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Abstract—Fully Homomorphic Encryption (FHE) is a recently
developed cryptographic technique which allows computations
on encrypted data. There are many interesting applications
for this encryption method, especially within cloud computing.
However, the computational complexity is such that it is not yet
practical for real-time applications. This work proposes optimised
hardware architectures of the encryption step of an integer-
based FHE scheme with the aim of improving its practicality.
A low-area design and a high-speed parallel design are proposed
and implemented on a Xilinx Virtex-7 FPGA, targeting the
available DSP slices, which offer high-speed multiplication and
accumulation. Both use the Comba multiplication scheduling
method to manage the large multiplications required with uneven
sized multiplicands and to minimise the number of read and write
operations to RAM. Results show that speed up factors of 3.6
and 10.4 can be achieved for the encryption step with medium-
sized security parameters for the low-area and parallel designs
respectively, compared to the benchmark software implementa-
tion on an Intel Core2 Duo E8400 platform running at 3 GHz.

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) is a recently devel-
oped type of encryption scheme, introduced by Gentry [1],
which enables computations on data while it remains in an
encrypted form. A somewhat homomorphic encryption (SHE)
scheme is firstly created, which allows a limited number of
additions and multiplications of ciphertexts. This is extended
using the techniques, such as squashing and bootstrapping,
proposed by Gentry in [1] to create a FHE scheme, which
supports unlimited multiplications and additions of ciphertexts.
Random noise is generated with each operation, in particular
with multiplications, and there are various methods proposed
to manage this noise as it grows with each computation, such
as modulus switching, which has been proposed by Brakerski
et al. [2]. An application of FHE, for example, is secure
computation on the cloud whereby users could take advantage
of the cloud computing platform, without having to disclose
data to a third party service provider. Another application of
SHE and FHE is within multi-party computation, and schemes
for this purpose have been proposed [3], [4].

FHE schemes have greatly advanced over recent years, since
its introduction in 2009 [1]. There has been a vast array of
work in the theoretical domain [2], [5]–[13], however current
schemes are not yet efficient enough for real-time applications.
For example, an evaluation of AES using FHE is reported
to take around 36 hours on a machine with 256 GB RAM

[10]; in another software implementation of the FHE scheme
proposed by Gentry and Halevi, bitwise encryption at the
highest security level is stated to take 3 minutes and the public
key sizes required in this scheme range from 17 MB to 2.25
GB [5].

Thus, to address this shortcoming, optimised architectures
that target alternative platforms, such as Graphics Processing
Units (GPUs) and FPGAs, have recently been proposed [14]–
[19]. Wang et al. [14] implemented Gentry and Halevi’s FHE
scheme [5] on the NVIDIA C2050 GPU and achieved speed
up factors of around 7 compared to the original implemen-
tation at a small security level. Furthermore, a design for a
large-number multiplier for FHE targeting a Stratix-V FPGA
technology was presented last year by Wang et al. [15]; this
multiplier uses the FFT algorithm and is reported to be twice
as fast as the same multiplication implemented on the NVIDA
C2050 GPU.

Previously, Cao et al. proposed the first hardware imple-
mentation [16] of the encryption step of an FHE scheme
over the integers [11], specifically investigating the use of a
Virtex-7 FPGA platform. The experimental results reported
a speed improvement factor of 11.25 for an implementation
on a Virtex-7 XC7VX980T FPGA of the encryption step
using the large security parameters compared to the original
software implementation [11]. An extended version of this
work is available on the IACR ePrint Archive [20] and includes
optimised hardware architectures for the encryption step of the
two integer-based FHE schemes [11], [12].

Architectures targeting Application Specific Integrated Cir-
cuit (ASIC) technology have also been proposed to improve
the performance of FHE schemes [17], [18]. Doröz et al
presented a custom hardware architecture for a million-bit
multiplier for the implementation of Gentry and Halevi’s FHE
scheme [5], and estimates show similar performance to the
original software implementation. All of the previous hardware
and GPU implementations to date employ the Fast Fourier
Transform (FFT) to perform the large scale multiplications
required for these FHE schemes.

