
The Role of Peptidyl Prolyl Isomerases in Aging and Vascular
Diseases

McClements, L., Annett, S., Yakkundi, A., & Robson, T. (2015). The Role of Peptidyl Prolyl Isomerases in Aging
and Vascular Diseases. Current Molecular Pharmacology, 8(2), 165-179. DOI:
10.2174/1874467208666150519115729

Published in:
Current Molecular Pharmacology

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
The published manuscript is available at EurekaSelect via
http://www.eurekaselect.com/openurl/content.php?genre=article&doi=10.2174/1874467208666150519115729#sthash.qB2bL7It.dpuf

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen's University Research Portal

https://core.ac.uk/display/33584604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/the-role-of-peptidyl-prolyl-isomerases-in-aging-and-vascular-diseases(69375cc1-14cf-4a6a-a8f5-c75f747ff60e).html


Queen's University Belfast - Research Portal

The Role of Peptidyl Prolyl Isomerases in Aging and Vascular
Diseases

McClements, L., Annett, S., Yakkundi, A., & Robson, T. (2015). The Role of Peptidyl Prolyl Isomerases in Aging
and Vascular Diseases. Current Molecular Pharmacology, 8. 10.2174/1874467208666150519115729

Published in:
Current Molecular Pharmacology

Document Version:
Author final version (often known as postprint)

Link:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2015 Bentham Science

EMBARGO -12 months

The published manuscript is available at EurekaSelect via http://www.eurekaselect.com/openurl/content.php?genre=article&doi=[insert
DOI].”

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:10. Feb. 2016

http://pure.qub.ac.uk/portal/en/publications/the-role-of-peptidyl-prolyl-isomerases-in-aging-and-vascular-diseases(69375cc1-14cf-4a6a-a8f5-c75f747ff60e).html


1 
 

The Role of Peptidyl Prolyl Isomerases in Aging and Vascular Diseases 

Lana McClements, Stephanie Annett, Anita Yakkundi and Tracy Robson* 

 

School of Pharmacy, Queen’s University Belfast, United Kingdom 

 

*Corresponding Author: Tracy Robson, Professor, School of Pharmacy, Queen’s University 

Belfast, 97 Lisburn Road, Belfast, UK, BT9 7BL. Phone: +44/02890972360. Fax: 

+44/02890247794. Email: t.robson@qub.ac.uk 

 

 

 

 

 

 

 

 

 

 

 



2 
 

Abstract 

Peptidyl prolyl isomerases (PPIases) are proteins belonging to the immunophilin family and 

are characterised by their cis-trans isomerization activity at the X-Pro peptide bond, in addition 

to their tetratricopeptide repeat (TPR) domain, important for interaction with the molecular 

chaperone, Hsp90. Due to this unique structure these proteins are able to facilitate protein-

protein interactions which can impact significantly on a range of cellular processes such as cell 

signalling, differentiation, cell cycle progression, metabolic activity and apoptosis. 

Malfunction and/or dysregulation of most members of this class of proteins promotes cellular 

damage and tissue/organ failure, predisposing to ageing and age-related diseases. Many 

individual genes within the PPIase family are associated with several age-related diseases 

including cardiovascular diseases (CVDs), atherosclerosis, type II diabetes (T2D), chronic 

kidney disease (CDK), neurodegeneration, cancer and age-related macular degeneration 

(AMD), in addition to the ageing process itself. This review will focus on the different roles of 

PPIases, and their therapeutic/biomarker potential in these age-related vascular diseases. 

 

Keywords: PPIases, FKBPs, CypA, Pin1, aging, age-related diseases, vascular 

 

Introduction 

With an increase in life expectancy, the biggest challenge facing healthcare organisations is the 

management of age-related diseases. Age is the most strongly associated risk factor for diseases 

such as CVDs, cancer, T2D, CKD, neurodegenerative diseases, AMD and atherosclerosis1. 

Therefore finding a way of slowing down aging and delaying or preventing these age-related 
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diseases will lead to longer life expectancy, healthy aging, and a better quality of life, thus 

reducing the financial burden on healthcare systems. 

 

Twin studies have shown that for cohorts born about 100 years ago, approximately 25% of the 

variation in population lifespan is determined by genetic differences and that the genetic 

influence on lifespan and age-related diseases in particular, becomes relevant in those people 

who survive to 60 years2. There have been major successes in the identification of new genetic 

variants involved in important age-related disorders including: cancer (in particular, prostate, 

breast and colon3–5; CVDs6,7 and CKD8. However, many of these genetic variants, individually 

or combined, explain only a small component of the heritability of each disease. This modest 

contribution does not match with the high recurrence risks of age-related disorders in families. 

This apparent paradox may in part be explained by the contribution of low frequency variants, 

unrecognized single nucleotide polymorphism (SNP) epistasis, gene-environment interactions 

and epigenetic and gene expression changes. Epigenetic data is particularly valuable to help 

interpret genome wide association studies (GWAS) by adding biological/mechanistic 

information9,10. One of the major challenges over the next few decades will be to unravel the 

interactions between genetic variants and environmental factors. GWAS have shown that SNPs 

linked to multiple diseases are generally clustered on chromosome 6, in particular the Major 

Histocompatibility (MHC) locus within 6p21, in addition to the INK4/ARF (CDKN2a/b) 

tumour suppressor locus on chromosome 9p21.3. These SNPs accounted for almost a third of 

all the diseases analysed by GWAS11.  

 

Aberrantly activated pathways in aging identified by association studies using long-lived 

cohorts include the insulin/insulin growth factor-1 (IGF-1), antioxidant, inflammatory, sirtuin, 

lipid metabolism, stress resistance and the mammalian target of rapamycin (mTOR) 
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pathways12–18. The main targets of the insulin and IGF-1 pathway are the FOXO transcription 

factors which have important roles in stress resistance, immunity and metabolism19,20. The 

sirtuin and mTOR pathways are nutrient-sensing pathways and these pathways are linked to 

longevity (high sirtuin and low mTOR levels) because of their ability to mediate the effects of 

nutrients and insulin. Since the mTOR pathway is a strongly implicated pathway, it represents 

a viable target for prevention of aging and age-related disease. Peptidyl prolyl isomerases 

(PPIases) also known as immunophillins, are a family of proteins that bind to rapamycin-

mTOR complexes and regulate the mTOR signaling pathway. These proteins therefore play a 

significant role in aging and age-related diseases21. Therefore, the focus of this review will be 

on the role of PPIase in aging and age-related diseases: CVDs, T2D, CKD, ND, AMD and 

cancer. 

PPIases  

The PPIase family are important determinants of ageing and disease. Many individual genes 

within the PPIase family are associated with several age-related diseases, in addition to the 

ageing process itself. Peptidyl prolyl isomerases (PPIases) are proteins belonging to the 

immunophilin family and are characterised by their cis-trans isomerization activity at the X-

Pro peptide bond. The term immunophilin is derived from the ability of these proteins to bind 

immunosupressive drugs; cyclophilins (18 members, 17 genes) bind to cyclosporine A and 

FKBPs (FK506 binding proteins; 17 members, 17 genes) bind to the macrolide, FK506. A third 

subfamily, parvulins (3 members, 2 genes), contain the PPIase domain but do not bind 

immunosuppressive drugs22. Immunosuppression is generally associated with the smaller 

PPIase-complexes and the larger PPIases lack this effect but they contain the tetratricopeptide 

repeat (TPR) domain facilitating protein-protein interactions, significantly impacting many 

essential cellular processes. Therefore, aberrant function of these proteins can lead to tissue 

damage and predisposition to aging and age-related disease 23,24. 
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Aging  

Aging, in terms of endothelial system changes, encompasses molecular and functional 

modifications such as shortening of telomeres, structurally and functionally altered endothelial 

cells, increased levels of vasoconstrictive, pro-inflammatory, proliferative and pro-coagulatory 

substances, reduced nitric oxide (NO) bioactivity and apoptosis25. These processes lead to an 

increase in blood pressure, a reduction in the glomerular filtration rate, atherosclerosis and 

therefore to age-related diseases. 

 

More recently, cellular senescence and changes in immune system surveillance have been 

identified as being the most significant processes in aging due to their ability to activate pro-

inflammatory pathways26–28. Other aberrant aging processes include protein aggregation, DNA 

damage, mitochondrial damage and accumulation of reactive oxygen species (ROS; Figure 1). 

More recently, research has focused on the role of aging stem cells on age-related diseases and 

the aging process itself. Due to their long lifespan, stem cells are more prone to cellular damage 

as they accumulate ROS, damaged proteins, DNA damage, epigenetic alterations and 

mitochondrial dysfunction29. All of these aberrant changes can lead to stem cell apoptosis, 

senescence, dysfunction and thus the inability of stem cells to orchestrate tissue regeneration 

and proliferation.  

 

The role of PPIases in aging 

The role of many individual PPIases in ageing has been studied. PPIases play a significant role 

by binding to and regulating the mTOR signalling pathway which has very well characterised 

roles in ageing and age-related diseases21. Furthermore, other PPIases such as CypA expression 

increases with ageing30–32 and suppression of CypB induces cellular senescence33 and its 



6 
 

expression decreases in ageing rats34. Likewise, CypC35,36; CypD37–39; CypJ40 have all 

demonstrated significant roles in animal models of ageing. FKBPL, a divergent member of the 

FKBP group of immunophilins, resides on the gene loci, 6p21.3 which is within a significant 

peak of age-related disease association11. Furthermore, it controls the levels of Sirt1 

(unpublished data from our lab), a direct regulator of aging41. Importantly, Pin1 has the 

strongest link to ageing and is indeed a critical regulator of aging; Pin1-/- mice develop 

normally but show pronounced and premature aging, with reduced body size and bone density 

as well as atrophy of the skin, testis and breast42. Pin1 appears to control ageing by telomere 

shortening, via TRF1 phosphorylation and stability43, and also regulates senescence, via the 

p53-BTG2 pathway44. 

 

Cardiovascular diseases 

CVDs are the most common of all age-related diseases and are the leading cause of death in 

people over the age of sixty five45. Because the aging process leads to an overproduction of 

pro-inflammatory, pro-coagulatory, vasoconstrictive and other related factors, it can lead to 

brittle heart walls, leaky/thickened heart valves and deterioration in the heart muscle, leading 

to poorer ability to pump blood efficiently around the body46. Therefore, these changes together 

with the age-related changes in the endothelial system mentioned above, can lead to 

atherosclerosis, angina, atrial fibrillation and orthotropic hypertension, potentially causing 

myocardial infarction and stroke47. The key signalling pathways associated with CVDs include 

the insulin and IGF-1, sirtuin and mTOR pathways. The IGF-1 pathway appears to have a 

protective mechanism against atherosclerosis in humans whereas in mice it led to an increase 

in life span48,49. The role of the sirtuin pathway in CVD is unclear due to a lack of consistency 

in the published data to suggest a strong role for this pathway in the development of CVDs; 
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further research is therefore required50. On the other hand, the inhibition of the mTOR pathway, 

has demonstrated a role in longevity51; rapamycin can alleviate cardiac hypertrophy, T2D, 

adipogenesis and lipogenesis as such has a vital role in aging and CVDs47,52. Furthermore, the 

AMPK (AMP-protein activated kinase) signalling pathway, which negatively regulates mTOR, 

is also involved in CVDs; aberrant expression of AMPK in simple organisms, mice and humans 

has been implicated CVDs and aging53–55. 

 

The role of PPIases in CVDs 

FKBP12, a cytoplasmic FKBP, has a well-established interaction with the ryanodine receptor, 

RyRs, resulting in stabilisation of this channel. FKBP12 knockdown results in the opening of 

the RyRs channel and augments calcium release into a wide range of tissues56,57. Therefore, 

FKBP12 and FKBP12.6 have an important role in cardiac regulation and deficiency of these 

proteins contributes to the pathogenesis of hypertension. In murine models, FKBP12 knockout 

(KO) resulted in cardiac defects and altered ryanodine receptor function58–61. Therefore the 

treatment with FK506 and rapamycin may contribute to vascular dysfunction and hypertension 

by induced intracellular leakage of calcium ions in endothelial cells56,62. A novel antiarrhythmic 

compound, K201 (JTV– 519), which binds to FKBP12.6, thus stabilising RyRs channels and 

decreasing spontaneous calcium release, is currently in clinical trials63.  

 

The most abundant member of the cyclophilin family, CypA, is excreted exogenously in 

response to inflammatory stimuli and able to increase ROS formation in endothelial cells, 

macrophages and vascular smooth muscle cells64–67. Therefore, CypA is a critical regulator of 

CVDs. In terms of vascular remodeling, CypA KO mice had significantly less thickened 

arteries when compared to the wild type (WT) mice and therefore are less likely to developed 
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cardiac/vascular hypertrophy or myocardial ischaemia which can lead to myocardial injury68–

70. CypA’s involvement in ROS generation and cardiac fibroblast proliferation and migration, 

renders it responsible for the development of cardiac hypertrophy, the basis of most of the 

CVDs70,71. Interestingly serum levels of CypA were significantly higher in patients with acute 

coronary syndrome (ACS) when compared to healthy patients or patients with stable angina 

and the levels also correlated with the severity of ACS, potentially suggesting a role for CypA 

as a biomarker to predict the severity of ACS72. Furthermore, CypA has a well-established role 

in atherosclerosis and the mechanisms involve an increase in the uptake of low-density 

lipoproteins by the vessel wall due to CypA-mediated overexpression of the scavenger 

receptors, pro-inflammatory and endothelial cell activation of vascular cell adhesion molecule-

1 (VCAM-1) and a decrease of the endothelial nitric oxide synthase32  

Another cyclophilin with a role in CVDs is CypD. Interestingly, it has a cytoprotective role 

during ischaemia-reperfusion injury as a regulator of the mitochondrial permeability transition 

pore (mPTP) complex formation73,74. 

 

Finally, Pin1, the most extensively researched member of the parvulins subgroup (Pin1-3), has 

a significant role in cardiac hypertrophy. The loss of Pin1 attenuates cardiac hypertrophic 

responses following severe vasoconstriction by binding to Akt, mitogen activated protein 

kinase (MEK) and Raf-1; all essential components of the cardiac hypertrophy75. 

 

Type II diabetes 

T2D is an age-associated disease, more specifically related to accelerated aging. Most T2D 

patients are between the age of 65 and 7476. T2D is more prevalent in men within this age group 

and its incidence decreases above 75 years of age77. The pathophysiology of T2D is very 
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closely linked to the dysfunction of pancreatic islet β-cells in addition to insulin resistance78. 

The pancreatic β-cells appear to lose their proliferative, secretory and regenerative function as 

part of aging, mainly due to cellular senescence79. Furthermore, the proliferative and apoptotic 

ability of the pancreatic β-cells seem to be the most apparent change in aging, obese and 

diabetic patients. These cells are also able to adjust their proliferative activity in metabolic 

distress e.g. in metabolic syndrome, by increasing their self-renewal capacity to manage the 

increasing demand for glucose utilisation79. Interestingly, the pancreatic β-cells display similar 

characteristics to stem cells such as low proliferative profile and a very long lifespan80. The 

proliferative and regenerative capacity of β-cells might be diminished with age as a result of 

accumulation of DNA damage during their long lifespan or it could be that these cells undergo 

senescence or apoptosis as a result of age-mediated shortening of the telomeres and/or 

activation of p53 and/or p16INK4A 81,82. 

