and (Φ ◦ Γϕ3)(ϕ2) = (Ψ ◦ Γψ3)(ψ2),

and (Φ ◦ Γϕ3 ◦ Γϕ2)(ϕ2) = ⊤ = (Ψ ◦ Γψ3 ◦ Γψ2)(ψ2), by setting Φ to Φ ◦ Γϕ3 , Φ′ to
Ψ◦Γψ3 , ΨF to Γϕ2 , Ψ′F ′

to Γψ2 , µ to ϕ2, µ′ to ψ2, ψ to ϕ1 and ψ′ to ψ1 in ER3, we get
(Φ◦Γϕ3 ◦Γϕ2)(ϕ1) = (Ψ◦Γψ3 ◦Γψ2)(ψ1). Therefore from (Φ◦Γϕ3 ◦Γϕ2) = (Φ◦Γϕ2)
and (Ψ ◦ Γψ3 ◦ Γψ2) = (Ψ ◦ Γψ2), we have (Φ ◦ Γϕ2)(ϕ1) = (Ψ ◦ Γψ2)(ψ1).

(⇐) The proofs of ER1-ER3 are already done in the proof of Theorem 3. We just
need to show ER4* holds.

(ER4*) Φ ◦ΨF ◦ΘF ′
= Φ ◦ΘF ′

where F ′ is a refinement of F .
We still only need to show that ∀ϕ ∈ F ′ and any ψ ⊢ ϕ, (Φ ◦ ΨF ◦

ΘF ′
)(ψ) = (Φ ◦ ΘF ′

)(ψ), for arbitrary ψ, the same proof can be found in the proof
of Theorem 3 for ER4 using equivalent instantiation.

From ER1, for any ϕ ∈ F ′, (Φ ◦ ΨF ◦ ΘF ′
)(ϕ) = ΘF ′

(ϕ) = (Φ ◦ ΘF ′
)(ϕ),

then as ⊖ is retentive, it suffices to show (Φ ◦ΨF ◦ΘF ′
)(ψ)⊖ (Φ ◦ΨF ◦ΘF ′

)(ϕ) =
(Φ◦ΘF ′

)(ψ)⊖(Φ◦ΘF ′
)(ϕ). As (Φ◦ΘF ′

)(ψ)⊖(Φ◦ΘF ′
)(ϕ) = Φ(ψ)⊖Φ(ϕ) and (Φ◦

ΨF ◦ΘF ′
)(ψ)⊖(Φ◦ΨF ◦ΘF ′

)(ϕ) = (Φ◦ΨF )(ψ)⊖(Φ◦ΨF )(ϕ). It is equal to show
(Φ◦ΨF )(ψ)⊖(Φ◦ΨF )(ϕ) = Φ(ψ)⊖Φ(ϕ). From the definition of refinement in Def.
1, let ϕ ⊢ µ ∈ F , then we have ψ ⊢ µ and it leads to (Φ ◦ΨF )(ψ)⊖ (Φ ◦ΨF )(µ) =
Φ(ψ) ⊖ Φ(µ). And ϕ ⊢ µ leads to (Φ ◦ ΨF )(ϕ) ⊖ (Φ ◦ ΨF )(µ) = Φ(ϕ) ⊖ Φ(µ).
Therefore as ⊖ is conductive, we have (Φ ◦ΨF )(ψ)⊖ (Φ ◦ΨF )(ϕ) = Φ(ψ)⊖Φ(ϕ)
which completes the proof.

Proof of Theorem 5: According to Theorem 3 and Theorem 4, we only need to
prove that there exists a retentive and conductive operator ⊖ such that P (w)⊖P (µi) =
(P • PF )(w)⊖ (P • PF )(µi) if w |= µi. Let ⊖ = /, the proof is straightforward.

Proof of Theorem 6: Similar to the proof of Theorem 5, except that ⊖ = −.
Proof of Theorem 7: Similar to the proof of Theorem 5 and omitted.
Proof of Proposition 3: As ΦF1 |= ΨF2 , we have for any µ ∈ F2, s.t., ΨF2(µ) =

⊤, it should be ΦF1(µ) = ⊤, hence from the Maximality property, we get ∃ϕ ∈
F1, ϕ ⊢ µ, s.t., ΦF1(ϕ) = ⊤. Conversely, for any ϕ ∈ F1, ΦF1(ϕ) = ⊤, as F1 is a
refinement of F2, we have ∃µ ∈ F2, s.t., ϕ ⊢ µ (hence ΦF1(µ) = ⊤) and ΨF2(µ) =
ΦF1(µ) = ⊤. Therefore, let Bel(ΨF2) =

∨n
i=1 µi, Bel(Φ

F1) should be in the form
of

∨n
i=1

∨ki
j=1 ϕij such that ϕij ⊢ µi, hence we have Bel(ΦF1) ⊢ Bel(ΨF2).

Proof of Proposition 4: As Φ(w1) = ⊤, we get Φ(form(w1, w2)) = ⊤ by the
Maximality property. Hence by Proposition 2, we get (Φ ◦ Γform(w1,w2))(w1) = ⊤,
therefore w1 ≤Φ w2.