The objective of this work is to design an optimised
architecture for the implementation of the encryption step
of the FHE scheme over the Integers specifically tailored to
a FPGA device. Unlike previous work which used the FFT
for the large multiplication operations, an alternative method
for large integer multiplication is used in our work, which



utilises the high speed DSP multiplication blocks (DSP48E1s)
available on Xilinx Virtex-7 FPGAs to implement the Comba
multiplication scheduling method [21]. This builds on previous
work on the use of DSP slices and Comba multiplication for
the hardware acceleration of FHE [19], where a hardware ar-
chitecture for a Comba multiplier was proposed and estimated
timings were given for the large integer multiplier required
in the encryption step of an integer-based encryption scheme
[12]. Rather than estimating timings, this work presents imple-
mentation and synthesis results for a Xilinx Virtex-7 FPGA of
two optimised hardware architectures for the encryption step.

A Xilinx Virtex-7 FPGA is targeted in particular in this
work because of the high suitability of FPGAs for DSP
applications. Virtex-7 FPGAs contain many DSP slices, each
offering dedicated (25 x 18)-bit multiplication and 48-bit
accumulation, which can run at frequencies of up to 741 MHz
[22]. Moreover FPGAs are reconfigurable which allows for
fast prototyping and testing.

There are several types of FHE schemes, which have
developed from the original lattice-based schemes proposed
by Gentry [1], [5], [6]. More recent schemes are based on the
learning with errors and ring learning with errors problems,
such as [2], [8]–[10]. Another type of FHE scheme is the
proposed FHE over the integers, introduced by van Dijk et
al. [7] and extended by Coron et al. [11], [12]. FHE over
the integers has been selected as the target FHE scheme in
our work, because of its comparable performance to other
FHE schemes, and additionally there have been further ad-
vancements in the theoretical domain, which have improved
the performance by minimising the size of the public keys
required [12] and with the use of batching techniques [13].
Moreover, the designs proposed include building blocks, such
as large integer multiplication, which are integral to most FHE
schemes, such as Gentry and Halevi’s FHE scheme [5].

The remainder of this paper is organised as follows: Section
II gives an overview of FHE over the integers with particular
focus on the encryption step to be implemented; the Comba
multiplication technique is outlined in Section III; Section
IV details the Barrett modular reduction method used in the
implementations; in Sections V and VI the two novel archi-
tectures for the FHE encryption step are presented; synthesis
results are detailed in Section VI, along with a comparison to
previous implementations and finally, Section VII concludes
the paper.

II. FULLY HOMOMORPHIC ENCRYPTION OVER THE
INTEGERS

FHE over the Integers was introduced in 2010 by van Dijk
et al. [7]. This type of FHE scheme is relatively simpler than
other FHE schemes and is based on the Approximate GCD
problem: given several xi, where xi = p · qi + ri, find the
secret key p. The original FHE scheme over the integers [7]
was subsequently extended by Coron et al [11], [12], where
in particular the public key sizes were reduced, through the
use of pseudo random number generation.

TABLE I: Parameter sizes for encryption step in (1)

Param. Sizes Bit-length, xi Bit-length, bi τ
Toy 150k 936 158
Small 830k 1476 572
Medium 4.2m 2016 2110
Large 19.0m 2556 7695

This work focuses on the encryption step in the scheme
proposed in [12]. The encryption step is one of several steps
within the scheme and contains two important building blocks,
large integer multiplication and modular reduction. Although
we initially focus solely on the encryption step in this work,
the construction and optimisation of these building blocks
required in the encryption step will also be used in future work
to implement the other steps within this FHE scheme, and
moreover can also be used to implement other FHE schemes.

The encryption step is defined as

c← m+ 2r + 2

τ∑
i=1

xi · bi mod x0 (1)

where m ∈ {0, 1} is the message bit; r is a random noise
parameter; xi are integers generated from the public key as
described in the key generation step in [12]; bi are randomly
selected integers, which are much smaller than the xi. The
parameter sizes are given in Table I. The selection of suitable
parameters is out of the scope of this current work; for more
information on the security levels, parameter selection and for
detail on the rest of the FHE scheme, see the original work
by van Dijk et al [7] and Coron et al [11], [12].

III. COMBA MULTIPLICATION

As can be seen from Equation (1), a large multiply-
accumulate is required, which is the main bottleneck in the
encryption step. As mentioned in Section II, multiplication
is also needed in other steps and in other FHE schemes in
the literature, hence the work is transferable. Currently, the
approach taken by the research community is to use the Fast
Fourier Transform for fast multiplication, which is suitable for
very large multiplication sizes.