 

Aberrant molecular mechanisms involved in the induction of cellular senescence of the 

pancreatic β-cells include telomere shortening, cycle-dependent kinase inhibition by p53 and 

p16INK4A, which are also tumour suppressor genes83. Other pathways involved in the 

dysfunction of the pancreatic β-cells include the mTOR, sirtuin and IGF-1 pathways, also 

strongly associated with aging and other age-related diseases84. Furthermore, the negative 

regulator of the mTOR pathway, AMPK, has also been significantly implicated in the 

metabolic disorders and T2D; aberrant expression of AMPK in both mice and humans leads to 

insulin resistance54. 
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The role of PPIases in T2D 

The role of PPIases in T2D is still in its infancy however some interesting data has been 

recently reported to suggest important role for this group of proteins in T2D. For example, 

FKBP51 SNPs were found to be associated with T2D phenotypes in large population studies 

85. Also, the change in FKBP51 gene expression was demonstrated in response to stress and 

diet therefore indicating a correlation between FKBP51 levels and higher food intake. 

Similarly, in mice, FKBP51 KO demonstrated a leaner phenotype when compared to the WT 

mice86. Furthermore, in conjunction with insulin resistance markers, FKBP51, as a steroid 

hormone responsive and regulatory gene, demonstrated an increase in the expression, following 

dexamethasone exposure85.  

 

Moreover, CypA has a role in T2D and vascular complications of T2D due to its pro-

inflammatory role; patients with T2D were reported to have lower levels of CypA in high 

glucose-primed monocytes but high plasma levels of CypA when compared to healthy 

volunteers therefore suggesting a role for CypA as a biomarker of inflammation in T2D 

patients87. Moreover the role of the PPIase, FKBPL, in the regulation of vascular/angiogenic 

functions implicates their potential in T2D-mediated vascular abnormalities (Yakkundi et al, 

unpublished data). 

 

Chronic Kidney Disease  

CKD is a leading cause of morbidity and mortality. Epidemiological studies demonstrated 

around 13% prevalence worldwide88,89. CKD arises from complete progressive destruction of 

nephrons resulting in the intact nephrons having to manage an increased load8,90. Despite 

research efforts, the pathophysiology of CKD is still not fully understood, although vascular, 
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glomerular and tubular events are implicated in the disease91,92. Furthermore, podocytes or 

visceral epithelial cells within the Bowman’s capsule have a role in preventing protein escape 

into the urine and therefore the loss of podocytes has been associated with the development of 

diabetic neuropathy93,94. Aberrant mTOR activation is associated with this process and its 

inhibition by drugs such as rapamycin may be of a potential clinical benefit93,95. Similarly, the 

mTOR pathway is involved in aldosterone mediated signalling through the mineralocorticoid 

receptor within renal tubular epithelial cells of distal nephrons; important for the regulation of 

fluid homeostasis96,97. The activation of the mineralocorticoid receptor and its target genes 

including some of the PPIases, has been linked to tissue inflammation and fibrosis leading to 

CKD98–100. 

The role of PPIases in CKD 

In relation to CKD, FKBP12 exhibits an inhibitory activity on calcium oxylate crystal 

deposition and may prevent nephrolithiasis101. Nephrolithiasis is often perceived as a relatively 

minor acute illness, but increasing evidence suggests that it can lead to CKD102–104. 

Furthermore, the pathogenesis of the condition shares overlapping features of many diseases 

of ageing such as hypertension, CVD and diabetes mellitus103,105,106. Recently, using a GWAS 

population analysis approach, FKBP51 has shown significant differences in DNA methylation 

in CKD patients107. Aldosterone plays a significant role in the development of CKD and 

evidence suggests that FKBP51 protein and mRNA expression are induced by aldosterone in 

the kidney and intestinal tissues108–110. On the other hand, CypA has a role in renal acidosis111, 

diabetic nephropathy112 and renal cell carcinoma113. Furthermore, Pin1 inhibition affects CKD 

associated with secondary parathyroidism114. 
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Neurodegeneration 

Neurodegeneration is the umbrella term for the progressive failure of neuronal networks 

leading to neuron death; many of these diseases share similarities at the sub-cellular level 115,116. 

Ageing is the main risk factor for development of these diseases and the accumulation of 

atypical proteins, abnormal tangles and network dysfunction are classic hallmarks of these 

diseases117.  

 

Protein aggregation is a well-known feature of these diseases; however, the role of this process 

is not fully understood. Post-mortem examination of deceased brains have revealed that 

amyloid plaques in Alzheimer’s disease and Lewy bodies in Parkinson’s disease can be present 

even in asymptomatic patients and the extent of plaques present does not correlate to the 

severity of the disease at the time of death118.  

 

Sustained activation of neuronal PI3K/Akt/mTOR signalling has been noted in early 

Alzheimer’s disease119. In the temporal lobes of Alzheimer’s patients, Akt activation leads to 

mTOR and tau phosphorylation and a decrease in cyclin-dependent kinase inhibitor 1120. 

Furthermore, the aberrant activation of the Akt pathway has been linked to disrupted clearance 

of Aβ and tau resulting in synaptic loss and cognitive decline119. Nevertheless, the cause of 

Alzheimer’s disease is still largely unknown however the most prevalent genetic risk factor is 

the presence of ε4 allele of the apolipoprotein E (APOE) and it is expressed in half of sporadic 

Alzheimer’s disease cases121,122.  

 

On the other hand, Parkinson’s disease is the second most common neurodegenerative disease 

after Alzheimer’s diseases. It is a degenerative disorder resulting from the death of the 
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dopamine producing cells in the substantia nigra (SN)123–125. Age-related mitochondrial 

dysfunction and alterations in protein degradation are more detrimental to the neurons in the 

SN than in any other regions of the brain126. The classic hallmark of this disease is the presence 

of the protein alpha synuclein which binds to ubiquitin in damaged cells forming oesinophilic 

cytoplasmic inclusions called Lewy bodies124,125,127. In Parkinson’s disease, the 

PI3K/Akt/mTOR pathway is dysregulated in a different manner than in Alzheimer’s disease. 

The dopaminergic neurons from Parkinson’s patients display downregulation of 

phosphorylated Akt and supressed mTOR signalling resulting in neuronal death128. 

Furthermore, rapamycin, the inhibitor of mTOR, has a neuroprotective effect by protecting 

phosphorylated Akt at a critical site for cell survival129. 

 

The role of PPIases in neurodegeneration 

Calcium dysregulation contributes to unhealthy brain aging by reducing neural excitability and 

impairing memory. Disruption of FKBP12 in the hippocampal neurons destabilised calcium 

and in vivo FKBP12 knockdown is associated with an upregulation of RyR2 and mTOR protein 

expression130. FKBP12 has been shown to bind to the intracellular domain of the amyloid 

precursor pathway and shift APP processing to the amyloidogenic pathway 131,132. Moreover, 

the FKBP12 gene expression is downregulated in the hippocampus of aging rats and in early 

stage Alzheimer’s patients133. When FK506 is used as an immunosuppressant agent, it appears 

to have neuroprotective effects134.  

 

FKBP38 is a well-known inhibitor of apoptosis through a reduction in mitochondrial Bcl-2 

135,136. Hsp90 can inhibit the apoptotic function of FKBP38 by interfering with the 

FKBP38/calmodulin/calcium complex which regulates the anti-apoptotic protein, Bcl-2137. 
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This property of FKBP38 protein has been exploited for the treatment of neurodegenerative 

diseases136,138.  

 

FKBP51’s PPIase activity has a role in microtubule stabilisation through Hsp90-mediated 

dephoshorylation of tau139,140. On the other hand, FKBP52 is ubiquitously expressed at high 

levels and has been associated with microtubule destabilisation and tubulin depolymerisation 

140–142. FKBP51/FKBP52 bound to heat shock proteins may have a role in neurodegeneration 

by modulating protein folding and aggregation23. FKBP51 siRNA knockdown reduced tau 

levels in HeLa cells and FKBP51 overexpression increased levels of tau139. In addition, 

knockdown of Hsp90 also reduced levels143. In contrast, FKBP52 overexpression 

downregulated tau protein levels and knockdown resulted in increased tau binding to 

microtubules, resulting in longer projections131,142. Cao and Konsolaki proposed that the 

opposing effects of FKBP51 and FKBP52 could be due to the differences in PPIase activity as 

tau contains a high percentage of proline residues131. Furthermore, FKBP52 is upregulated after 

injury in regenerating neurons and Alzheimer’s patients have a lower expression of FKBP52 

in the temporal lobe and hippocampus131. FKBP52 is involved in the regulation of intracellular 

copper and this may cause FKBP52 to have an effect on Aβ levels144–146. Furthermore, 

Conejero-Goldberg and colleagues demonstrated that FKBPL was one of the key genes 

differentially expressed in the brain tissue, where it appeared to act in a protective role, in 

young individuals at high risk of Alzheimers disease preselected by the APO4 signature147.  

 

The role of CypA in Alzheimer’s disease has also been reported, possibly due to its ability to 

activate pro-inflammatory pathways, NF-ĸB and MMP-9; these pathways in brain capillary 

pericytes regulate the release of neurotoxins. This whole process is initiated by APO4 within 

astrocytes148. CypD’s involvement in the mPTP complex has also found application in 
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Alzheimer’s disease due to recent reports which suggest that Aβ proteins influence mPTP 

formation when in a complex with CypD149. Conversely, the loss of Pin1 expression is 

correlated with Alzheimer’s disease and neurodegeneration due to Pin1’s important role in the 

stabilisation and regulation of tau and Aβ proteins42. Tau protein hyperphosphorylates in the 

absence of Pin1 leading to its dysfunction and inability to regulate microtubule stabilisation in 

the neurons150. 

 

Age-related macular degeneration 

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide and old 

age is the major risk factor with an incidence of 10% in individuals over 80 years of age151,152. 

It results from degeneration of the macular region of the retina, a central part of the retina and 

AMD susceptibility is increased by age, environmental (e.g. smoking) and genetic factors152,153. 

Many different genetic factors have been implicated in AMD including SNPs within some of 

the proteins involved in the mTOR pathway154. 

 

The role of PPIases in AMD 

In AMD GWAS the presence of SNPs on chromosome p6.21 in the FKBPL region was 

demonstrated therefore suggesting a potential role for FKBPL as an AMD susceptible gene155. 

This study was carried out using two cohorts of advanced AMD patients against matched 

controls to validate the findings and it also indicated Notch4 as a potential AMD susceptible 

gene. Our own lab has generated data to suggest that in addition to the well-established 

FKBPL’s regulatory role of the CD44 pathway, it is also involved in the regulation of the Notch 

pathway (unpublished data). 

Cancer 
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Cancer is defined as the development of ‘abnormal cells’ due to genetic and epigenetic changes 

in oncogenes and tumour suppressors156. These genetic changes can be inherited, acquired by 

various DNA damaging agents or certain types of viruses. There are a few theories of 

carcinogenesis nevertheless it is considered a multistep process involving genetic instabilities 

which drive normal cells to malignant, cancer cells. More recently, a subgroup of cancer cells, 

termed cancer stem cells (CSCs) or tumour initiating cells, have been characterised as a group 

of cells carrying the oncogenic and tumour suppressor mutated genes responsible for tumour 

initiation and progression157. 

Numerous cellular and intracellular pathways regulating tumourigenesis have been implicated 

in the development of cancer. A pathway readily activated as a result of a loss of the main 

tumour suppressor genes, p53 or PTEN, is PI3K-Akt survival pathway158. This pathway 

regulates the mTOR pathway and once the mTOR pathway is activated, negative feedback 

results in PI3K inhibition. Therefore when the mTOR pathway is inhibited by rapamycin, for 

example, the mutated or lost negative feedback loops, commonly present within cancer cells, 

activate the PI3K-Akt pathway instead of inhibiting it, thereby preventing the anti-proliferative 

effect of the mTOR pathway inhibition159,160. 

 

The role of PPIases in cancer 

The roles of PPIases in cancer have been studied extensively. Some members appear to have 

oncogenic activity whilst others behave as tumour suppressors. FKBP12 is overexpressed in 

benign and malignant endothelial-lined vasculature and as a natural ligand of TGF-β receptor 

I is subsequently involved in regulating cancer invasion161. Knockdown of FKBP12 results in 

the cell cycle arrest at the G1 phase by downregulation of TGF-β signalling162. Furthermore, 

FKBP12 activates TGF-β receptor I kinase thus triggering apoptosis by a mitochondrial 
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dependent pathway163. In addition, it is a regulator of H-Ras trafficking by promoting 

depalmitoylation through its PPIase activity164. Disruption of the interaction between FKBP12 

and calcineurin signalling leads to potent anti-angiogenic effects and tumour growth inhibition 

in breast cancer165.  

 

FKBP38 is capable of potentiating the biological function of Bcl-2 protein leading to 

tumourigenesis and chemoresistance136,166. Furthermore, Bcl–2 overexpression has been 

associated with the cancer stem cell phenotype and it may contribute to chemoresistance within 

these cells167. 

 

FKBP51 expression is hormone related and its overexpression has been associated with 

leukaemia, breast, prostate and brain tumours168,169. FKBP51 is a negative regulator of the Akt 

pathway and regulates cell response to chemotherapy170. Furthermore, FKBP51 regulates the 

NF-ĸB pathway which is implicated in apoptosis and radioresistance in melanoma cells171,172. 

More recently, the role of FKBP51 in stemness and metastasis in melanoma was demonstrated 

by Romano et al (2013), where FKBP51 was overexpressed and associated with tumour 

aggressiveness and treatment resistance by stimulation of the EMT process, migration and 

invasion via the TGF-β pathway173. Furthermore, androgens upregulate FKBP51 by initiating 

direct binding between FKBP51 and the androgen receptor (AR)174. In murine xenograft 

models it was demonstrated that FKBP51 is a direct regulator of cell growth and may have a 

role in the highly invasive androgen-independent type of prostate cancer174,175. The 

FKBP51/AR interaction is mediated by Hsp90, and Hsp90 inhibitors such as geldanamycin are 

currently in clinical trials in a variety of cancers176,177. In pancreatic cancer, FKBP51 acts as a 

scaffolding protein to the phosphatase PHLPP resulting in upregulation of the pro-survival Akt 

pathway and reducing sensitivity to the chemotherapy170. Conversely, in colorectal 
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adenocarcinoma, FKBP51 suppresses proliferation through its action on the glucocorticoid 

receptor178. 

 

Less is known about the role of FKBP52 in cancer, although its inhibition has been shown to 

block androgen receptor dependent gene expression and prostate cancer cell proliferation179. 

Moreover, FKBP52 is highly expressed in hormone-positive cancers such as oestrogen receptor 

positive (ER+) breast cancer; its expression in pre-invasive breast cancer was also much higher 

than the surrounding normal breast tissue speculating its role in breast cancer initiation180,181. 

FKBP52 is not a functional regulator of the oestrogen receptor but interestingly, it is 

upregulated in breast tumours and FKBP52 gene methylation only occurs in ER negative breast 

cancer cells182. Furthermore, FKBP52 auto-antibodies may be a useful biomarker for early 

diagnosis and monitoring of breast cancer183. 

 

FKBP65 is highly expressed in early benign lesions in the colon, compared to normal 

mucosa184. This suggests that FKBP65 may be involved in colorectal carcinogenesis and could 

be a novel colorectal biomarker183. FKBP65 is strongly expressed in normal and benign ovarian 

epithelium but a low expression in high grade serous carcinoma (HGSC) is probably due to 

frequent loss of chromosome 17 in HGSC185,186. This indicates a tumour suppressor function 

for FKBP65 in ovarian carcinomas.  

 

FKBPL has a well-established role in cancer and whilst most FKBPs are positive regulators of 

cancer growth, FKBPL, as a divergent member of this family, is not. FKBPL acts as a co-

chaperone protein in a complex with Hsp90 where it has a regulatory role in steroid receptor 

signalling (ER)187; (AR)188;  (GR)189. Due to this negative regulatory effect of the steroid 

receptors, overexpression of FKBPL demonstrated inhibition of cancer cell growth in ER+ 
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breast cancers187; in lymphoma this inhibitory effect was associated with a FKBPL, Hsp90 and 

p21 complex190. Furthermore, in ER+ breast cancer, high FKBPL levels improved the response 

to endocrine therapy such as tamoxifen and fulvestrant and sensitised cells to oestrogen 

deprivation and was also prognostic for survival187. Other relevant roles of endogenous FKBPL 

in a complex with Hsp90, p21 and GTSE-1 (G2 and S phase expressed protein 1) include, 

chemo- and radiosensitivity via regulation of the cell cycle protein, p21CIP1/WAF1, and a 

reduction in the DNA repair191,192. All of these FKBPL-related roles are associated with 

intracellular FKBPL however more recently, an extracellular role for FKBPL was identified. 

