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Neurobiology of Disease
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Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during
which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways
regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT
in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that,
acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also
important for NDO. This study aimed to clarify this issue.

Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased
in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indi-
cating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development
of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn.
Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may
have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and
may provide a significant contribution to create more efficient therapies to manage SCI patients.
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Introduction
One of the most important consequences of spinal cord injury
(SCI) is severe urinary dysfunction (de Groat and Steers, 1990;

Cruz and Cruz, 2011). Trauma is immediately followed by spinal
shock, during which the bladder is areflexic and urinary retention
occurs. Spinal shock is slowly replaced by an involuntary spinal
micturition reflex controlled by a circuit located at lumbosacral
spinal cord level. This new spinal micturition reflex does not
guarantee the coordination between detrusor contraction and
bladder outlet relaxation (Cruz and Cruz, 2011). Consequently,
many SCI patients develop a functional bladder outlet obstruc-
tion called detrusor sphincter dyssynergia (DSD), which leads to
long periods of high intravesical pressure. This increase in blad-
der pressure is punctuated by strong involuntary detrusor con-
tractions, a condition termed neurogenic detrusor overactivity
(NDO). Rises in intravesical pressure endanger urinary tract and
renal function and can trigger episodes of autonomic dysreflexia
(Rabchevsky, 2006). Therefore, initial management of SCI pa-
tients typically includes measures to protect kidney function by
relieving DSD and reducing pressure. Once intravesical pressure
is under control, incontinence emerges as a critical point to the
quality of life of these patients. Results from a series of surveys
are evident: after improving motor function, regaining blad-
der control is of the highest priority for SCI patients (Ku, 2006;
French et al., 2010; Simpson et al., 2012). Antimuscarinic
drugs and onabotulinum toxin A are used to reduce NDO and
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intravesical pressure (Cruz et al., 2011; Sahai et al., 2011) but
these therapies are unable to reverse or to prevent the emer-
gence of NDO.

It is currently assumed that NDO and DSD result from mas-
sive reorganization of neuronal pathways located in the lumbo-
sacral spinal cord (Vizzard, 2006; Cruz and Cruz, 2011), although
the molecular mechanisms are unclear. In the bladder significant
cellular remodeling occurs, including smooth muscle hypertro-
phy, patchy denervation, and changes in interstitial cell (IC) pop-
ulations (Johnston et al., 2012). Several studies suggest that
neurotrophins (NTs) may be important mediators of such plastic
changes (Ochodnický et al., 2011, 2012; Cruz, 2014), in particu-
lar, NGF, a neurotrophin that plays a key role in the regulation of
the peripheral nervous system (Pezet and McMahon, 2006; Viz-
zard, 2006). Immunoneutralization of this NT has been shown to
block bladder dysfunction in SCI rats (Seki et al., 2002, 2004). In
contrast, the contribution of other NTs to NDO, most notably
BDNF, remains poorly investigated. BDNF is extremely abun-
dant in the CNS where it modulates neuroplasticity at spinal cord
level. Its participation in central sensitization associated with
chronic pain is well established (Merighi et al., 2004, 2008). Acute
intrathecal administration of BDNF quickly produces cutaneous
pain and bladder hyperactivity (Frias et al., 2013) whereas its
intrathecal blockade was shown to reduce pain and bladder hy-
peractivity in rats with chronic cystitis (Frias et al., 2013). There-
fore, the aim of the present study was to investigate the
contribution of BDNF to the emergence of NDO using a rat
model of SCI.

Materials and Methods
Animals. Female Wistar rats from Charles River weighing 250 –275 g
were used. Animals were kept on a 12 h dark/light cycle, in a temperature-
controlled environment with ad libitum access to food and water. All
efforts were made to reduce animal stress and suffering as well as the
number of animals used. The ethical guidelines for investigation of ex-
perimental pain in animals (Zimmermann, 1983) and the European
Commission Directive of 22 September 2010 (2010/63/EU) were care-
fully followed in all procedures included in this study.

Chemicals and reagents. All surgeries were performed under deep an-
esthesia induced by intraperitoneal injection of a mixture of medetomi-
dine (0.25 mg/kg) and ketamine (60 mg/kg), diluted in sterile saline. For
cystometries and terminal handling, rats received a subcutaneous bolus
of urethane (1.2 g/kg) as anesthetic.