Proof of Proposition 5: We prove that ≤Φ is total, reflexive and transitive. This
proof is to some extent similar to the one in [34] and [14].

1. total: ∀w1, w2, as Γform(w1,w2) is a partial epistemic state, from ER2, Φ ◦
Γform(w1,w2) is a full epistemic state. Then from ER1,
(Φ ◦ Γform(w1,w2))(form(w1, w2)) = ⊤. So from the Maximality property, it
should be (Φ◦Γform(w1,w2))(w1) = ⊤ or (Φ◦Γform(w1,w2))(w2) = ⊤. There-
fore, from Proposition 4, we have either w1 ≤Φ w2 or w2 ≤Φ w1 which means
≤Φ is total.
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2. Reflexive: ∀w, by ER1 and ER2, it is easy to get (Φ ◦ Γform(w))(w) = ⊤.
Therefore, from Proposition 4, we have w ≤Φ w and ≤Φ is reflexive.

3. Transitive: Suppose w1 ≤Φ w2 and w2 ≤Φ w3. We need to show w1 ≤Φ w3.

We consider the following two cases.

(a) (Φ ◦ Γform(w1,w2,w3))(w3) = ⊤.
As (Φ ◦Γform(w1,w2,w3))(w3) = ⊤, from the Maximality property, we get
(Φ ◦ Γform(w1,w2,w3))(form(w2, w3)) = ⊤ = Γform(w2,w3)(form(w2, w3)),
then from Proposition 2, we get
(Φ ◦ Γform(w1,w2,w3) ◦ Γform(w2,w3))(w3)
= (Φ ◦ Γform(w1,w2,w3))(w3) = ⊤.
From the Minimality property, the partition for Γform(w2,w3) can be seen
as a refinement of the one for Γform(w1,w2,w3), thus from ER4*, we know
that Φ ◦ Γform(w1,w2,w3) ◦ Γform(w2,w3) = Φ ◦ Γform(w2,w3). Therefore,
we get
(Φ ◦ Γform(w2,w3))(w3) = ⊤.
As w2 ≤Φ w3, we have (Φ◦Γform(w2,w3))(w2) = ⊤. From ER4*, we get
(Φ ◦ Γform(w1,w2,w3) ◦ Γform(w2,w3))(w2)
= (Φ ◦ Γform(w1,w2,w3))(w2) = ⊤.
By setting Φ and Φ′ to Φ, µ and µ′ to form(w1, w2), ΨF and Ψ′F ′

to
Γform(w1,w2,w3) and ψ to w2, ψ′ to w3 in ER3, we get
(Φ ◦ Γform(w1,w2,w3))(w2) = (Φ ◦ Γform(w1,w2,w3))(w3) = ⊤.
A similar process on w1 and w2 also induces that
(Φ ◦ Γform(w1,w2,w3))(w1) = ⊤.
By setting Φ and Φ′ to Φ ◦ Γform(w1,w2,w3), µ and µ′ to form(w1, w3),
ΨF and Ψ′F ′

to Γform(w1,w3) and ψ to w1, ψ′ to w3 in ER3, we get
(Φ ◦ Γform(w1,w2,w3) ◦ Γform(w1,w3))(w1)
= (Φ ◦ Γform(w1,w2,w3) ◦ Γform(w1,w2,w3))(w3).
From ER4*, we hence obtain
(Φ ◦ Γform(w1,w3))(w1) = (Φ ◦ Γform(w1,w3))(w3).
However, from ER1, it should be
(Φ ◦ Γform(w1,w3))(form(w1, w3)) = ⊤.
Therefore from the Maximality property, we should have
(Φ ◦ Γform(w1,w3))(w1) = (Φ ◦ Γform(w1,w3))(w3) = ⊤.
Therefore w1 ≤Φ w3 does hold.

(b) (Φ ◦ Γform(w1,w2,w3))(w3) ̸= ⊤.
From w1 ≤Φ w2, we have (Φ ◦ Γform(w1,w2))(w1) = ⊤. Since
(Φ ◦ Γform(w1,w2,w3))(form(w1, w2, w3)) = ⊤
and
(Φ ◦ Γform(w1,w2,w3))(w3) ̸= ⊤,
from the Maximality property, we can easily get
(Φ ◦ Γform(w1,w2,w3))(form(w1, w2)) = ⊤, then from Proposition 2, we
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get (Φ◦Γform(w1,w2,w3)◦Γform(w1,w2))(w1) = (Φ◦Γform(w1,w2,w3))(w1).
As ER4* gives Φ ◦ Γform(w1,w2,w3) ◦ Γform(w1,w2) = Φ ◦ Γform(w1,w2),
we get
(Φ ◦ Γform(w1,w2,w3))(w1) = (Φ ◦ Γform(w1,w2))(w1) = ⊤.
Then from the Maximality property, we have
(Φ ◦ Γform(w1,w2,w3))(form(w1, w3)) = ⊤.
From Proposition 2, we have
(Φ ◦ Γform(w1,w2,w3) ◦ Γform(w1,w3))(w1)
= (Φ ◦ Γform(w1,w2,w3))(w1) = ⊤.
Therefore from ER4*, we get (Φ ◦ Γform(w1,w3))(w1) = ⊤. It shows that
w1 ≤Φ w3 which completes the proof.