This extracellular role was associated with a potent anti-angiogenic and anti-CSC function 

which is initiated following binding of FKBPL to the CD44 cell surface receptor193–195. The 

region responsible for this interaction is the N-terminal region of FKBPL, which is unique and 

not homologous to other FKBPs. Based on this anti-angiogenic domain, a clinical candidate 

23-amino acid therapeutic peptide, ALM201, was designed in collaboration with Almac 

Discovery which will enter clinical trials this year196. Therefore, FKBPL as a divergent member 

of the FKBPs appears to be involved in similar biological processes in cancer to other FKBPs 

whilst exerting an opposite function as an anti-cancer or tumour suppressor protein.  

 

In cancer CypA is significantly upregulated and as such is involved in malignant 

transformation, tumour growth, invasion, metastasis and the inhibition of apoptosis197–200. This 

is not surprising considering CypA has a role in the stimulation of endothelial cell migration 

which is important for tumour growth and invasion69. Furthermore, CypA is transcriptionally 

regulated by p53 and hypoxia inducible factor-1α (HIF-1α) both factors commonly mutated in 

cancer201. CypA seems also responsible for paclitaxel-induced resistance in endometrial cancer 

and overexpression of CypA can reduce cisplatin and hypoxia-induced apoptosis202,203. On the 

other hand, CypA has also an important role in the cytokinesis where it relocalises from its 
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original position, in the centrosome, to the midbody; the loss of CypD leads to defective 

cytokinesis which can increase genomic instability associated with cancer204. Other members 

of the Cyp family group CypB, CypC and CypD in addition to CypA also appear to be 

upregulated at the transcriptional levels in various cancers201. CypB and CypC are associated 

with the ER and as such form various complexes with other oestrogen-related chaperones and 

CypB, in particular, protects cells from oestrogen receptor stress-induced death205,206. 

However, overexpression of CypB has been linked to tumour progression because it regulated 

various hormone receptors and their downstream targets207. Also, CypB could be a useful target 

for delivery of anti-cancer vaccines due to its two antigenic epitopes identifiable by the 

cytotoxic T-lymphocytes208. Moreover, Cyp40 mRNA levels were reported to be high in 

response to stress in breast and prostate cancer cell lines when compared to normal breast and 

prostate cell lines209. CypD, as mentioned above, is involved in mPTP complex formation and 

as such has a role in the resistance to mPTP-induced cancer cell death. This is mediated by 

other co-chaperone proteins such as Hsp90, TRAP and Hsp60 highly expressed in cancer cell 

mitochondria and their ability to inhibit CypD therefore disabling mPTP formation and its 

apoptotic effects210. Also, mitochondrial CypD knockdown is associated with STAT3 

activation which leads to an increase in cell proliferation, by accelerating entry into S-phase, 

and migration, via the chemokine network, CXCL12-CXCR4211. Both of these phenotypes are 

closely linked to cancer progression and metastasis. Furthermore, CypD-/- mice exhibit similar 

phenotype to Pin1-/- mice in terms of abnormalities observed in retina and breast development 

which could potentially lead to malignant transformations in these organs212,213. Also, 

transcriptional and posttranslational regulation of CypD by Pin1 was demonstrated in the more 

recent study therefore explaining the phenotypical similarities observed in CypD-/- and Pin1-/- 

mice213. 
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Pin1 has been researched extensively for its oncogenic role in cancer214. Pin1 is also important 

for tumourigenesis and for the regulation of CSCs via the Notch pathway215 . In fact, deletion 

of Pin1 in mice prevented oncogenic activation of Neu and Ha-Ras which abrogated breast 

cancer216. In p53-KO mice Pin1 deletion was able to completely abrogate tumour development 

but had adverse effects including thymic hyperplasia mediated via the Notch pathways217. 

Nevertheless, Pin1 does not affect the p53 tumour suppressor activity218. Other cancer-

associated processes that Pin1 affects include regulation of cell cycle, DNA damage, cell 

signaling, transcription and splicing219. In terms of cell-cycle regulation, Pin1 also has a role in 

cytokinesis by binding to the crucial centrosome protein, Cep55, which further explains its role 

in tumourigenesis220 

 

PPIases as targets to prevent ageing or to treat age-related diseases 

An advantage of characterising this gene family is that they are targetable and various drugs 

targeting these proteins have been reported, including FK506, sirolimus/rapamycin, 

cyclosporine, and tacrolimus22. Ligands of these proteins, although first approved as 

immunosuppressive agents, for the prevention of allograft rejection, are effective against age-

related diseases. Several FKBP-binding macrocyclic drugs, everolimus, zotarolimus and 

temsirolius are in phase III trials as targets for cell proliferation, immunosuppression and anti-

cancer effects23. Recent evidence has also identified rapamycin/sirolimus as being the first drug 

to extend lifespan in a range of species from yeast to mammals221,222, highlighting the potential 

for drug targeting within this gene family to alleviate the ageing process. Importantly, recent 

studies have also shown that FK506-binding proteins can modulate Akt-mTOR signalling in 

the absence of rapamycin21. 
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One of the problems associated with PPIase inhibitors however, is their off-target effects, 

particularly and not surprisingly, immunosuppression. However, more recently there has been 

a concerted effort to generate compounds that lack immunosuppressive activity, with various 

levels of success. Examples of such compounds include non-immunosuppressive analogues of 

cyclosporine A which may have applications in multiple therapeutic areas e.g. Alisporivir 

(Debio 025) and NIM811223,224. Similarly, the development of cell impermeable, non-

immunosuppressive analogues of cyclosporine A has permitted the inhibition of extracellular 

CypA in mouse models of inflammation225. Such drugs have huge potential in the treatment of 

ageing disease in which CypA is involved.  

 

The novel FKBPL-based therapeutic, ALM201, unlike other PPIases, appears to be protective 

of age-related diseases147,154,187,193,194,196; ALM201 is a peptide mimetic of FKBPL and could 

essentially correct a deficiency in FKBPL in a number of diseases. It has already completed 

preclinical evaluation for imminent phase I/II clinical trials in cancer patients196; our 

unpublished data also suggests that it has activity against a number of other inflammatory 

conditions.  

 

Conclusion 

In conclusion, there are many different significant roles of PPIases in age-related processes and 

diseases as indicated above (Table 1; Figure 2). Even though these proteins belong to the same 

family group, their roles are quite diverse and in some instances opposite. Therefore, it is of a 

paramount importance to elucidate the mechanisms involved in the interactive regulation of 

this gene family. This may allow the development of a genetic signature which could stratify 

patients with higher predisposition to unhealthy aging therefore enabling early treatment to 
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delay or prevent these age-related vascular diseases and their complications. Members of this 

family of proteins are therefore excellent targets for interventions as well as biomarkers of 

aging and age-related diseases. Because many of the PPIase family members are secreted226,227, 

monitoring them within ageing populations will be minimally invasive and therefore practical 

for routine clinical use or home test. 

 

 

 

 

 

 

 

 

 

 

 

 

References 

(1)  Blagosklonny, M. V. Aging: ROS or TOR. Cell Cycle 2008, 7, 3344–3354. 

(2)  Karasik, D.; Demissie, S.; Cupples, L. A.; Kiel, D. P. Disentangling the Genetic 
Determinants of Human Aging: Biological Age as an Alternative to the Use of Survival 
Measures. J. Gerontol. A. Biol. Sci. Med. Sci. 2005, 60, 574–587. 



24 
 

(3)  Yu, D.-H.; Waterland, R. A.; Zhang, P.; Schady, D.; Chen, M.-H.; Guan, Y.; Gadkari, 
M.; Shen, L. Targeted p16(Ink4a) Epimutation Causes Tumorigenesis and Reduces 
Survival in Mice. J. Clin. Invest. 2014, 124, 3708–3712. 

(4)  Hicks, C.; Koganti, T.; Giri, S.; Tekere, M.; Ramani, R.; Sitthi-Amorn, J.; Vijayakumar, 
S. Integrative Genomic Analysis for the Discovery of Biomarkers in Prostate Cancer. 
Biomark. Insights 2014, 9, 39–51. 

(5)  Whiffin, N.; Hosking, F. J.; Farrington, S. M.; Palles, C.; Dobbins, S. E.; Zgaga, L.; 
Lloyd, A.; Kinnersley, B.; Gorman, M.; Tenesa, A.; Broderick, P.; Wang, Y.; Barclay, 
E.; Hayward, C.; Martin, L.; Buchanan, D. D.; Win, A. K.; Hopper, J.; Jenkins, M.; 
Lindor, N. M.; Newcomb, P. A.; Gallinger, S.; Conti, D.; Schumacher, F.; Casey, G.; 
Liu, T.; Campbell, H.; Lindblom, A.; Houlston, R. S.; Tomlinson, I. P.; Dunlop, M. G. 
Identification of Susceptibility Loci for Colorectal Cancer in a Genome-Wide Meta-
Analysis. Hum. Mol. Genet. 2014, 23, 4729–4737. 

(6)  Marti-Soler, H.; Gubelmann, C.; Aeschbacher, S.; Alves, L.; Bobak, M.; Bongard, V.; 
Clays, E.; de Gaetano, G.; Di Castelnuovo, A.; Elosua, R.; Ferrieres, J.; Guessous, I.; 
Igland, J.; Jørgensen, T.; Nikitin, Y.; O’Doherty, M. G.; Palmieri, L.; Ramos, R.; 
Simons, J.; Sulo, G.; Vanuzzo, D.; Vila, J.; Barros, H.; Borglykke, A.; Conen, D.; De 
Bacquer, D.; Donfrancesco, C.; Gaspoz, J.-M.; Giampaoli, S.; Giles, G. G.; Iacoviello, 
L.; Kee, F.; Kubinova, R.; Malyutina, S.; Marrugat, J.; Prescott, E.; Ruidavets, J. B.; 
Scragg, R.; Simons, L. A.; Tamosiunas, A.; Tell, G. S.; Vollenweider, P.; Marques-
Vidal, P. Seasonality of Cardiovascular Risk Factors: An Analysis Including over 230	
000 Participants in 15 Countries. Heart 2014, 100, 1517–1523. 

(7)  Blankenberg, S.; Zeller, T.; Saarela, O.; Havulinna, A. S.; Kee, F.; Tunstall-Pedoe, H.; 
Kuulasmaa, K.; Yarnell, J.; Schnabel, R. B.; Wild, P. S.; Münzel, T. F.; Lackner, K. J.; 
Tiret, L.; Evans, A.; Salomaa, V. Contribution of 30 Biomarkers to 10-Year 
Cardiovascular Risk Estimation in 2 Population Cohorts: The MONICA, Risk, Genetics, 
Archiving, and Monograph (MORGAM) Biomarker Project. Circulation 2010, 121, 
2388–2397. 

(8)  Smyth, L. J.; Duffy, S.; Maxwell, A. P.; McKnight, A. J. Genetic and Epigenetic Factors 
Influencing Chronic Kidney Disease. Am. J. Physiol. Renal Physiol. 2014, 307, F757–
F776. 

(9)  Bernstein, H. S.; Hyun, W. C. Strategies for Enrichment and Selection of Stem Cell-
Derived Tissue Precursors. Stem Cell Res. Ther. 2012, 3, 17. 

(10)  Shenker, N. S.; Polidoro, S.; van Veldhoven, K.; Sacerdote, C.; Ricceri, F.; Birrell, M. 
A.; Belvisi, M. G.; Brown, R.; Vineis, P.; Flanagan, J. M. Epigenome-Wide Association 
Study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) 
Identifies Novel Genetic Loci Associated with Smoking. Hum. Mol. Genet. 2013, 22, 
843–851. 

(11)  Jeck, W. R.; Siebold, A. P.; Sharpless, N. E. Review: A Meta-Analysis of GWAS and 
Age-Associated Diseases. Aging Cell 2012, 11, 727–731. 



25 
 

(12)  Gerdes, L. U.; Jeune, B.; Ranberg, K. A.; Nybo, H.; Vaupel, J. W. Estimation of 
Apolipoprotein E Genotype-Specific Relative Mortality Risks from the Distribution of 
Genotypes in Centenarians and Middle-Aged Men: Apolipoprotein E Gene Is a “Frailty 
Gene,” Not a “Longevity Gene”. Genet. Epidemiol. 2000, 19, 202–210. 

(13)  Rose, G.; Dato, S.; Altomare, K.; Bellizzi, D.; Garasto, S.; Greco, V.; Passarino, G.; 
Feraco, E.; Mari, V.; Barbi, C.; BonaFe, M.; Franceschi, C.; Tan, Q.; Boiko, S.; Yashin, 
A. I.; De Benedictis, G. Variability of the SIRT3 Gene, Human Silent Information 
Regulator Sir2 Homologue, and Survivorship in the Elderly. Exp. Gerontol. 2003, 38, 
1065–1070. 

(14)  Bonafè, M.; Olivieri, F. Genetic Polymorphism in Long-Lived People: Cues for the 
Presence of an insulin/IGF-Pathway-Dependent Network Affecting Human Longevity. 
Mol. Cell. Endocrinol. 2009, 299, 118–123. 

(15)  Chung, W.-H.; Dao, R.-L.; Chen, L.-K.; Hung, S.-I. The Role of Genetic Variants in 
Human Longevity. Ageing Res. Rev. 2010, 9 Suppl 1, S67–78. 

(16)  Soerensen, M.; Dato, S.; Christensen, K.; McGue, M.; Stevnsner, T.; Bohr, V. A.; 
Christiansen, L. Replication of an Association of Variation in the FOXO3A Gene with 
Human Longevity Using Both Case-Control and Longitudinal Data. Aging Cell 2010, 9, 
1010–1017. 

(17)  Slagboom, P. E.; Beekman, M.; Passtoors, W. M.; Deelen, J.; Vaarhorst, A. A. M.; Boer, 
J. M.; van den Akker, E. B.; van Heemst, D.; de Craen, A. J. M.; Maier, A. B.; Rozing, 
M.; Mooijaart, S. P.; Heijmans, B. T.; Westendorp, R. G. J. Genomics of Human 
Longevity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2011, 366, 35–42. 

(18)  Montesanto, A.; Dato, S.; Bellizzi, D.; Rose, G.; Passarino, G. Epidemiological, Genetic 
and Epigenetic Aspects of the Research on Healthy Ageing and Longevity. Immun. 
Ageing 2012, 9, 6. 

(19)  Murphy, C. T.; Mccarroll, S. A.; Bargmann, C. I.; Fraser, A.; Kamath, R. S.; Ahringer, 
J.; Li, H.; Kenyon, C. Genes That Act Downstream of DAF-16 to Influence the Lifespan 
of Caenorhabditis Elegans. 2003, 277–284. 

(20)  McElwee, J.; Bubb, K.; Thomas, J. H. Transcriptional Outputs of the Caenorhabditis 
Elegans Forkhead Protein DAF-16. Aging Cell 2003, 2, 111–121. 

(21)  Hausch, F.; Kozany, C.; Theodoropoulou, M.; Fabian, A.-K. FKBPs and the Akt/mTOR 
Pathway. Cell Cycle 2013, 12, 2366–2370. 

(22)  Erlejman, A. G.; Lagadari, M.; Galigniana, M. D. Hsp90-Binding Immunophilins as a 
Potential New Platform for Drug Treatment. Future Med. Chem. 2013, 5, 591–607. 