An alternative fast multiplication method is Karatsuba mul-
tiplication [23] , which is asymptotically faster than traditional
schoolbook multiplication. It requires intermediate values to
be stored for each multiplication, and hence is not very
suitable for an FPGA implementation of these FHE schemes,
as they require very large multiplications and the storage of
intermediate values would be problematic.

Therefore, we take an alternative approach and make use
of the fast embedded multiplication blocks available within
the DSP slices on Xilinx Virtex-7 FPGAs and combine this
with the Comba scheduling method [21]. As can be seen from
Table I, the xi are much greater than the bi. To minimise the
number of read and write operations, the multiplication block
width w is set to the next power of two greater than or equal
to the the bi bit length. Thus, the multiplication block width



is 1024, 2048, 2048 and 4096 for the four parameter groups
respectively.

Comba multiplication is a scheduling method to effectively
control the multiplication and accumulation of partial products
[21]. It reduces the number of expensive write accesses to
memory compared to traditional school book multiplication.
For example, if the Comba scheduling method is used to
multiply two large integers x and y, these integers are divided
into several smaller words; thus x and y have n0 and n1
words respectively, and these are multiplied and accumulated
to calculate the large integer multiplication of x and y.
Instead of writing the n0 × n1 partial products to memory,
as necessary for schoolbook multiplication, only n0 + n1 − 1
partial products are required when the Comba scheduling
method is used. Following Algorithm 1, after each partial
product multiplication-accumulation step the least significant
word is written to memory and the remainder is shifted and
then accumulated with the next partial product.

Algorithm 1: Comba partial product accumulation
Input: n0-word x, n1-word y, where n0 ≤ n1
Output: (n0 + n1 − 1) partial products, ppi

1: for i in 0 to (n0 + n1 − 2) do
2: if n0 < i then
3: ppi =

∑i−1
k=0(xk × bi−k)

4: else
5: ppi =

∑n−1
k=0(xk × bi−k)

6: end if
7: end for

return ppi

Güneysu demonstrates a parallelised Comba multiplication
method, which takes advantage of the available DSP blocks
on an FPGA [24]. The accumulation within the Comba mul-
tiplication is also carried out using the dedicated accumulator
available in each DSP slice. We take a similar approach for
the multiplications required in Equation (1).

IV. BARRETT MODULAR REDUCTION

The most commonly used modular reduction methods are
the Montgomery and Barrett methods. Modular reduction in-
volves division and hence is a costly operation in hardware. We
use an improved Barrett reduction method in our design rather
than Montgomery, which requires expensive pre-processing
and post-processing to and from the Montgomery domain.
This lends itself more to repeated reduction operations, such
as in an exponentiation operation, which Equation (1) does
not require.

Barrett reduction is used to carry out the modular reduction
required in the encryption step in Equation (1). The reduction
algorithm uses two multiplications and a subtraction. The same
multiplication block will be used for both the multiplication
and the modular reduction in the proposed low-area design, as
these operations are sequential. This minimises the hardware
area usage.

The Barrett Reduction method is optimised, as proposed by
Dhem [25], so that only one subtraction is needed after the
multiplication, when α ≥ m and β ≤ −2, as described in
Algorithm 2. This algorithm was also previously used in the
FPGA implementation of the encryption step of integer-based
FHE [16]; however as mentioned, this previous work used the
FFT algorithm rather than the Comba multiplication algorithm
as used here.

Algorithm 2: Barrett reduction [25], [26]
Input: x, m-bit p, α, β and a precomputed constant

p1 = b2m+α/pc
Output: y = xmod p

1: σ = b bx/2
m+βc×p1
2α−β c;

2: p̂ = σ × p;
3: y1 = x− p̂ and y2 = y1 − p̂;
4: if y2 < 0 then
5: y = y1
6: else
7: y = y2
8: end if

return y

V. HARDWARE ARCHITECTURE FOR ENCRYPTION STEP

The main building block in the encryption step (1) to
be implemented is the multiplication-accumulation unit. Two
architectures are proposed; both architectures contain a finite
state machine, controlling the data unit and the read and
write operations. The designs both use off-chip memory to
store input operands, intermediate values and final results.
The main difference between the two architectures is the
number of multiplication blocks: the first design contains just
one muliplication block, minimising resource usage, and the
second design contains several multiply-accumulate blocks,
maximising speed.