Proof of Proposition 6:

1. Φ(w1) = Φ(w2) = ⊤ only if w1 =Φ w2.
Follows immediately from Proposition 4.

2. Φ(w1) = ⊤ and Φ(w2) ̸= ⊤ only if w1 <Φ w2.
From Proposition 4 and Φ(w1) = ⊤, we know w1 ≤Φ w2.

From the Maximality property, we get Φ(form(w1, w2)) = ⊤. Then from
Proposition 2, we obtain (Φ◦Γform(w1,w2))(w2) = Φ(w2) ̸= ⊤. So w2 ̸≤Φ w1.
Therefore w1 <Φ w2.

3. Φ ≃ Ψ only if ≤Φ=≤Ψ.
Follows immediately from the definition of ≤Φ and ≤Ψ and ER3.

Proof of Theorem 8:

1. Bel(Φ ◦∆µ) ⊆ min(Mods(µ),≤Φ).
Suppose (Φ ◦ ∆µ)(w) = ⊤, from ER1, we know that (Φ ◦ ∆µ)(µ) = ⊤ and
(Φ ◦∆µ)(¬µ) ≺D ⊤, thus from the Maximality property, it should be w |= µ.
For ∀w′ |= µ, from the Maximality property, we get (Φ ◦∆µ)(form(w,w′)) =
⊤ = Γform(w,w′)(form(w,w′)). Hence from Proposition 2, we obtain (Φ ◦
∆µ ◦ Γform(w,w′))(w) = (Φ ◦∆µ)(w) = ⊤. But from the Minimality property
and form(w,w′) ⊢ µ, we know that the partition for Γform(w,w′) can be seen as
a refinement of the one for ∆µ, thus from ER4*, we get Φ◦∆µ ◦Γform(w,w′) =
Φ ◦ Γform(w,w′). So finally we get (Φ ◦ Γform(w,w′))(w) = ⊤, thus from the
definition of ≤Φ, we get w ≤Φ w

′. Therefore w ∈ min(Mods(µ),≤Φ).

2. min(Mods(µ),≤Φ) ⊆ Bel(Φ ◦∆µ).
Suppose w ∈ min(Mods(µ),≤Φ), and (Φ ◦ ∆µ)(w) ≺D ⊤. We will prove a
contradiction. From ER1, (Φ◦∆µ)(µ) = ⊤, then from the Maximality property,
there exists a w′ such that w′ |= µ and (Φ ◦∆µ)(w′) = ⊤. From the Maximality
property, we get (Φ◦∆µ)(form(w,w′)) = ⊤. Then from ER4* and Proposition
2, we obtain (Φ ◦ Γform(w,w′))(w′) = (Φ ◦ ∆µ ◦ Γform(w,w′))(w′) = (Φ ◦
∆µ)(w′) = ⊤, and (Φ ◦ Γform(w,w′))(w) = (Φ ◦∆µ ◦ Γform(w,w′))(w)
= (Φ ◦∆µ)(w) ≺D ⊤,

thus w′ <Φ w which contradicts to w ∈ min(Mods(µ),≤Φ).
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C1* If α ⊢ µ, then Bel(Φ ◦∆µ ◦∆α) = Bel(Φ ◦∆α).
We need to show that for any w, if Φ ◦∆µ ◦∆α(w) = ⊤, then Φ ◦∆α(w) = ⊤,
and vice versa.
First, assume Φ ◦∆µ ◦∆α(w) = ⊤, as Φ ◦∆µ ◦∆α |= ∆α, we get Φ ◦∆µ ◦
∆α(α) = ⊤ and Φ◦∆µ◦∆α(¬α) ̸= ⊤, then we havew |= α ⊢ µ. Hence for any
w′ |= α ⊢ µ, we have w ≤Φ◦∆µ◦∆α w′. From CR1*, we have w ≤Φ◦∆µ w′,
and again from CR1*, we have w ≤Φ w′. Finally, from CR1* again, we get
w ≤Φ◦∆α w′, as Φ ◦∆α(α) = ⊤, we should have Φ ◦∆α(w) = ⊤. Conversely,
if Φ ◦∆α(w) = ⊤, we can similarly prove that Φ ◦∆µ ◦∆α(w) = ⊤.

C2* If α ⊢ ¬µ, then Bel(Φ ◦∆µ ◦∆α) = Bel(Φ ◦∆α).
The proof is similar to the above except that we should refer to CR2*.

Proof of Proposition 7: It is straightforward and omitted.
Proof of Proposition 8: From REE*1, REE*3 and REE*It, it is straightforward to

see that ◦ must follow ER1, ER2 and ER4*, respectively.
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