(23)  Galat, A. Functional Diversity and Pharmacological Profiles of the FKBPs and Their 
Complexes with Small Natural Ligands. Cell. Mol. Life Sci. 2013, 70, 3243–3275. 

(24)  Cox, M. B.; Smith, D. F. Hapter 2. 2007. 



26 
 

(25)  Barton, M. Prevention and Endothelial Therapy of Coronary Artery Disease. Curr. Opin. 
Pharmacol. 2013, 13, 226–241. 

(26)  Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; 
Nourhashemi, F. Proinflammatory Cytokines, Aging, and Age-Related Diseases. J. Am. 
Med. Dir. Assoc. 2013, 14, 877–882. 

(27)  Lakatta, E. G.; Levy, D. Arterial and Cardiac Aging: Major Shareholders in 
Cardiovascular Disease Enterprises: Part I: Aging Arteries: A “Set up” for Vascular 
Disease. Circulation 2003, 107, 139–146. 

(28)  Howcroft, T. K.; Campisi, J.; Louis, G. B.; Smith, M. T.; Wise, B.; Wyss-Coray, T.; 
Augustine, A. D.; McElhaney, J. E.; Kohanski, R.; Sierra, F. The Role of Inflammation 
in Age-Related Disease. Aging (Albany. NY). 2013, 5, 84–93. 

(29)  Oh, J. Y.; Ko, J. H.; Lee, H. J.; Yu, J. M.; Choi, H.; Kim, M. K.; Wee, W. R.; Prockop, 
D. J. Mesenchymal Stem/stromal Cells Inhibit the NLRP3 Inflammasome by Decreasing 
Mitochondrial Reactive Oxygen Species. Stem Cells 2014, 32, 1553–1563. 

(30)  Bane, F. T.; Bannon, J. H.; Pennington, S. R.; Campiani, G.; Campaini, G.; Williams, 
D. C.; Zisterer, D. M.; Mc Gee, M. M. The Microtubule-Targeting Agents, PBOX-6 
[pyrrolobenzoxazepine 7-[(dimethylcarbamoyl)oxy]-6-(2-Naphthyl)pyrrolo-[2,1-D] 
(1,5)-Benzoxazepine] and Paclitaxel, Induce Nucleocytoplasmic Redistribution of the 
Peptidyl-Prolyl Isomerases, Cyclophilin A and pin1,. J. Pharmacol. Exp. Ther. 2009, 
329, 38–47. 

(31)  Li, J.; Xie, H.; Yi, M.; Peng, L.; Lei, D.; Chen, X.; Jian, D. Expression of Cyclophilin 
A and CD147 during Skin Aging. Zhong Nan Da Xue Xue Bao. Yi Xue Ban 2011, 36, 
203–211. 

(32)  Nigro, P.; Satoh, K.; O’Dell, M. R.; Soe, N. N.; Cui, Z.; Mohan, A.; Abe, J.; Alexis, J. 
D.; Sparks, J. D.; Berk, B. C. Cyclophilin A Is an Inflammatory Mediator That Promotes 
Atherosclerosis in Apolipoprotein E-Deficient Mice. J. Exp. Med. 2011, 208, 53–66. 

(33)  Liao, X.; Siu, M. K. Y.; Au, C. W. H.; Wong, E. S. Y.; Chan, H. Y.; Ip, P. P. C.; Ngan, 
H. Y. S.; Cheung, A. N. Y. Aberrant Activation of Hedgehog Signaling Pathway in 
Ovarian Cancers: Effect on Prognosis, Cell Invasion and Differentiation. 
Carcinogenesis 2009, 30, 131–140. 

(34)  Lam, Y. W.; Tam, N. N. C.; Evans, J. E.; Green, K. M.; Zhang, X.; Ho, S.-M. 
Differential Proteomics in the Aging Noble Rat Ventral Prostate. Proteomics 2008, 8, 
2750–2763. 

(35)  Torlakovic, E. E.; Keeler, V.; Wang, C.; Lim, H. J.; Lining, L. A.; Laferté, S. 
Cyclophilin C-Associated Protein (CyCAP) Knock-out Mice Spontaneously Develop 
Colonic Mucosal Hyperplasia and Exaggerated Tumorigenesis after Treatment with 
Carcinogen Azoxymethane. BMC Cancer 2009, 9, 251. 

(36)  Shimizu, T.; Imai, H.; Seki, K.; Tomizawa, S.; Nakamura, M.; Honda, F.; Kawahara, 
N.; Saito, N. Cyclophilin C-Associated Protein and Cyclophilin C mRNA Are 



27 
 

Upregulated in Penumbral Neurons and Microglia after Focal Cerebral Ischemia. J. 
Cereb. Blood Flow Metab. 2005, 25, 325–337. 

(37)  Elrod, J. W.; Wong, R.; Mishra, S.; Vagnozzi, R. J.; Sakthievel, B.; Goonasekera, S. A.; 
Karch, J.; Gabel, S.; Farber, J.; Force, T.; Brown, J. H.; Murphy, E.; Molkentin, J. D. 
Cyclophilin D Controls Mitochondrial Pore-Dependent Ca(2+) Exchange, Metabolic 
Flexibility, and Propensity for Heart Failure in Mice. J. Clin. Invest. 2010, 120, 3680–
3687. 

(38)  Hafner, A. V; Dai, J.; Gomes, A. P.; Xiao, C.-Y.; Palmeira, C. M.; Rosenzweig, A.; 
Sinclair, D. A. Regulation of the mPTP by SIRT3-Mediated Deacetylation of CypD at 
Lysine 166 Suppresses Age-Related Cardiac Hypertrophy. Aging (Albany. NY). 2010, 2, 
914–923. 

(39)  Lu, J.-H.; Shi, Z.-F.; Xu, H. The Mitochondrial Cyclophilin D/p53 Complexation 
Mediates Doxorubicin-Induced Non-Apoptotic Death of A549 Lung Cancer Cells. Mol. 
Cell. Biochem. 2014, 389, 17–24. 

(40)  Huo, D.-H.; Yi, L.-N.; Yang, J. Interaction with Ppil3 Leads to the Cytoplasmic 
Localization of Apoptin in Tumor Cells. Biochem. Biophys. Res. Commun. 2008, 372, 
14–18. 

(41)  Blagosklonny, M. V. TOR-Driven Aging: Speeding Car without Brakes. Cell Cycle 
2009, 8, 4055–4059. 

(42)  Lee, T. H.; Pastorino, L.; Lu, K. P. Peptidyl-Prolyl Cis-Trans Isomerase Pin1 in Ageing, 
Cancer and Alzheimer Disease. Expert Rev. Mol. Med. 2011, 13, e21. 

(43)  Lee, T. H.; Tun-Kyi, A.; Shi, R.; Lim, J.; Soohoo, C.; Finn, G.; Balastik, M.; Pastorino, 
L.; Wulf, G.; Zhou, X. Z.; Lu, K. P. Essential Role of Pin1 in the Regulation of TRF1 
Stability and Telomere Maintenance. Nat. Cell Biol. 2009, 11, 97–105. 

(44)  Wheaton, K.; Muir, J.; Ma, W.; Benchimol, S. BTG2 Antagonizes Pin1 in Response to 
Mitogens and Telomere Disruption during Replicative Senescence. Aging Cell 2010, 9, 
747–760. 

(45)  Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, 
J.; Adair, T.; Aggarwal, R.; Ahn, S. Y.; Alvarado, M.; Anderson, H. R.; Anderson, L. 
M.; Andrews, K. G.; Atkinson, C.; Baddour, L. M.; Barker-Collo, S.; Bartels, D. H.; 
Bell, M. L.; Benjamin, E. J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; 
Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; 
Carapetis, J.; Chen, H.; Chou, D.; Chugh, S. S.; Coffeng, L. E.; Colan, S. D.; Colquhoun, 
S.; Colson, K. E.; Condon, J.; Connor, M. D.; Cooper, L. T.; Corriere, M.; Cortinovis, 
M.; de Vaccaro, K. C.; Couser, W.; Cowie, B. C.; Criqui, M. H.; Cross, M.; Dabhadkar, 
K. C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des 
Jarlais, D. C.; Dharmaratne, S. D.; Dorsey, E. R.; Driscoll, T.; Duber, H.; Ebel, B.; 
Erwin, P. J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A. D.; Forouzanfar, M. H.; 
Fowkes, F. G. R.; Franklin, R.; Fransen, M.; Freeman, M. K.; Gabriel, S. E.; Gakidou, 
E.; Gaspari, F.; Gillum, R. F.; Gonzalez-Medina, D.; Halasa, Y. A.; Haring, D.; 
Harrison, J. E.; Havmoeller, R.; Hay, R. J.; Hoen, B.; Hotez, P. J.; Hoy, D.; Jacobsen, 



28 
 

K. H.; James, S. L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; 
Kassebaum, N.; Keren, A.; Khoo, J.-P.; Knowlton, L. M.; Kobusingye, O.; Koranteng, 
A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S. E.; Ohno, S. L.; Mabweijano, J.; 
MacIntyre, M. F.; Mallinger, L.; March, L.; Marks, G. B.; Marks, R.; Matsumori, A.; 
Matzopoulos, R.; Mayosi, B. M.; McAnulty, J. H.; McDermott, M. M.; McGrath, J.; 
Mensah, G. A.; Merriman, T. R.; Michaud, C.; Miller, M.; Miller, T. R.; Mock, C.; 
Mocumbi, A. O.; Mokdad, A. A.; Moran, A.; Mulholland, K.; Nair, M. N.; Naldi, L.; 
Narayan, K. M. V.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S. B.; Ortblad, K.; 
Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J. D.; Rivero, A. P.; Padilla, R. P.; Perez-
Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C. A.; Porrini, E.; Pourmalek, F.; 
Raju, M.; Ranganathan, D.; Rehm, J. T.; Rein, D. B.; Remuzzi, G.; Rivara, F. P.; 
Roberts, T.; De León, F. R.; Rosenfeld, L. C.; Rushton, L.; Sacco, R. L.; Salomon, J. A.; 
Sampson, U.; Sanman, E.; Schwebel, D. C.; Segui-Gomez, M.; Shepard, D. S.; Singh, 
D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J. A.; Thomas, B.; Tleyjeh, I. 
M.; Towbin, J. A.; Truelsen, T.; Undurraga, E. A.; Venketasubramanian, N.; 
Vijayakumar, L.; Vos, T.; Wagner, G. R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, 
M. A.; Weintraub, R.; Wilkinson, J. D.; Woolf, A. D.; Wulf, S.; Yeh, P.-H.; Yip, P.; 
Zabetian, A.; Zheng, Z.-J.; Lopez, A. D.; Murray, C. J. L.; AlMazroa, M. A.; Memish, 
Z. A. Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 
1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. 
Lancet 2012, 380, 2095–2128. 

(46)  Stern, S.; Behar, S.; Gottlieb, S. Cardiology Patient Pages. Aging and Diseases of the 
Heart. Circulation 2003, 108, e99–101. 

(47)  North, B. J.; Sinclair, D. A. The Intersection between Aging and Cardiovascular Disease. 
Circ. Res. 2012, 110, 1097–1108. 

(48)  Bartke, A. Insulin and Aging. Cell Cycle 2008, 7, 3338–3343. 

(49)  Junnila, R. K.; List, E. O.; Berryman, D. E.; Murrey, J. W.; Kopchick, J. J. The GH/IGF-
1 Axis in Ageing and Longevity. Nat. Rev. Endocrinol. 2013, 9, 366–376. 

(50)  Corella, D.; Ordovás, J. M. Aging and Cardiovascular Diseases: The Role of Gene-Diet 
Interactions. Ageing Res. Rev. 2014, 18C, 53–73. 

(51)  Harrison, D. E.; Strong, R.; Sharp, Z. D.; Nelson, J. F.; Astle, C. M.; Flurkey, K.; Nadon, 
N. L.; Wilkinson, J. E.; Frenkel, K.; Carter, C. S.; Pahor, M.; Javors, M. A.; Fernandez, 
E.; Miller, R. A. Rapamycin Fed Late in Life Extends Lifespan in Genetically 
Heterogeneous Mice. Nature 2009, 460, 392–395. 

(52)  Hu, F.; Liu, F. Targeting Tissue-Specific Metabolic Signaling Pathways in Aging: The 
Promise and Limitations. Protein Cell 2013. 

(53)  Apfeld, J.; O’Connor, G.; McDonagh, T.; DiStefano, P. S.; Curtis, R. The AMP-
Activated Protein Kinase AAK-2 Links Energy Levels and Insulin-like Signals to 
Lifespan in C. Elegans. Genes Dev. 2004, 18, 3004–3009. 

(54)  Ruderman, N. B.; Carling, D.; Prentki, M.; Cacicedo, J. M. AMPK, Insulin Resistance, 
and the Metabolic Syndrome. J. Clin. Invest. 2013, 123, 2764–2772. 



29 
 

(55)  Zaha, V. G.; Young, L. H. AMP-Activated Protein Kinase Regulation and Biological 
Actions in the Heart. Circ. Res. 2012, 111, 800–814. 

(56)  Kang, C. B.; Hong, Y.; Dhe-Paganon, S.; Yoon, H. S. FKBP Family Proteins: 
Immunophilins with Versatile Biological Functions. Neurosignals. 2008, 16, 318–325. 

(57)  MacMillan, D. FK506 Binding Proteins: Cellular Regulators of Intracellular Ca2+ 
Signalling. Eur. J. Pharmacol. 2013, 700, 181–193. 

(58)  Shou, W.; Aghdasi, B.; Armstrong, D. L.; Guo, Q.; Bao, S.; Charng, M. J.; Mathews, L. 
M.; Schneider, M. D.; Hamilton, S. L.; Matzuk, M. M. Cardiac Defects and Altered 
Ryanodine Receptor Function in Mice Lacking FKBP12. Nature 1998, 391, 489–492. 

(59)  Maruyama, M.; Li, B.-Y.; Chen, H.; Xu, X.; Song, L.-S.; Guatimosim, S.; Zhu, W.; 
Yong, W.; Zhang, W.; Bu, G.; Lin, S.-F.; Fishbein, M. C.; Lederer, W. J.; Schild, J. H.; 
Field, L. J.; Rubart, M.; Chen, P.-S.; Shou, W. FKBP12 Is a Critical Regulator of the 
Heart Rhythm and the Cardiac Voltage-Gated Sodium Current in Mice. Circ. Res. 2011, 
108, 1042–1052. 

(60)  Li, B.-Y.; Chen, H.; Maruyama, M.; Zhang, W.; Zhang, J.; Pan, Z.-W.; Rubart, M.; 
Chen, P.-S.; Shou, W. The Role of FK506-Binding Proteins 12 and 12.6 in Regulating 
Cardiac Function. Pediatr. Cardiol. 2012, 33, 988–994. 

(61)  Chiasson, V. L.; Talreja, D.; Young, K. J.; Chatterjee, P.; Banes-Berceli, A. K.; Mitchell, 
B. M. FK506 Binding Protein 12 Deficiency in Endothelial and Hematopoietic Cells 
Decreases Regulatory T Cells and Causes Hypertension. Hypertension 2011, 57, 1167–
1175. 

(62)  Lanner, J. T.; Georgiou, D. K.; Joshi, A. D.; Hamilton, S. L. Ryanodine Receptors: 
Structure, Expression, Molecular Details, and Function in Calcium Release. Cold Spring 
Harb. Perspect. Biol. 2010, 2, a003996. 

(63)  Driessen, H. E.; Bourgonje, V. J. A.; van Veen, T. A. B.; Vos, M. A. New 
Antiarrhythmic Targets to Control Intracellular Calcium Handling. Neth. Heart J. 2014, 
22, 198–213. 

(64)  Dornan, J.; Taylor, P.; Walkinshaw, M. D. Structures of Immunophilins and Their 
Ligand Complexes. Curr. Top. Med. Chem. 2003, 3, 1392–1409. 