The recombinant protein TrkB-Ig2, which is an extracellular Ig-like
domain of the receptor TrkB that binds to BDNF with picomolar affinity,
was produced in-house and diluted in 20 mM Tris buffer, pH 8.2; 100 mM

NaCl; and 10% glycerol (Banfield et al., 2001; Naylor et al., 2002). BDNF
(Neuromics), saline, and TrkB-Ig2 were delivered into the subarachnoid
space via osmotic mini-pumps (Alzet). Substances were delivered for 7 d
(Model 2001) or 28 d (Model 2004).

For cell culture, DMEM-F12, FBS, penicillin/streptomycin (Pen/
Strep), and L-glutamine were bought from Invitrogen. Collagenase (type
IV-S), BSA, poly-L-lysine, and laminin were purchased from Sigma. B27,
a serum-free supplement for neural cell culture, came from Gibco
whereas NGF 2.5S came from Millipore.

Spinal cord transection and cystometry. The model of SCI chosen for the
present study was chronic spinal cord transection. One group of female
Wistar rats were spinal intact and used as controls (Group A; Table 1).
Two other groups were only submitted to spinal cord injury and left to
recover for 1 week (Group B) or 4 weeks (Group C). The spinal cord was
completely sectioned at T9 level and sterile Gelfoam was placed between
the retracted ends of the cord. The remaining groups of rats underwent
surgical implantation of a silicone catheter (SF Medical; internal diame-
ter: 0.3 mm, outer diameter: 0.635 mm; Kerr et al., 1999; Thompson et
al., 1999; Cruz et al., 2005, 2006; Frias et al., 2013) followed by complete
spinal cord transection. Previously sterilized catheters were placed into

the lumbar subarachnoid space at the L5/L6 spinal cord level. Briefly, a
laminectomy was performed between T9 and 10 and the meninges were
pierced. The catheter was inserted under the subarachnoid membrane
and pushed until the tip reached the L5-L6 spinal cord segment. This was
followed by spinal cord sectioning. The other end of the tip of the cath-
eter was connected to an osmotic mini-pump (for continuous delivery of
sterile saline, TrkB-Ig2, or BDNF; see below) placed between the shoulder
blades and left for 1 week or 4 weeks.

In one group of SCI animals, the subcutaneous end of the catheter was
externalized for acute drug delivery 4 weeks after surgery (Group D).
Animals received sequential intrathecal injections of sterile saline and
TrkB-Ig2 (1 �g; 10 and 20 �g in a volume of 25 �l) every 30 min while
bladder reflex activity was registered. Injection of TrkB-Ig2 was followed
by a flush of the same volume of saline to assure that all recombinant
protein was injected into the subarachnoid space.

In two groups of SCI animals, the intrathecal catheter was connected
to an osmotic mini-pump for continuous delivery of either sterile saline
(Group E) or TrkB-Ig2 (20 �g/d; Group G) for 1 week. On the seventh
day, bladder reflex activity was evaluated by cystometry. In three other
groups of SCI rats, as above, the silicone catheter was connected to an
osmotic mini-pump for continuous delivery of either sterile saline
(Group F) or BDNF (0.7 and 2.1 �g/d; Groups H and I, respectively) for
a period of 4 weeks. The smallest dose was chosen as potentially produc-
ing effects on bladder function without cutaneous pain (Frias et al., 2013)
whereas the highest dose was based on the effects observed with 0.7 �g/d.
No side effects were registered in SCI animals submitted to either chronic
BDNF sequestration or chronic administration of BDNF during the ex-
perimental period.

All animals were carefully monitored and received a daily intraperito-
neal injection of antibiotic (ciprofloxacin, 1 mg/kg) for 2 weeks after
surgery. To avoid urinary retention, bladders were manually emptied by
abdominal compression twice every day. Because this procedure is more
difficult to perform in male rats, female animals were preferred in the
present study.

For cystometry, the bladder was exposed through a low abdominal
midline incision and a 21 gauge needle was inserted into the bladder
dome for saline infusion. Animals were left untouched for 15–30 min to
allow bladder stabilization. Body temperature was maintained at 36 –
37°C with a heating pad. The urethra remained unobstructed throughout
the experiment so that infused saline could easily be expelled by bladder
contractions. After bladder stabilization, saline infusion was initiated and
bladder reflex activity was recorded. Saline was infused through the dome
needle at a constant rate of 6 ml/h while bladder contractions were reg-
istered by a pressure transducer (WPI) connected to a computer.