The DSP slices available on Xilinx Virtex-7 FPGAs are used
within the multiplication blocks in both designs. Figure 1 is
a structural overview of a DSP slice, as given in the Xilinx 7
Series DSP48E1 Slice User Guide [27]. Both a 25 × 18- bit
signed multiplier and a 48-bit accumulation unit are offered
in each slice. Thus, a 16-bit unsigned multiplier is used in
each slice in the multiplication blocks in both designs in this
section. Each block consists of w

16 DSP slices, where w is the
width of the overall multiplication in each block and is given
in Table II.

The target of this work is an optimised architecture and
implementation of the encryption step introduced in Section
II, in order to improve its performance. Thus, it is assumed
that there is enough off-chip memory available to store input
operands, intermediate values and final results. This assump-
tion is reasonable, as the designs proposed in this work use
64-bit read and write operations and the FPGA can access
shared memory, for example with a PC, using a high speed
PCI bus.



 

 

Fig. 1: Xilinx 7 Series DSP48E1 Slice [27]

A. Low-area Architecture Design

Figure 2 depicts the architecture of the first proposed design,
which aims to minimise the area resource required. The main
element in this architecture is one multiplication block of
width w, approximately the size of the smaller multiplicand
bi, which is controlled by a finite state machine. The same
multiplication block is also repeatedly used within the modular
reduction step. The design therefore minimises area usage, but
obviously this somewhat limits the performance. The multi-
plexers control the adders for two uses: addition required for
the multiplication-accumulation operation (when acc sel = 1)
and secondly subtraction required in the modular reduction
operation (when acc sel = 0).

+

MULT
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Fig. 2: Low-area architecture design of encryption step

B. Parallel Architecture Design

The goal of the second design is speed. The maximum
possible number of multiply-accumulate blocks that can fit
on a high-end Virtex-7 FPGA are used in this architecture
in order to maximise the performance of the encryption step.
The Virtex-7 FPGA XC7VX980T is targeted because it has
the largest number of DSP slices and a large amount of logic
cells. The parallel architecture is outlined in Figure 4 and uses
multiple multiply-accumulate blocks. The architecture of an
individual multiply-accumulate block is illustrated in Figure
3. The number of blocks depends on the size of the multiplier
w, listed in Table II, which is the size of next power of two
greater than or equal to the number of bits in the smaller
operand in the multiplication block bi. As the size of the bi
operand increases with increasing parameter security levels,
from the smallest toy security setting to the large security
parameter setting, the number of multiplication blocks that
can fit on the FPGA decreases.

MULT

REGISTER

+

REGISTER

Fig. 3: Multiply-accumulate block design

VI. RESULTS

The two proposed architectures were implemented using
the Xilinx ISE Design Suite 14.1 synthesis tool. The target
device is the Virtex-7 XC7VX980T-2FFG1926, the Virtex-7
FPGA with the largest number of DSP slices. The synthesis
results and hardware area usage are given in Table II and
Table III for the parallel and low-area designs respectively.
These designs fit comfortably on the target FPGA device.
Moreover, the low-area design achieves high clock frequencies
of around 300 MHz for the four parameter security sizes,
which are much greater than the clock frequencies achieved
in the implementation of the high-speed architecture. It should
be noted that post place and route of the designs will give
slightly worse results; however the speed of the read and
write operations can be greatly improved upon, with the use of
external memory interfaces and for example DDR3 SDRAM
memory, which can run at four times the clock frequency [28].

As expected, the hardware resource utilisation is much
greater for the implementation of the encryption step using



TABLE II: Synthesis results for the high-speed parallel architecture

Param. w, Multiplication Parallel Mul-Acc Freq. (MHz) DSP48E1s Slice Slice
Sizes block bit-width Blocks Reg LUTs

Toy 1024 20 197.465 1344 469577 262054
Small 2048 10 192.806 1408 491712 311914
Medium 2048 10 197.758 1408 497773 313104
Large 4096 5 197.758 1536 542949 365315
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Fig. 4: Parallel architecture design of encryption step

the high-speed architecture. It is to be noted that it is possible
to fit more multiply-accumulate blocks on the target-device
than the number stated in Table II, because the target FPGA
has 3600 available DSP48E1 slices and 612000 Slice LUTs.
However the synthesis frequencies decrease with the addition
of multiply-accumulate blocks and eventually slow the perfor-
mance. Further investigation into this issue will be the subject
of future work.