(65)  Wang, P.; Heitman, J. The Cyclophilins. Genome Biol. 2005, 6, 226. 

(66)  Sherry, B.; Yarlett, N.; Strupp, A.; Cerami, A. Identification of Cyclophilin as a 
Proinflammatory Secretory Product of Lipopolysaccharide-Activated Macrophages. 
Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 3511–3515. 

(67)  Suzuki, J.; Jin, Z.-G.; Meoli, D. F.; Matoba, T.; Berk, B. C. Cyclophilin A Is Secreted 
by a Vesicular Pathway in Vascular Smooth Muscle Cells. Circ. Res. 2006, 98, 811–
817. 



30 
 

(68)  Griendling, K. K.; FitzGerald, G. A. Oxidative Stress and Cardiovascular Injury: Part 
II: Animal and Human Studies. Circulation 2003, 108, 2034–2040. 

(69)  Satoh, K.; Matoba, T.; Suzuki, J.; O’Dell, M. R.; Nigro, P.; Cui, Z.; Mohan, A.; Pan, S.; 
Li, L.; Jin, Z.-G.; Yan, C.; Abe, J.; Berk, B. C. Cyclophilin A Mediates Vascular 
Remodeling by Promoting Inflammation and Vascular Smooth Muscle Cell 
Proliferation. Circulation 2008, 117, 3088–3098. 

(70)  Nigro, P.; Pompilio, G.; Capogrossi, M. C. Cyclophilin A: A Key Player for Human 
Disease. Cell Death Dis. 2013, 4, e888. 

(71)  Satoh, K.; Nigro, P.; Zeidan, A.; Soe, N. N.; Jaffré, F.; Oikawa, M.; O’Dell, M. R.; Cui, 
Z.; Menon, P.; Lu, Y.; Mohan, A.; Yan, C.; Blaxall, B. C.; Berk, B. C. Cyclophilin A 
Promotes Cardiac Hypertrophy in Apolipoprotein E-Deficient Mice. Arterioscler. 
Thromb. Vasc. Biol. 2011, 31, 1116–1123. 

(72)  Yan, J.; Zang, X.; Chen, R.; Yuan, W.; Gong, J.; Wang, C.; Li, Y. The Clinical 
Implications of Increased Cyclophilin A Levels in Patients with Acute Coronary 
Syndromes. Clin. Chim. Acta. 2012, 413, 691–695. 

(73)  Alam, M. R.; Baetz, D.; Ovize, M. Cyclophilin D and Myocardial Ischemia-Reperfusion 
Injury: A Fresh Perspective. J. Mol. Cell. Cardiol. 2014. 

(74)  Johnson, N.; Khan, A.; Virji, S.; Ward, J. M.; Crompton, M. Import and Processing of 
Heart Mitochondrial Cyclophilin D. Eur. J. Biochem. 1999, 263, 353–359. 

(75)  Toko, H.; Konstandin, M. H.; Doroudgar, S.; Ormachea, L.; Joyo, E.; Joyo, A. Y.; Din, 
S.; Gude, N. A.; Collins, B.; Völkers, M.; Thuerauf, D. J.; Glembotski, C. C.; Chen, C.-
H.; Lu, K. P.; Müller, O. J.; Uchida, T.; Sussman, M. A. Regulation of Cardiac 
Hypertrophic Signaling by Prolyl Isomerase Pin1. Circ. Res. 2013, 112, 1244–1252. 

(76)  Resnick, H. E.; Harris, M. I.; Brock, D. B.; Harris, T. B. American Diabetes Association 
Diabetes Diagnostic Criteria, Advancing Age, and Cardiovascular Disease Risk 
Profiles: Results from the Third National Health and Nutrition Examination Survey. 
Diabetes Care 2000, 23, 176–180. 

(77)  Morley, J. E. Diabetes and Aging: Epidemiologic Overview. Clin. Geriatr. Med. 2008, 
24, 395–405, v. 

(78)  Prentki, M.; Nolan, C. J. Islet Beta Cell Failure in Type 2 Diabetes. J. Clin. Invest. 2006, 
116, 1802–1812. 

(79)  De Tata, V. Age-Related Impairment of Pancreatic Beta-Cell Function: 
Pathophysiological and Cellular Mechanisms. Front. Endocrinol. (Lausanne). 2014, 5, 
138. 

(80)  Desgraz, R.; Bonal, C.; Herrera, P. L. Β-Cell Regeneration: The Pancreatic Intrinsic 
Faculty. Trends Endocrinol. Metab. 2011, 22, 34–43. 



31 
 

(81)  Sharpless, N. E.; DePinho, R. a. How Stem Cells Age and Why This Makes Us Grow 
Old. Nat. Rev. Mol. Cell Biol. 2007, 8, 703–713. 

(82)  Kushner, J. A. The Role of Aging upon Β Cell Turnover. J. Clin. Invest. 2013, 123, 990–
995. 

(83)  Krishnamurthy, J.; Ramsey, M. R.; Ligon, K. L.; Torrice, C.; Koh, A.; Bonner-Weir, S.; 
Sharpless, N. E. p16INK4a Induces an Age-Dependent Decline in Islet Regenerative 
Potential. Nature 2006, 443, 453–457. 

(84)  Newgard, C. B.; Sharpless, N. E. Coming of Age: Molecular Drivers of Aging and 
Therapeutic Opportunities. J. Clin. Invest. 2013, 123, 946–950. 

(85)  Pereira, M. J.; Palming, J.; Svensson, M. K.; Rizell, M.; Dalenbäck, J.; Hammar, M.; 
Fall, T.; Sidibeh, C. O.; Svensson, P.-A.; Eriksson, J. W. FKBP5 Expression in Human 
Adipose Tissue Increases Following Dexamethasone Exposure and Is Associated with 
Insulin Resistance. Metabolism. 2014, 63, 1198–1208. 

(86)  Balsevich, G.; Uribe, A.; Wagner, K. V; Hartmann, J.; Santarelli, S.; Labermaier, C.; 
Schmidt, M. V. Interplay between Diet-Induced Obesity and Chronic Stress in Mice: 
Potential Role of FKBP51. J. Endocrinol. 2014, 222, 15–26. 

(87)  Ramachandran, S.; Kartha, C. C. Cyclophilin-A: A Potential Screening Marker for 
Vascular Disease in Type-2 Diabetes. Can. J. Physiol. Pharmacol. 2012, 90, 1005–
1015. 

(88)  Roderick, P.; Roth, M.; Mindell, J. Prevalence of Chronic Kidney Disease in England: 
Findings from the 2009 Health Survey for England. J. Epidemiol. Community Heal. 
2011, 65, A12–A12. 

(89)  Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, 
A. Y.-M.; Yang, C.-W. Chronic Kidney Disease: Global Dimension and Perspectives. 
Lancet 2013, 382, 260–272. 

(90)  Levey, A. S.; Coresh, J. Chronic Kidney Disease. Lancet 2012, 379, 165–180. 

(91)  Nasrallah, R.; Hassouneh, R.; Hébert, R. L. Chronic Kidney Disease: Targeting 
Prostaglandin E2 Receptors. Am. J. Physiol. Renal Physiol. 2014, 307, F243–50. 

(92)  Tonelli, M.; Riella, M. C. Chronic Kidney Disease and the Aging Population. Kidney 
Int. 2014, 85, 487–491. 

(93)  Lu, M.-K.; Gong, X.-G.; Guan, K.-L. mTOR in Podocyte Function: Is Rapamycin Good 
for Diabetic Nephropathy? Cell Cycle 2011, 10, 3415–3416. 

(94)  Merscher, S.; Fornoni, A. Podocyte Pathology and Nephropathy - Sphingolipids in 
Glomerular Diseases. Front. Endocrinol. (Lausanne). 2014, 5, 127. 

(95)  Henique, C.; Tharaux, P.-L. Targeting Signaling Pathways in Glomerular Diseases. 
Curr. Opin. Nephrol. Hypertens. 2012, 21, 417–427. 



32 
 

(96)  Loffing, J.; Korbmacher, C. Regulated Sodium Transport in the Renal Connecting 
Tubule (CNT) via the Epithelial Sodium Channel (ENaC). Pflugers Arch. 2009, 458, 
111–135. 

(97)  Whaley-Connell, A.; Sowers, J. R. Oxidative Stress in the Cardiorenal Metabolic 
Syndrome. Curr. Hypertens. Rep. 2012, 14, 360–365. 

(98)  Ueda, K.; Fujiki, K.; Shirahige, K.; Gomez-Sanchez, C. E.; Fujita, T.; Nangaku, M.; 
Nagase, M. Genome-Wide Analysis of Murine Renal Distal Convoluted Tubular Cells 
for the Target Genes of Mineralocorticoid Receptor. Biochem. Biophys. Res. Commun. 
2014, 445, 132–137. 

(99)  Nagase, M. [Mineralocorticoid Receptor: An Update]. Nihon Rinsho. 2012, 70, 1504–
1509. 

(100)  Nagase, R.; Kajitani, N.; Shikata, K.; Ogawa, D.; Kodera, R.; Okada, S.; Kido, Y.; 
Makino, H. Phenotypic Change of Macrophages in the Progression of Diabetic 
Nephropathy; Sialoadhesin-Positive Activated Macrophages Are Increased in Diabetic 
Kidney. Clin. Exp. Nephrol. 2012, 16, 739–748. 

(101)  Han, I. S.; Nakagawa, Y.; Park, J. W.; Suh, M. H.; Suh, S. Il; Shin, S. W.; Ahn, S. Y.; 
Choe, B. K. FKBP-12 Exhibits an Inhibitory Activity on Calcium Oxalate Crystal 
Growth in Vitro. J. Korean Med. Sci. 2002, 17, 41. 

(102)  Glew, R. H.; Sun, Y.; Horowitz, B. L.; Konstantinov, K. N.; Barry, M.; Fair, J. R.; 
Massie, L.; Tzamaloukas, A. H. Nephropathy in Dietary Hyperoxaluria: A Potentially 
Preventable Acute or Chronic Kidney Disease. World J. Nephrol. 2014, 3, 122–142. 

(103)  Ivanovski, O.; Drüeke, T. B. A New Era in the Treatment of Calcium Oxalate Stones? 
Kidney Int. 2013, 83, 998–1000. 

(104)  Keddis, M. T.; Rule, A. D. Nephrolithiasis and Loss of Kidney Function. Curr. Opin. 
Nephrol. Hypertens. 2013, 22, 390–396. 

(105)  Li, H.; Klett, D. E.; Littleton, R.; Elder, J. S.; Sammon, J. D. Role of Insulin Resistance 
in Uric Acid Nephrolithiasis. World J. Nephrol. 2014, 3, 237–242. 

(106)  Sakhaee, K.; Maalouf, N. M.; Sinnott, B. Clinical Review. Kidney Stones 2012: 
Pathogenesis, Diagnosis, and Management. J. Clin. Endocrinol. Metab. 2012, 97, 1847–
1860. 

(107)  Smyth, L. J.; McKay, G. J.; Maxwell, A. P.; McKnight, A. J. DNA Hypermethylation 
and DNA Hypomethylation Is Present at Different Loci in Chronic Kidney Disease. 
Epigenetics 2014, 9, 366–376. 

(108)  Petrovich, E.; Asher, C.; Garty, H. Induction of FKBP51 by Aldosterone in Intestinal 
Epithelium. J. Steroid Biochem. Mol. Biol. 2014, 139, 78–87. 

(109)  Gumz, M.; Richards, J.; Solocinski, K. Identification of Novel Aldosterone Targets in 
Mouse Kidney Cortical Collecting Duct Cells (744.1). FASEB J 2014, 28, 744.1–. 



33 
 

(110)  Ponda, M. P.; Hostetter, T. H. Aldosterone Antagonism in Chronic Kidney Disease. 
Clin. J. Am. Soc. Nephrol. 2006, 1, 668–677. 

(111)  Watanabe, S.; Tsuruoka, S.; Vijayakumar, S.; Fischer, G.; Zhang, Y.; Fujimura, A.; Al-
Awqati, Q.; Schwartz, G. J. Cyclosporin A Produces Distal Renal Tubular Acidosis by 
Blocking Peptidyl Prolyl Cis-Trans Isomerase Activity of Cyclophilin. Am. J. Physiol. 
Renal Physiol. 2005, 288, F40–7. 

(112)  Komers, R.; Mar, D.; Denisenko, O.; Xu, B.; Oyama, T. T.; Bomsztyk, K. Epigenetic 
Changes in Renal Genes Dysregulated in Mouse and Rat Models of Type 1 Diabetes. 
Lab. Invest. 2013, 93, 543–552. 

(113)  Yang, J.; Li, A.; Yang, Y.; Li, X. Identification of Cyclophilin A as a Potential 
Prognostic Factor for Clear-Cell Renal Cell Carcinoma by Comparative Proteomic 
Analysis. Cancer Biol. Ther. 2011, 11, 535–546. 

(114)  Kumar, R. Pin1 Regulates Parathyroid Hormone mRNA Stability. J. Clin. Invest. 2009, 
119, 2887–2891. 

(115)  Bredesen, D. E.; Rao, R. V; Mehlen, P. Cell Death in the Nervous System. Nature 2006, 
443, 796–802. 

(116)  Thompson, L. M. Neurodegeneration: A Question of Balance. Nature 2008, 452, 707–
708. 

(117)  Rubinsztein, D. C. The Roles of Intracellular Protein-Degradation Pathways in 
Neurodegeneration. 2006, 443, 780–786. 

(118)  Lansbury, P. T.; Lashuel, H. A. A Century-Old Debate on Protein Aggregation and 
Neurodegeneration Enters the Clinic. Nature 2006, 443, 774–779. 

(119)  O’ Neill, C. PI3-kinase/Akt/mTOR Signaling: Impaired On/off Switches in Aging, 
Cognitive Decline and Alzheimer’s Disease. Exp. Gerontol. 2013, 48, 647–653. 

(120)  Heras-Sandoval, D.; Pérez-Rojas, J. M.; Hernández-Damián, J.; Pedraza-Chaverri, J. 
The Role of PI3K/AKT/mTOR Pathway in the Modulation of Autophagy and the 
Clearance of Protein Aggregates in Neurodegeneration. Cell. Signal. 2014, 26, 2694–
2701. 

(121)  Michaelson, D. M. ApoE4: The Most Prevalent yet Understudied Risk Factor for 
Alzheimer’s Disease. Alzheimers. Dement. 2014. 

(122)  Kadish, I.; Thibault, O.; Blalock, E. M.; Chen, K.-C.; Gant, J. C.; Porter, N. M.; 
Landfield, P. W. Hippocampal and Cognitive Aging across the Lifespan: A Bioenergetic 
Shift Precedes and Increased Cholesterol Trafficking Parallels Memory Impairment. J. 
Neurosci. 2009, 29, 1805–1816. 

(123)  Hindle, J. V. Ageing, Neurodegeneration and Parkinson’s Disease. Age Ageing 2010, 
39, 156–161. 



34 
 

(124)  Beitz, J. M. Parkinson’s Disease: A Review. Front. Biosci. (Schol. Ed). 2014, 6, 65–74. 

(125)  Lees, A. J.; Hardy, J.; Revesz, T. Parkinson’s Disease. Lancet 2009, 373, 2055–2066. 

(126)  Reeve, A.; Simcox, E.; Turnbull, D. Ageing and Parkinson’s Disease: Why Is 
Advancing Age the Biggest Risk Factor? Ageing Res. Rev. 2014, 14, 19–30. 

(127)  Kalia, L. V; Kalia, S. K.; McLean, P. J.; Lozano, A. M.; Lang, A. E. Α-Synuclein 
Oligomers and Clinical Implications for Parkinson Disease. Ann. Neurol. 2013, 73, 155–
169. 