At the end of the experiments, animals were perfused and the position
of the catheter verified. The cystometrograms obtained were analyzed.
The frequency, peak and baseline pressures, and amplitude of bladder
contractions were determined in the different phases of the experiment.

Table 1. Different experimental groups utilized in this study

Experimental groups Total number of animals

Spinal intact (A) n � 6 (6)
SCI 1 week (B) n � 6 (6)
SCI 4 weeks (C) n � 6 (6)
SCI 4 weeks � (saline, 1, 10, and 20 �g) TrkB-Ig2 (D) n � 6 (6)
SCI 1 week � chronic sterile saline (E) n � 4 (4)
SCI 4 weeks � chronic sterile saline (F) n � 4 (4)
SCI � TrkB-Ig2 20 �g/d for 1 week (G) n � 7 (6)
SCI � BDNF 0.7 �g/d for 4 weeks (H) n � 8 (6)
SCI � BDNF 2.1 �g/d for 4 weeks (I) n � 8 (6)

In Groups A–C, assessment of bladder function was performed in spinal-intact and in SCI animals at the end of first
and fourth week post injury. In Group D, 4 week SCI animals were acutely treated, via an intrathecal catheter, with
increasing amounts of a BDNF scavenger, TrkB-Ig2. Groups E and F received chronic intrathecal administration of
saline for 1 week or 4 weeks post-SCI, respectively, via an osmotic mini-pump linked to a silicone intrathecal
catheter. Group G was submitted to chronic delivery of TrkB-Ig2 , using an intrathecal catheter connected to an
osmotic mini-pump, for 1 week. Treatment was initiated immediately after SCI. SCI rats in Groups H and I were
submitted to chronic intrathecal delivery of BDNF for four weeks post-SCI. Two different doses were tested, 0.7 and
2.1 �g/d. As in Groups E–G, treatment was initiated immediately after surgical cord lesion. Number of animals used
for data analysis shown in parenthesis.

Frias et al. • Role of BDNF in Spinal Cord Injury-Induced Bladder Dysfunction J. Neurosci., February 4, 2015 • 35(5):2146 –2160 • 2147



Perfusion and immunohistochemistry. After
cystometry, animals were perfused through the
ascending aorta with cold, oxygenated
calcium-free Tyrode’s solution (0.12 M NaCl,
5.4 mM KCl, 1.6 mM MgCl2 � 6H2O, 0.4 mM

MgSO4 � 7H2O, 1.2 mM NaH2PO4 � H2O, 5.5
mM glucose, and 26.2 mM NaHCO3) followed
by 4% paraformaldehyde. The dissection of the
perfused nervous tissue allowed the confirma-
tion of the position of the intrathecal catheter.
Only animals in which the catheter was cor-
rectly placed were considered for further anal-
ysis. Five animals, in which connection of the
catheter to the osmotic mini-pump was broken
(Groups G–I; Table 1), were excluded. The spi-
nal cord segments L5-L6 were collected, post-
fixed for 4 h, and cryoprotected for 24 h in 30%
sucrose with 0.1% sodium azide in 0.1 M phos-
phate buffer. Transverse 40 �m sections of the
collected spinal cord segments were cut in a
freezing microtome and stored in cryoprotec-
tive solution at �20°C until all tissue was
collected.

The expressions of GAP-43 and phospho-
JNK were tested using the ABC method. The
specificity of the anti-phospho JNK was tested
by incubating spinal sections from 4 week SCI
rats in the absence of primary antibody. No
staining was observed (Fig. 7A). Briefly, sec-
tions were thoroughly washed in PBS. After in-
hibition of endogenous peroxidase activity and
further washes in PBS and PBST, sections were
incubated in 10% normal swine serum in
PBST for 2 h. Sections were then incubated
for 48 h at 4°C with a specific antibody
against GAP-43 made in rabbit (1:5000; Ab-
cam) or against phosphoJNK (1:500; Cell
Signaling Technology). All antibodies and
the ABC complex were prepared in PBS 0.1 M

containing 0.3% Triton X-100 (PBST). Sub-
sequently, sections were washed in PBST and
incubated for 1 h with polyclonal swine anti-
rabbit biotin-conjugated antibody (1:200;
Dakopatts). To visualize the immunoreac-
tions, the ABC conjugated with peroxidase (1:
200; Vector Laboratories) method was used with
DAB tetrahydrochloride as chromogen (5
min in 0.05 M Tris buffer, pH 7.4, containing
0.05% DAB and 0.003% hydrogen peroxide).
Sections were mounted on gelatin-coated
slices and air dried for 12 h, cleared in xylene,
mounted with Eukitt mounting medium, and
coverslipped.