TABLE III: Synthesis results for the low-area architecture

Param. Sizes Freq. (MHz) DSP48E1s Slice Reg Slice LUTs
Toy 307.754 64 19167 11976
Small 293.251 128 37774 23694
Medium 293.822 128 37797 23794
Large 227.388 256 74997 53713

TABLE IV: Average running time of the existing implemen-
tations of the integer-based FHE encryption step

Design Toy Small Medium Large
Low-area architecture 0.016s 0.313s 5.773s 81.550s
High-speed architecture 0.006s 0.114s 2.018s 32.744s
Original scheme1 [12] 0.05s 1.0s 21s 7 min 15s
FPGA implementation [20] 0.011s 0.306s 7.586s 159.173s

The timings in Table IV are calculated using the clock
cycle count and the synthesized design frequencies are stated
in Table II and Table III. The read and write operations to
external RAM are included within the clock cycle count; two
clock cycles are used to read or write each 64-bit word to
and from the memory. For example, the clock cycle latency
for the multiplication operation is calculated as follows: the
multiplication unit requires 2× d w16e+ 2 clock cycles, where
16-bits is the size of the multiplication used within each DSP
block and w is the multiplication block width, defined in Table
II. In the first architecture, τ × d|xi|/we multiplications are
required. Thus for solely the multiplication operation required
in the low-area design, for example the toy sized design
requires 158× d 1500001024 e × (2× d 102416 e+ 2) = 3019380 clock
cycles, which takes around 0.0098s.

As can be seen in Table IV, both proposed architectures
perform better than the benchmark software implementation
[12]. The first and second designs are approximately 3 times
and 8-10 times faster respectively when compared to the
original results. This matches the speed up factors achieved by
other hardware implementations of alternative FHE schemes.

Cao et al. [20] have also implemented optimised archi-
tectures for the same encryption step (1) targeting the same
Virtex-7 FPGA device and using FFT for the large integer
multiplication. For comparison purposes, the timing results of
the design which fits on the target Virtex-7 FPGA [20] are
given in the last row of Table IV. As can be seen from this
table, our proposed high-speed architecture performs consis-
tently better than the previous implementations. For example
for the medium parameter size, the high-speed architecture is
10.5 times faster than the original software implementation
and 3.8 times faster than the implementation using the FFT
multiplier [20]. Moreover, our design reduces the number
of write operations required by using the Comba scheduling
method instead of the schoolbook multiplication scheduling
used in [20], which requires intermediate read and write
operations. The Comba scheduling method employed in the
proposed designs in this work ensures that the partial products
are accumulated within the multiply-accumulate blocks, and
the only write operations are for the digits of the final result
of the multiply-accumulate operation, stated in Equation (1).
To the best of the authors’ knowledge, no other comparable
hardware architectures exist other than those provided in Table
IV.

Our designs also use a reasonably small (64-bit) memory
interface. These results from Table IV can also be further
improved upon, for example, by using a pseudo-random
number generator to generate public key values on the fly as



proposed in [12], rather than reading from off-chip memory.
This, and both algorithmic and implementation optimisations,
such as batching, would further increase the practicality of
these schemes.

VII. CONCLUSION

In conclusion, novel optimised low-area and parallel archi-
tectures of the encryption step of an integer-based FHE scheme
are proposed and optimally implemented on a Virtex-7 FPGA,
achieving speed up factors of around 3 and 10 when compared
to the benchmark software implementation respectively. The
results achieved illustrate that the use of an optimised archi-
tecture to a specific FPGA device which contains specialised
DSP slices improves the practicality of the implementation of
these FHE schemes and brings them closer to deployment.
However further research into optimisations is still required,
both at the algorithmic and the architectural level, before FHE
schemes can be used in real-time applications. Future work
will investigate the use of the Comba scheduling method with
the FFT multiplier in order to provide further performance
improvements to FHE.
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