(128)  Malagelada, C.; Jin, Z. H.; Greene, L. A. RTP801 Is Induced in Parkinson’s Disease and 
Mediates Neuron Death by Inhibiting Akt Phosphorylation/activation. J. Neurosci. 
2008, 28, 14363–14371. 

(129)  Malagelada, C.; Jin, Z. H.; Jackson-Lewis, V.; Przedborski, S.; Greene, L. A. 
Rapamycin Protects against Neuron Death in in Vitro and in Vivo Models of Parkinson’s 
Disease. J. Neurosci. 2010, 30, 1166–1175. 

(130)  Gant, J. C.; Chen, K.-C.; Norris, C. M.; Kadish, I.; Thibault, O.; Blalock, E. M.; Porter, 
N. M.; Landfield, P. W. Disrupting Function of FK506-Binding Protein 1b/12.6 Induces 
the Ca2+-Dysregulation Aging Phenotype in Hippocampal Neurons. J. Neurosci. 2011, 
31, 1693–1703. 

(131)  Cao, W.; Konsolaki, M. FKBP Immunophilins and Alzheimer’s Disease: A Chaperoned 
Affair. J. Biosci. 2011, 36, 493–498. 

(132)  Liu, F.-L.; Liu, P.-H.; Shao, H.-W.; Kung, F.-L. The Intracellular Domain of Amyloid 
Precursor Protein Interacts with FKBP12. Biochem. Biophys. Res. Commun. 2006, 350, 
472–477. 

(133)  Gant, J. C.; Blalock, E. M.; Chen, K.-C.; Kadish, I.; Porter, N. M.; Norris, C. M.; 
Thibault, O.; Landfield, P. W. FK506-Binding Protein 1b/12.6: A Key to Aging-Related 
Hippocampal Ca2+ Dysregulation? Eur. J. Pharmacol. 2014, 739, 74–82. 

(134)  Liu, F.-L.; Liu, T.-Y.; Kung, F.-L. FKBP12 Regulates the Localization and Processing 
of Amyloid Precursor Protein in Human Cell Lines. J. Biosci. 2014, 39, 85–95. 

(135)  Shirane, M.; Nakayama, K. I. Inherent Calcineurin Inhibitor FKBP38 Targets Bcl-2 to 
Mitochondria and Inhibits Apoptosis. Nat. Cell Biol. 2003, 5, 28–37. 

(136)  Wang, H.-Q.; Nakaya, Y.; Du, Z.; Yamane, T.; Shirane, M.; Kudo, T.; Takeda, M.; 
Takebayashi, K.; Noda, Y.; Nakayama, K. I.; Nishimura, M. Interaction of Presenilins 
with FKBP38 Promotes Apoptosis by Reducing Mitochondrial Bcl-2. Hum. Mol. Genet. 
2005, 14, 1889–1902. 

(137)  Shimamoto, S.; Tsuchiya, M.; Yamaguchi, F.; Kubota, Y.; Tokumitsu, H.; Kobayashi, 
R. Ca2+/S100 Proteins Inhibit the Interaction of FKBP38 with Bcl-2 and Hsp90. 
Biochem. J. 2014, 458, 141–152. 



35 
 

(138)  Edlich, F.; Lücke, C. From Cell Death to Viral Replication: The Diverse Functions of 
the Membrane-Associated FKBP38. Curr. Opin. Pharmacol. 2011, 11, 348–353. 

(139)  Jinwal, U. K.; Koren, J.; Borysov, S. I.; Schmid, A. B.; Abisambra, J. F.; Blair, L. J.; 
Johnson, A. G.; Jones, J. R.; Shults, C. L.; O’Leary, J. C.; Jin, Y.; Buchner, J.; Cox, M. 
B.; Dickey, C. A. The Hsp90 Cochaperone, FKBP51, Increases Tau Stability and 
Polymerizes Microtubules. J. Neurosci. 2010, 30, 591–599. 

(140)  Yakkundi, A.; Robson, T.; McKeen, H. . Steroid Receptor Signalling in Cancer: A Focus 
on FK506 - Binding Proteins. Recent Res. Dev. Endocrinol. 2014, 5, 21–39. 

(141)  Storer, C. L.; Dickey, C. a; Galigniana, M. D.; Rein, T.; Cox, M. B. FKBP51 and 
FKBP52 in Signaling and Disease. Trends Endocrinol. Metab. 2011, 22, 481–490. 

(142)  Chambraud, B.; Belabes, H.; Fontaine-Lenoir, V.; Fellous, A.; Baulieu, E. E. The 
Immunophilin FKBP52 Specifically Binds to Tubulin and Prevents Microtubule 
Formation. FASEB J. 2007, 21, 2787–2797. 

(143)  Salminen, A.; Ojala, J.; Kaarniranta, K.; Hiltunen, M.; Soininen, H. Hsp90 Regulates 
Tau Pathology through Co-Chaperone Complexes in Alzheimer’s Disease. Prog. 
Neurobiol. 2011, 93, 99–110. 

(144)  Sanokawa-Akakura, R.; Cao, W.; Allan, K.; Patel, K.; Ganesh, A.; Heiman, G.; Burke, 
R.; Kemp, F. W.; Bogden, J. D.; Camakaris, J.; Birge, R. B.; Konsolaki, M. Control of 
Alzheimer’s Amyloid Beta Toxicity by the High Molecular Weight Immunophilin 
FKBP52 and Copper Homeostasis in Drosophila. PLoS One 2010, 5, e8626. 

(145)  Bellingham, S. A.; Lahiri, D. K.; Maloney, B.; La Fontaine, S.; Multhaup, G.; 
Camakaris, J. Copper Depletion down-Regulates Expression of the Alzheimer’s Disease 
Amyloid-Beta Precursor Protein Gene. J. Biol. Chem. 2004, 279, 20378–20386. 

(146)  Sanokawa-Akakura, R.; Dai, H.; Akakura, S.; Weinstein, D.; Fajardo, J. E.; Lang, S. E.; 
Wadsworth, S.; Siekierka, J.; Birge, R. B. A Novel Role for the Immunophilin FKBP52 
in Copper Transport. J. Biol. Chem. 2004, 279, 27845–27848. 

(147)  Conejero-Goldberg, C.; Hyde, T. M.; Chen, S.; Dreses-Werringloer, U.; Herman, M. 
M.; Kleinman, J. E.; Davies, P.; Goldberg, T. E. Molecular Signatures in Post-Mortem 
Brain Tissue of Younger Individuals at High Risk for Alzheimer’s Disease as Based on 
APOE Genotype. Mol. Psychiatry 2011, 16, 836–847. 

(148)  Bell, R. D.; Winkler, E. A.; Singh, I.; Sagare, A. P.; Deane, R.; Wu, Z.; Holtzman, D. 
M.; Betsholtz, C.; Armulik, A.; Sallstrom, J.; Berk, B. C.; Zlokovic, B. V. 
Apolipoprotein E Controls Cerebrovascular Integrity via Cyclophilin A. Nature 2012, 
485, 512–516. 

(149)  Pagani, L.; Eckert, A. Amyloid-Beta Interaction with Mitochondria. Int. J. Alzheimers. 
Dis. 2011, 2011, 925050. 



36 
 

(150)  Buée, L.; Bussière, T.; Buée-Scherrer, V.; Delacourte, A.; Hof, P. R. Tau Protein 
Isoforms, Phosphorylation and Role in Neurodegenerative Disorders. Brain Res. Brain 
Res. Rev. 2000, 33, 95–130. 

(151)  Smith, W.; Assink, J.; Klein, R.; Mitchell, P.; Klaver, C. C.; Klein, B. E.; Hofman, A.; 
Jensen, S.; Wang, J. J.; de Jong, P. T. Risk Factors for Age-Related Macular 
Degeneration: Pooled Findings from Three Continents. Ophthalmology 2001, 108, 697–
704. 

(152)  Lim, L. S.; Mitchell, P.; Seddon, J. M.; Holz, F. G.; Wong, T. Y. Age-Related Macular 
Degeneration. Lancet 2012, 379, 1728–1738. 

(153)  Tuo, J.; Bojanowski, C. M.; Chan, C.-C. Genetic Factors of Age-Related Macular 
Degeneration. Prog. Retin. Eye Res. 2004, 23, 229–249. 

(154)  Cipriani, V.; Leung, H.-T.; Plagnol, V.; Bunce, C.; Khan, J. C.; Shahid, H.; Moore, A. 
T.; Harding, S. P.; Bishop, P. N.; Hayward, C.; Campbell, S.; Armbrecht, A. M.; Dhillon, 
B.; Deary, I. J.; Campbell, H.; Dunlop, M.; Dominiczak, A. F.; Mann, S. S.; Jenkins, S. 
A.; Webster, A. R.; Bird, A. C.; Lathrop, M.; Zelenika, D.; Souied, E. H.; Sahel, J.-A.; 
Léveillard, T.; Cree, A. J.; Gibson, J.; Ennis, S.; Lotery, A. J.; Wright, A. F.; Clayton, 
D. G.; Yates, J. R. W. Genome-Wide Association Study of Age-Related Macular 
Degeneration Identifies Associated Variants in the TNXB-FKBPL-NOTCH4 Region of 
Chromosome 6p21.3. Hum. Mol. Genet. 2012, 21, 4138–4150. 

(155)  Cipriani, V.; Leung, H.; Plagnol, V.; Bunce, C.; Jane, C.; Shahid, H.; Moore, A. T.; 
Harding, S. P.; Paul, N.; Hayward, C.; Campbell, S.; Armbrecht, A. M.; Deary, I. J.; 
Campbell, H.; Dunlop, M.; Anna, F.; Mann, S. S.; Jenkins, S. A.; Webster, A. R.; Bird, 
A. C.; Zelenika, D.; Souied, E. H. HMG Advance Access Published June 13, 2012 1. 
2012, 1–34. 

(156)  Blagosklonny, M. V. Molecular Theory of Cancer. Cancer Biol. Ther. 2005, 4, 621–
627. 

(157)  Reya, T.; Morrison, S. J.; Clarke, M. F.; Weissman, I. L. Stem Cells, Cancer, and Cancer 
Stem Cells. Nature 2001, 414, 105–111. 

(158)  Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The next Generation. Cell 2011, 
144, 646–674. 

(159)  Sudarsanam, S.; Johnson, D. E. Functional Consequences of mTOR Inhibition. Curr. 
Opin. Drug Discov. Devel. 2010, 13, 31–40. 

(160)  O’Reilly, K. E.; Rojo, F.; She, Q.-B.; Solit, D.; Mills, G. B.; Smith, D.; Lane, H.; 
Hofmann, F.; Hicklin, D. J.; Ludwig, D. L.; Baselga, J.; Rosen, N. mTOR Inhibition 
Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt. Cancer Res. 
2006, 66, 1500–1508. 

(161)  Higgins, J. P. T.; Montgomery, K.; Wang, L.; Domanay, E.; Warnke, R. A.; Brooks, J. 
D.; van de Rijn, M. Expression of FKBP12 in Benign and Malignant Vascular 



37 
 

Endothelium: An Immunohistochemical Study on Conventional Sections and Tissue 
Microarrays. Am. J. Surg. Pathol. 2003, 27, 58–64. 

(162)  Aghdasi, B.; Ye, K.; Resnick, A.; Huang, A.; Ha, H. C.; Guo, X.; Dawson, T. M.; 
Dawson, V. L.; Snyder, S. H. FKBP12, the 12-kDa FK506-Binding Protein, Is a 
Physiologic Regulator of the Cell Cycle. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 2425–
2430. 

(163)  Romano, S.; Mallardo, M.; Chiurazzi, F.; Bisogni, R.; D’Angelillo, A.; Liuzzi, R.; 
Compare, G.; Romano, M. F. The Effect of FK506 on Transforming Growth Factor Beta 
Signaling and Apoptosis in Chronic Lymphocytic Leukemia B Cells. Haematologica 
2008, 93, 1039–1048. 

(164)  Ahearn, I. M.; Tsai, F. D.; Court, H.; Zhou, M.; Jennings, B. C.; Ahmed, M.; 
Fehrenbacher, N.; Linder, M. E.; Philips, M. R. FKBP12 Binds to Acylated H-Ras and 
Promotes Depalmitoylation. Mol. Cell 2011, 41, 173–185. 

(165)  Siamakpour-Reihani, S.; Caster, J.; Bandhu Nepal, D.; Courtwright, A.; Hilliard, E.; 
Usary, J.; Ketelsen, D.; Darr, D.; Shen, X. J.; Patterson, C.; Klauber-Demore, N. The 
Role of calcineurin/NFAT in SFRP2 Induced Angiogenesis--a Rationale for Breast 
Cancer Treatment with the Calcineurin Inhibitor Tacrolimus. PLoS One 2011, 6, 
e20412. 

(166)  Tomek, M.; Akiyama, T.; Dass, C. R. Role of Bcl-2 in Tumour Cell Survival and 
Implications for Pharmacotherapy. J. Pharm. Pharmacol. 2012, 64, 1695–1702. 

(167)  Wu, S.; Wang, X.; Chen, J.; Chen, Y. Autophagy of Cancer Stem Cells Is Involved with 
Chemoresistance of Colon Cancer Cells. Biochem. Biophys. Res. Commun. 2013, 434, 
898–903. 

(168)  Cox, M. B.; Smith, D. F. Functions of the Hsp90-Binding FKBP Immunophilins, 2000. 

(169)  Jääskeläinen, T.; Makkonen, H.; Palvimo, J. J. Steroid up-Regulation of FKBP51 and 
Its Role in Hormone Signaling. Curr. Opin. Pharmacol. 2011, 11, 326–331. 

(170)  Pei, H.; Li, L.; Fridley, B. L.; Jenkins, G. D.; Kalari, K. R.; Lingle, W.; Petersen, G.; 
Lou, Z.; Wang, L. FKBP51 Affects Cancer Cell Response to Chemotherapy by 
Negatively Regulating Akt. Cancer Cell 2009, 16, 259–266. 

(171)  Bouwmeester, T.; Bauch, A.; Ruffner, H.; Angrand, P.-O.; Bergamini, G.; Croughton, 
K.; Cruciat, C.; Eberhard, D.; Gagneur, J.; Ghidelli, S.; Hopf, C.; Huhse, B.; Mangano, 
R.; Michon, A.-M.; Schirle, M.; Schlegl, J.; Schwab, M.; Stein, M. A.; Bauer, A.; Casari, 
G.; Drewes, G.; Gavin, A.-C.; Jackson, D. B.; Joberty, G.; Neubauer, G.; Rick, J.; 
Kuster, B.; Superti-Furga, G. A Physical and Functional Map of the Human TNF-
alpha/NF-Kappa B Signal Transduction Pathway. Nat. Cell Biol. 2004, 6, 97–105. 

(172)  Romano, S.; Mallardo, M.; Romano, M. F. FKBP51 and the NF-κB Regulatory Pathway 
in Cancer. Curr. Opin. Pharmacol. 2011, 11, 288–293. 



38 
 

(173)  Romano, S.; Staibano, S.; Greco, A.; Brunetti, A.; Nappo, G.; Ilardi, G.; Martinelli, R.; 
Sorrentino, A.; Di Pace, A.; Mascolo, M.; Bisogni, R.; Scalvenzi, M.; Alfano, B.; 
Romano, M. F. FK506 Binding Protein 51 Positively Regulates Melanoma Stemness 
and Metastatic Potential. Cell Death Dis. 2013, 4, e578. 

(174)  Stechschulte, L. A.; Sanchez, E. R. FKBP51-a Selective Modulator of Glucocorticoid 
and Androgen Sensitivity. Curr. Opin. Pharmacol. 2011, 11, 332–337. 

(175)  Amler, L. C.; Agus, D. B.; LeDuc, C.; Sapinoso, M. L.; Fox, W. D.; Kern, S.; Lee, D.; 
Wang, V.; Leysens, M.; Higgins, B.; Martin, J.; Gerald, W.; Dracopoli, N.; Cordon-
Cardo, C.; Scher, H. I.; Hampton, G. M. Dysregulated Expression of Androgen-
Responsive and Nonresponsive Genes in the Androgen-Independent Prostate Cancer 
Xenograft Model CWR22-R1. Cancer Res. 2000, 60, 6134–6141. 

(176)  Suzuki, Y.; Kondo, Y.; Hara, S.; Kimata, R.; Nishimura, T. Effect of the hsp90 Inhibitor 
Geldanamycin on Androgen Response of Prostate Cancer under Hypoxic Conditions. 
Int. J. Urol. 2010, 17, 281–285. 

(177)  Lamoureux, F.; Thomas, C.; Yin, M.-J.; Kuruma, H.; Fazli, L.; Gleave, M. E.; Zoubeidi, 
A. A Novel HSP90 Inhibitor Delays Castrate-Resistant Prostate Cancer without Altering 
Serum PSA Levels and Inhibits Osteoclastogenesis. Clin. Cancer Res. 2011, 17, 2301–
2313. 

(178)  Mukaide, H.; Adachi, Y.; Taketani, S.; Iwasaki, M.; Koike-Kiriyama, N.; Shigematsu, 
A.; Shi, M.; Yanai, S.; Yoshioka, K.; Kamiyama, Y.; Ikehara, S. FKBP51 Expressed by 
Both Normal Epithelial Cells and Adenocarcinoma of Colon Suppresses Proliferation of 
Colorectal Adenocarcinoma. Cancer Invest. 2008, 26, 385–390. 

(179)  De Leon, J. T.; Iwai, A.; Feau, C.; Garcia, Y.; Balsiger, H. A.; Storer, C. L.; Suro, R. 
M.; Garza, K. M.; Lee, S.; Kim, Y. S.; Chen, Y.; Ning, Y.-M.; Riggs, D. L.; Fletterick, 
R. J.; Guy, R. K.; Trepel, J. B.; Neckers, L. M.; Cox, M. B. Targeting the Regulation of 
Androgen Receptor Signaling by the Heat Shock Protein 90 Cochaperone FKBP52 in 
Prostate Cancer Cells. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 11878–11883. 

(180)  Ward, B. K.; Mark, P. J.; Ingram, D. M.; Minchin, R. F.; Ratajczak, T. Expression of 
the Estrogen Receptor-Associated Immunophilins, Cyclophilin 40 and FKBP52, in 
Breast Cancer. Breast Cancer Res. Treat. 1999, 58, 267–280. 

(181)  Desmetz, C.; Bascoul-Mollevi, C.; Rochaix, P.; Lamy, P.-J.; Kramar, A.; Rouanet, P.; 
Maudelonde, T.; Mangé, A.; Solassol, J. Identification of a New Panel of Serum 
Autoantibodies Associated with the Presence of in Situ Carcinoma of the Breast in 
Younger Women. Clin. Cancer Res. 2009, 15, 4733–4741. 

(182)  Sivils, J. C.; Storer, C. L.; Galigniana, M. D.; Cox, M. B. Regulation of Steroid Hormone 
Receptor Function by the 52-kDa FK506-Binding Protein (FKBP52). Curr. Opin. 
Pharmacol. 2011, 11, 314–319. 

(183)  Solassol, J.; Mange, A.; Maudelonde, T. FKBP Family Proteins as Promising New 
Biomarkers for Cancer. Curr. Opin. Pharmacol. 2011, 11, 320–325. 



39 
 

(184)  Olesen, S. H.; Christensen, L. L.; Sørensen, F. B.; Cabezón, T.; Laurberg, S.; Orntoft, 
T. F.; Birkenkamp-Demtröder, K. Human FK506 Binding Protein 65 Is Associated with 
Colorectal Cancer. Mol. Cell. Proteomics 2005, 4, 534–544. 

(185)  Quinn, M. C. J.; Wojnarowicz, P. M.; Pickett, A.; Provencher, D. M.; Mes-Masson, A.-
M.; Davis, E. C.; Tonin, P. N. FKBP10/FKBP65 Expression in High-Grade Ovarian 
Serous Carcinoma and Its Association with Patient Outcome. Int. J. Oncol. 2013, 42, 
912–920. 

(186)  Henriksen, R.; Sørensen, F. B.; Ørntoft, T. F.; Birkenkamp-Demtroder, K. Expression 
of FK506 Binding Protein 65 (FKBP65) Is Decreased in Epithelial Ovarian Cancer Cells 
Compared to Benign Tumor Cells and to Ovarian Epithelium. Tumour Biol. 2011, 32, 
671–676. 

(187)  McKeen, H. D.; Byrne, C.; Jithesh, P. V; Donley, C.; Valentine, A.; Yakkundi, A.; 
O’Rourke, M.; Swanton, C.; McCarthy, H. O.; Hirst, D. G.; Robson, T. FKBPL 
Regulates Estrogen Receptor Signaling and Determines Response to Endocrine 
Therapy. Cancer Res. 2010, 70, 1090–1100. 

(188)  Sunnotel, O.; Hiripi, L.; Lagan, K.; McDaid, J. R.; De León, J. M.; Miyagawa, Y.; 
Crowe, H.; Kaluskar, S.; Ward, M.; Scullion, C.; Campbell, A.; Downes, C. S.; Hirst, 
D.; Barton, D.; Mocanu, E.; Tsujimura, A.; Cox, M. B.; Robson, T.; Walsh, C. P. 
Alterations in the Steroid Hormone Receptor Co-Chaperone FKBPL Are Associated 
with Male Infertility: A Case-Control Study. Reprod. Biol. Endocrinol. 2010, 8, 22. 

(189)  McKeen, H. D.; McAlpine, K.; Valentine, A.; Quinn, D. J.; McClelland, K.; Byrne, C.; 
O’Rourke, M.; Young, S.; Scott, C. J.; McCarthy, H. O.; Hirst, D. G.; Robson, T. A 
Novel FK506-like Binding Protein Interacts with the Glucocorticoid Receptor and 
Regulates Steroid Receptor Signaling. Endocrinology 2008, 149, 5724–5734. 

(190)  Li, Y.-Y.; Liu, L.-Q.; Yang, J.; Liu, W.; Chen, X.-J.; Li, X.-Q.; Du, W.; Huang, S.-A. 
[Effect of WISp39 on Proliferation, Cell Cycle and Apoptosis of U937 Cells]. Zhongguo 
Shi Yan Xue Ye Xue Za Zhi 2007, 15, 733–737. 

(191)  Bublik, D. R.; Scolz, M.; Triolo, G.; Monte, M.; Schneider, C. Human GTSE-1 
Regulates p21(CIP1/WAF1) Stability Conferring Resistance to Paclitaxel Treatment. J. 
Biol. Chem. 2010, 285, 5274–5281. 

(192)  Robson, T.; Price, M. E.; Moore, M. L.; Joiner, M. C.; McKelvey-Martin, V. J.; 
McKeown, S. R.; Hirst, D. G. Increased Repair and Cell Survival in Cells Treated with 
DIR1 Antisense Oligonucleotides: Implications for Induced Radioresistance. Int. J. 
Radiat. Biol. 2000, 76, 617–623. 

(193)  Valentine, A.; O’Rourke, M.; Yakkundi, A.; Worthington, J.; Hookham, M.; Bicknell, 
R.; McCarthy, H. O.; McClelland, K.; McCallum, L.; Dyer, H.; McKeen, H.; Waugh, 
D. J. J.; Roberts, J.; McGregor, J.; Cotton, G.; James, I.; Harrison, T.; Hirst, D. G.; 
Robson, T. FKBPL and Peptide Derivatives: Novel Biological Agents That Inhibit 
Angiogenesis by a CD44-Dependent Mechanism. Clin. Cancer Res. 2011, 17, 1044–
1056. 



40 
 

(194)  McClements, L.; Yakkundi, A.; Papaspyropoulos, A.; Harrison, H.; Ablett, M. P.; 
Jithesh, P. V; McKeen, H. D.; Bennett, R.; Donley, C.; Kissenpfennig, A.; McIntosh, S.; 
McCarthy, H. O.; O’Neill, E.; Clarke, R. B.; Robson, T. Targeting Treatment-Resistant 
Breast Cancer Stem Cells with FKBPL and Its Peptide Derivative, AD-01, via the CD44 
Pathway. Clin. Cancer Res. 2013, 19, 3881–3893. 

(195)  Yakkundi, A.; McCallum, L.; O’Kane, A.; Dyer, H.; Worthington, J.; McKeen, H. D.; 
McClements, L.; Elliott, C.; McCarthy, H. O.; Hirst, D. G.; Robson, T. The Anti-
Migratory Effects of FKBPL and Its Peptide Derivative, AD-01: Regulation of CD44 
and the Cytoskeletal Pathway. PLoS One 2013, 8, e55075. 

(196)  Robson, T.; James, I. F. The Therapeutic and Diagnostic Potential of FKBPL; a Novel 
Anticancer Protein. Drug Discov. Today 2012, 17, 544–548. 

(197)  Howard, B. A.; Furumai, R.; Campa, M. J.; Rabbani, Z. N.; Vujaskovic, Z.; Wang, X.-
F.; Patz, E. F. Stable RNA Interference-Mediated Suppression of Cyclophilin A 
Diminishes Non-Small-Cell Lung Tumor Growth in Vivo. Cancer Res. 2005, 65, 8853–
8860. 

(198)  Yang, H.; Chen, J.; Yang, J.; Qiao, S.; Zhao, S.; Yu, L. Cyclophilin A Is Upregulated in 
Small Cell Lung Cancer and Activates ERK1/2 Signal. Biochem. Biophys. Res. 
Commun. 2007, 361, 763–767. 

(199)  Qi, Y.-J.; He, Q.-Y.; Ma, Y.-F.; Du, Y.-W.; Liu, G.-C.; Li, Y.-J.; Tsao, G. S. W.; Ngai, 
S. M.; Chiu, J.-F. Proteomic Identification of Malignant Transformation-Related 
Proteins in Esophageal Squamous Cell Carcinoma. J. Cell. Biochem. 2008, 104, 1625–
1635. 

(200)  Obchoei, S.; Wongkhan, S.; Wongkham, C.; Li, M.; Yao, Q.; Chen, C. Cyclophilin A: 
Potential Functions and Therapeutic Target for Human Cancer. Med. Sci. Monit. 2009, 
15, RA221–32. 

(201)  Lee, J.; Kim, S. An Overview of Cyclophilins in Human Cancers. J. Int. Med. Res. 2010, 
38, 1561–1574. 

(202)  Li, Z.; Min, W.; Gou, J. Knockdown of Cyclophilin A Reverses Paclitaxel Resistance in 
Human Endometrial Cancer Cells via Suppression of MAPK Kinase Pathways. Cancer 
Chemother. Pharmacol. 2013, 72, 1001–1011. 

(203)  Choi, K. J.; Piao, Y. J.; Lim, M. J.; Kim, J. H.; Ha, J.; Choe, W.; Kim, S. S. 
Overexpressed Cyclophilin A in Cancer Cells Renders Resistance to Hypoxia- and 
Cisplatin-Induced Cell Death. Cancer Res. 2007, 67, 3654–3662. 

(204)  Bannon, J. H.; O’Donovan, D. S.; Kennelly, S. M. E.; Mc Gee, M. M. The Peptidyl 
Prolyl Isomerase Cyclophilin A Localizes at the Centrosome and the Midbody and Is 
Required for Cytokinesis. Cell Cycle 2012, 11, 1340–1353. 

(205)  Zhang, J.; Herscovitz, H. Nascent Lipidated Apolipoprotein B Is Transported to the 
Golgi as an Incompletely Folded Intermediate as Probed by Its Association with 



41 
 

Network of Endoplasmic Reticulum Molecular Chaperones, GRP94, ERp72, BiP, 
Calreticulin, and Cyclophilin B. J. Biol. Chem. 2003, 278, 7459–7468. 

(206)  Kim, J.; Choi, T. G.; Ding, Y.; Kim, Y.; Ha, K. S.; Lee, K. H.; Kang, I.; Ha, J.; Kaufman, 
R. J.; Lee, J.; Choe, W.; Kim, S. S. Overexpressed Cyclophilin B Suppresses Apoptosis 
Associated with ROS and Ca2+ Homeostasis after ER Stress. J. Cell Sci. 2008, 121, 
3636–3648. 

(207)  Fang, F.; Flegler, A. J.; Du, P.; Lin, S.; Clevenger, C. V. Expression of Cyclophilin B Is 
Associated with Malignant Progression and Regulation of Genes Implicated in the 
Pathogenesis of Breast Cancer. Am. J. Pathol. 2009, 174, 297–308. 

(208)  Allain, F.; Vanpouille, C.; Carpentier, M.; Slomianny, M.-C.; Durieux, S.; Spik, G. 
Interaction with Glycosaminoglycans Is Required for Cyclophilin B to Trigger Integrin-
Mediated Adhesion of Peripheral Blood T Lymphocytes to Extracellular Matrix. Proc. 
Natl. Acad. Sci. U. S. A. 2002, 99, 2714–2719. 

(209)  Ward, B. K.; Kumar, P.; Turbett, G. R.; Edmondston, J. E.; Papadimitriou, J. M.; Laing, 
N. G.; Ingram, D. M.; Minchin, R. F.; Ratajczak, T. Allelic Loss of Cyclophilin 40, an 
Estrogen Receptor-Associated Immunophilin, in Breast Carcinomas. J. Cancer Res. 
Clin. Oncol. 2001, 127, 109–115. 

(210)  Kang, B. H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S. J.; Altieri, D. C. Regulation of 
Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone 
Network. Cell 2007, 131, 257–270. 

(211)  Tavecchio, M.; Lisanti, S.; Lam, A.; Ghosh, J. C.; Martin, N. M.; O’Connell, M.; 
Weeraratna, A. T.; Kossenkov, A. V; Showe, L. C.; Altieri, D. C. Cyclophilin D 
Extramitochondrial Signaling Controls Cell Cycle Progression and Chemokine-Directed 
Cell Motility. J. Biol. Chem. 2013, 288, 5553–5561. 

(212)  Sicinski, P.; Donaher, J. L.; Parker, S. B.; Li, T.; Fazeli, A.; Gardner, H.; Haslam, S. Z.; 
Bronson, R. T.; Elledge, S. J.; Weinberg, R. A. Cyclin D1 Provides a Link between 
Development and Oncogenesis in the Retina and Breast. Cell 1995, 82, 621–630. 

(213)  Liou, Y.-C.; Ryo, A.; Huang, H.-K.; Lu, P.-J.; Bronson, R.; Fujimori, F.; Uchida, T.; 
Hunter, T.; Lu, K. P. Loss of Pin1 Function in the Mouse Causes Phenotypes 
Resembling Cyclin D1-Null Phenotypes. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1335–
1340. 

(214)  Bao, L.; Kimzey, A.; Sauter, G.; Sowadski, J. M.; Lu, K. P.; Wang, D.-G. Prevalent 
Overexpression of Prolyl Isomerase Pin1 in Human Cancers. Am. J. Pathol. 2004, 164, 
1727–1737. 

(215)  Girardini, J. E.; Napoli, M.; Piazza, S.; Rustighi, A.; Marotta, C.; Radaelli, E.; Capaci, 
V.; Jordan, L.; Quinlan, P.; Thompson, A.; Mano, M.; Rosato, A.; Crook, T.; Scanziani, 
E.; Means, A. R.; Lozano, G.; Schneider, C.; Del Sal, G. A Pin1/mutant p53 Axis 
Promotes Aggressiveness in Breast Cancer. Cancer Cell 2011, 20, 79–91. 



42 
 

(216)  Wulf, G. M.; Liou, Y.-C.; Ryo, A.; Lee, S. W.; Lu, K. P. Role of Pin1 in the Regulation 
of p53 Stability and p21 Transactivation, and Cell Cycle Checkpoints in Response to 
DNA Damage. J. Biol. Chem. 2002, 277, 47976–47979. 

(217)  Takahashi, K.; Akiyama, H.; Shimazaki, K.; Uchida, C.; Akiyama-Okunuki, H.; Tomita, 
M.; Fukumoto, M.; Uchida, T. Ablation of a Peptidyl Prolyl Isomerase Pin1 from p53-
Null Mice Accelerated Thymic Hyperplasia by Increasing the Level of the Intracellular 
Form of Notch1. Oncogene 2007, 26, 3835–3845. 

(218)  Toledo, F.; Lee, C. J.; Krummel, K. A.; Rodewald, L.-W.; Liu, C.-W.; Wahl, G. M. 
Mouse Mutants Reveal That Putative Protein Interaction Sites in the p53 Proline-Rich 
Domain Are Dispensable for Tumor Suppression. Mol. Cell. Biol. 2007, 27, 1425–1432. 

(219)  Lu, K. P.; Zhou, X. Z. The Prolyl Isomerase PIN1: A Pivotal New Twist in 
Phosphorylation Signalling and Disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 904–916. 

(220)  Van der Horst, A.; Khanna, K. K. The Peptidyl-Prolyl Isomerase Pin1 Regulates 
Cytokinesis through Cep55. Cancer Res. 2009, 69, 6651–6659. 

(221)  Harrison, D. E.; Strong, R.; Sharp, Z. D.; Nelson, J. F.; Clinton, M.; Flurkey, K.; Nadon, 
N. L.; Wilkinson, J. E.; Frenkel, K.; Christy, S.; Pahor, M.; Javors, M. A.; Fernandez, 
E.; Miller, R. A. Heterogeneous Mice. 2010, 460, 392–395. 

(222)  Neff, F.; Flores-dominguez, D.; Ryan, D. P.; Horsch, M.; Schröder, S.; Adler, T.; 
Afonso, L. C.; Aguilar-pimentel, J. A.; Becker, L.; Garrett, L.; Hans, W.; Hettich, M. 
M.; Holtmeier, R.; Hölter, S. M.; Moreth, K.; Prehn, C.; Puk, O.; Rácz, I.; Rathkolb, B.; 
Rozman, J.; Naton, B.; Ordemann, R.; Adamski, J.; Beckers, J.; Bekeredjian, R. 
Rapamycin Extends Murine Lifespan but Has Limited Effects on Aging. 2013, 123. 

(223)  Flisiak, R.; Feinman, S. V; Jablkowski, M.; Horban, A.; Kryczka, W.; Pawlowska, M.; 
Heathcote, J. E.; Mazzella, G.; Vandelli, C.; Nicolas-Métral, V.; Grosgurin, P.; Liz, J. 
S.; Scalfaro, P.; Porchet, H.; Crabbé, R. The Cyclophilin Inhibitor Debio 025 Combined 
with PEG IFNalpha2a Significantly Reduces Viral Load in Treatment-Naïve Hepatitis 
C Patients. Hepatology 2009, 49, 1460–1468. 

(224)  Damsker, J. M.; Okwumabua, I.; Pushkarsky, T.; Arora, K.; Bukrinsky, M. I.; Constant, 
S. L. Targeting the Chemotactic Function of CD147 Reduces Collagen-Induced 
Arthritis. Immunology 2009, 126, 55–62. 

(225)  Arora, K.; Gwinn, W. M.; Bower, M. A.; Watson, A.; Okwumabua, I.; MacDonald, H. 
R.; Bukrinsky, M. I.; Constant, S. L. Extracellular Cyclophilins Contribute to the 
Regulation of Inflammatory Responses. J. Immunol. 2005, 175, 517–522. 

(226)  Hoffmann, H.; Schiene-Fischer, C. Functional Aspects of Extracellular Cyclophilins. 
Biol. Chem. 2014, 395, 721–735. 

(227)  Satoh, K.; Fukumoto, Y.; Sugimura, K.; Miura, Y.; Aoki, T.; Nochioka, K.; Tatebe, S.; 
Miyamichi-Yamamoto, S.; Shimizu, T.; Osaki, S.; Takagi, Y.; Tsuburaya, R.; Ito, Y.; 
Matsumoto, Y.; Nakayama, M.; Takeda, M.; Takahashi, J.; Ito, K.; Yasuda, S.; 



43 
 

Shimokawa, H. Plasma Cyclophilin A Is a Novel Biomarker for Coronary Artery 
Disease. Circ. J. 2013, 77, 447–455.  

(228)  Felix, R. S.; Colleoni, G. W. B.; Caballero, O. L.; Yamamoto, M.; Almeida, M. S. S.; 
Andrade, V. C. C.; Chauffaille, M. de L. L. F.; Silva, W. A. da; Begnami, M. D.; Soares, 
F. A.; Simpson, A. J.; Zago, M. A.; Vettore, A. L. SAGE Analysis Highlights the 
Importance of p53csv, ddx5, mapkapk2 and ranbp2 to Multiple Myeloma 
Tumorigenesis. Cancer Lett. 2009, 278, 41–48. 

(229)  Solár, P.; Sytkowski, A. J. Differentially Expressed Genes Associated with Cisplatin 
Resistance in Human Ovarian Adenocarcinoma Cell Line A2780. Cancer Lett. 2011, 
309, 11–18. 

(230)  Li, X.-J.; Luo, X.-Q.; Han, B.-W.; Duan, F.-T.; Wei, P.-P.; Chen, Y.-Q. MicroRNA-
100/99a, Deregulated in Acute Lymphoblastic Leukaemia, Suppress Proliferation and 
Promote Apoptosis by Regulating the FKBP51 and IGF1R/mTOR Signalling Pathways. 
Br. J. Cancer 2013, 109, 2189–2198. 

(231)  Wiemels, J. L.; Bracci, P. M.; Wrensch, M.; Schildkraut, J.; Bondy, M.; Pfefferle, J.; 
Zhou, M.; Sison, J.; Calvocoressi, L.; Claus, E. B. Assessment of Autoantibodies to 
Meningioma in a Population-Based Study. Am. J. Epidemiol. 2013, 177, 75–83. 

(232)  Orr, B.; Riddick, A. C. P.; Stewart, G. D.; Anderson, R. A.; Franco, O. E.; Hayward, S. 
W.; Thomson, A. A. Identification of Stromally Expressed Molecules in the Prostate by 
Tag-Profiling of Cancer-Associated Fibroblasts, Normal Fibroblasts and Fetal Prostate. 
Oncogene 2012, 31, 1130–1142. 

(233)  Comtesse, N.; Zippel, A.; Walle, S.; Monz, D.; Backes, C.; Fischer, U.; Mayer, J.; 
Ludwig, N.; Hildebrandt, A.; Keller, A.; Steudel, W.-I.; Lenhof, H.-P.; Meese, E. 
Complex Humoral Immune Response against a Benign Tumor: Frequent Antibody 
Response against Specific Antigens as Diagnostic Targets. Proc. Natl. Acad. Sci. U. S. 
A. 2005, 102, 9601–9606. 

(234)  Yao, Y.-L.; Yang, W.-M. Nuclear Proteins: Promising Targets for Cancer Drugs. Curr. 
Cancer Drug Targets 2005, 5, 595–610. 

(235)  Halatsch, M. E.; Löw, S.; Hielscher, T.; Schmidt, U.; Unterberg, A.; Vougioukas, V. I. 
Epidermal Growth Factor Receptor Pathway Gene Expressions and Biological Response 
of Glioblastoma Multiforme Cell Lines to Erlotinib. Anticancer Res. 28, 3725–3728. 

(236)  Lloyd, C.; Grossman, A. The AIP (aryl Hydrocarbon Receptor-Interacting Protein) Gene 
and Its Relation to the Pathogenesis of Pituitary Adenomas. Endocrine 2014, 46, 387–
396. 

(237)  Meza-Zepeda, L. A.; Forus, A.; Lygren, B.; Dahlberg, A. B.; Godager, L. H.; South, A. 
P.; Marenholz, I.; Lioumi, M.; Flørenes, V. A.; Maelandsmo, G. M.; Serra, M.; Mischke, 
D.; Nizetic, D.; Ragoussis, J.; Tarkkanen, M.; Nesland, J. M.; Knuutila, S.; Myklebost, 
O. Positional Cloning Identifies a Novel Cyclophilin as a Candidate Amplified 
Oncogene in 1q21. Oncogene 2002, 21, 2261–2269. 



44 
 

(238)  Obama, K.; Kato, T.; Hasegawa, S.; Satoh, S.; Nakamura, Y.; Furukawa, Y. 
Overexpression of Peptidyl-Prolyl Isomerase-like 1 Is Associated with the Growth of 
Colon Cancer Cells. Clin. Cancer Res. 2006, 12, 70–76. 

(239)  Tomita-Mitchell, A.; Mahnke, D. K.; Struble, C. A.; Tuffnell, M. E.; Stamm, K. D.; 
Hidestrand, M.; Harris, S. E.; Goetsch, M. A.; Simpson, P. M.; Bick, D. P.; Broeckel, 
U.; Pelech, A. N.; Tweddell, J. S.; Mitchell, M. E. Human Gene Copy Number Spectra 
Analysis in Congenital Heart Malformations. Physiol. Genomics 2012, 44, 518–541. 

(240)  Brebi, P.; Maldonado, L.; Noordhuis, M. G.; Ili, C.; Leal, P.; Garcia, P.; Brait, M.; Ribas, 
J.; Michailidi, C.; Perez, J.; Soudry, E.; Tapia, O.; Guzman, P.; Muñoz, S.; Van Neste, 
L.; Van Criekinge, W.; Irizarry, R.; Sidransky, D.; Roa, J. C.; Guerrero-Preston, R. 
Genome-Wide Methylation Profiling Reveals Zinc Finger Protein 516 (ZNF516) and 
FK-506-Binding Protein 6 (FKBP6) Promoters Frequently Methylated in Cervical 
Neoplasia, Associated with HPV Status and Ethnicity in a Chilean Population. 
Epigenetics 2014, 9, 308–317.  

(241)  Wehrens, X. H. T.; Lehnart, S. E.; Huang, F.; Vest, J. A.; Reiken, S. R.; Mohler, P. J.; 
Sun, J.; Guatimosim, S.; Song, L. S.; Rosemblit, N.; D’Armiento, J. M.; Napolitano, C.; 
Memmi, M.; Priori, S. G.; Lederer, W. J.; Marks, A. R. FKBP12.6 Deficiency and 
Defective Calcium Release Channel (ryanodine Receptor) Function Linked to Exercise-
Induced Sudden Cardiac Death. Cell 2003, 113, 829–840.  

(242)  Helmer, R. A.; Martínez-Zaguilán, R.; Dertien, J. S.; Fulford, C.; Foreman, O.; Peiris, 
V.; Chilton, B. S. Helicase-like Transcription Factor (Hltf) Regulates G2/M Transition, 
Wt1/Gata4/Hif-1a Cardiac Transcription Networks, and Collagen Biogenesis. PLoS 
One 2013, 8, e80461.  

(243)  Periyasamy, S.; Hinds, T.; Shemshedini, L.; Shou, W.; Sanchez, E. R. FKBP51 and 
Cyp40 Are Positive Regulators of Androgen-Dependent Prostate Cancer Cell Growth 
and the Targets of FK506 and Cyclosporin A. Oncogene 2010, 29, 1691–1701.  

 

 



Aging 

Mitochondrial 
damage

Accumulation 
of ROS

DNA damage

Protein 
aggregation

NAD/resveratrol/caloric restriction

mTOR inhibition/
Antioxidants/
p38 inhibition

mTOR inhibition/
Increased chaperone activity/
Autophagy induction

Telomere activation

Inhibition 
of stem cell 
interactions 
with 
ME

Figure 1. Different mechanisms involved in aging and the associated targeting strategies. ME – microenvironment; 
NAD ‐ nicotaminamide adenine dinucleotide (the sirtuin pathway activator).
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Figure 2. PPIases in aging and age‐related diseases (cancer, cardiovascular disease and chronic kidney disease).



Age-Related 
Diseases 

PPIase Mechanisms References 

Cardiovascular 
diseases 

FKBP12 
Cyclophilin A 
Cyclophilin D 
Pin1  

Calcium augmentation; RyRs channel regulation; hypertension 
Pro-inflammatory; generation of ROS; atherosclerosis, ACS biomarker 
Stabilisation of the mPTP complex;  
Binds to Akt, MEK and Raf-1 

56-63 
67-72 
73,74 
75 

Type II diabetes FKBP51 
 
Cyclophilin A 

Associated with T2D phenotype; gene expression changes in response to stress 
and diet 
Biomarker of inflammation in T2D and vascular complications 

85,86 
 
70,87 

Chronic Kidney 
Disease 

FKBP12 
FKBP51 
Cyclophilin A 
Pin1 

Calcium oxylate crystal deposition 
DNA methylation; expression induced by aldosterone 
Association with renal acidosis, diabetic nephropathy, renal cell carcinoma 
Downregulation in secondary parathyroidism, complication of CKD 

101 
108-110 
111-113 
114 

Neurodegeneration FKBP12 
 
FKBP38  
FKBP51 
FKBP52 
FKBPL 
Cyclophilin A 
 
Cyclophilin D 
 
Pin1 

Augmentation of calcium and APP processing; downregulation in Alzheimer’s 
disease 
Inhibition of mitochondrial Bcl-2 in the brain 
Microtubule stabilisation through Hsp90 dephosphorylation of tau  
Microtubule destabilisation and tubulin depolymerisation  
Protective role in Alzheimer’s disease 
Regulation of inflammatory pathways, NF-κB and MMP-9; release of 
neurotoxins 
Stabilisation of mPTP complex; regulation of Aβ protein activity within mPTP 
complex 
Stabilisation and regulation of tau and Aβ 

130-134 
 
135-138 
139-141 
132,141-146 
147 
148 
 
149 
 
42,150 

Age-related 
macular 
degeneration 

FKBPL 
 

AMD susceptibility gene  154,155 

Cancer FKBP12 
FKBP38 

Apoptosis via TGF-β mitochondrial pathway 
Chemoresistance via Bcl-2 

161-165 
166-168 



FKBP51 
 
FKBP52 
 
FKBP65 
 
FKBPL 
 
Cyclophilin A 
 
Cyclophilin B 
 
Cyclophilin 40 
Cyclophilin D 
Pin1 

Regulation of Akt, NF-κB pathways and AR; chemoresistance, apoptosis, 
stemness 
AR-dependent gene expression in prostate cancer; novel breast cancer 
biomarker; DNA methylation in ER- breast cancer 
Malignant transformation in colorectal cancer; downregulation in ovarian 
carcinoma  
Anti-angiogenic and anti-cancer stem cell properties via CD44 dependent 
mechanism; steroid receptor and cell cycle regulation 
Regulated by p53 and HIF-1α; stimulation of endothelial cell migration; 
apoptosis, invasion, metastases chemoresistance 
Regulates ER complexes; protection against ER stress induced death, tumour 
progression in breast cancer 
mRNA levels regulated in response to stress in breast and prostate cancer 
mPTP complex formation; apoptosis resistance 
Oncogenic potential; regulation of CSCs through the Notch pathway 

169-178 
 
179-183 
 
184-186 
 
187-196 
 
113,197-204 
 
205-208 
 
209 
210-213 
213-220 

 
Table 1: Summary of the roles of PPIases in the age-related diseases. ROS – reactive oxygen species; ACS – acute coronary syndrome; MEK 
- mitogen activated protein kinase; mPTP - mitochondrial permeability transition pore; APP – amyloid precursor protein; T2D – type II diabetes; 
RyRs - ryanodine receptors; AR-androgen receptor; HIF-1α – hypoxia inducible factor 1 α; ER – oestrogen receptor; CSCs – cancer stem cells 
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