Alternate spinal sections were used to deter-
mine the BDNF expression (1:1000; anti-rab-
bit; Millipore; AB1779) and colocalization
between GAP-43 and calcitonin gene-related
peptide (CGRP). The specificity of the anti-
GAP-43 and anti-CGRP antibodies has been
previously tested in other studies (Coelho et al.,
2014). For this, sections were thoroughly
washed in PBS and PBST, followed by a 2 h incubation in 10% normal
horse serum in PBST. Sections were then incubated with anti-BDNF or a
combination of anti-GAP-43 (1:5000) and anti-CGRP made in mouse
(1:8000; Abcam) for 48 h. To control the specificity of immunodetection
of BDNF, sections were incubated in the absence of primary antibody. No
staining was observed (Fig. 2A). Afterward, sections were washed in PBST
and incubated in Alexa Fluor 568 donkey anti-rabbit (1:1000; Invitrogen)
and Alexa Fluor 488 goat anti-mouse (1:1000; Invitrogen) for 1 h. Sections

were then washed, mounted in Prolong Gold mounting medium (Invitro-
gen), and observed in a Z4 Axio Imager Zeiss microscope.

In vitro studies: DRG cell culture and immunocytochemistry. The exper-
imental groups described above were replicated once for cell culture. In
this case, four animals were used per experimental group. As before, all
animals underwent cystometry under urethane anesthesia. After cystom-
etry, animals were killed and the L5-S1 DRG collected and immediately
placed in DMEM-F12, 10% FBS, and 1% Pen/Strep. DRGs were then
incubated with 0.125% collagenase for 2 h at 37°C. After three washes in
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Figure 1. A–H, Representative cystometrograms of spinal-intact and SCI animals. A, In spinal-intact animals, the pattern of
bladder function was normal but significantly altered at 1 week after SCI (B), when bladder reflex activity was completely abol-
ished. C, Four weeks after SCI, animals presented bladder hyperactivity. Placement of an indwelling intrathecal catheter linked to
an osmotic mini-pump for continuous delivery of sterile saline to SCI animals for 1 week (D) or 4 (E) weeks did not affect bladder
function. F, Chronic intrathecal BDNF sequestration with TrkB-Ig2, initiated immediately after SCI and lasting for 1 week, resulted
in bladder hyperactivity. G, Intrathecal administration of BDNF (0.7 �g/d) for 4 weeks, initiated immediately after cord injury,
resulted in alterations of bladder function compared with nontreated 4 week SCI rats. H, The highest dose of BDNF did not induce
significant changes in bladder activity when compared with nontreated SCI-animals at the same time point.
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Intrathecal sequestration of BDNF with TrkB-Ig2 for 1 week caused a marked decrease in BDNF expression in the dorsal horn compared with nontreated 1 week SCI rats (H; #p � 0.05 vs nontreated
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DMEM-F12 medium, DRGs neurons were resuspended and dissociated
in DMEM-F12, 10% FBS, and 1% Pen/Strep by repeated pipetting. The
resulting cell suspension was centrifuged at 1000 rpm for 10 min through
a 2 ml cushion of 15% BSA for removal of cellular debris. The resulting
pellet, containing the neurons, was resuspended in DMEM-F12 medium
containing 1%Pen/Strep, L- glutamine (200 mM), B27 (20 �l/ml), and
0.05 �g/ml NGF. Cells obtained from each animal were plated in dupli-
cate onto poly-L-lysine (20 �g/ml) and laminin-coated (5 �g/ml) cover-
slips and maintained at 37°C in a humidified 5% CO2 atmosphere.

Twelve hours later, the plated cells were fixed with ice-cold 4% parafor-
maldehyde for 15 min at room temperature. The cells were washed three

times in PBS, followed by a 5 min incubation in PBS 0.2% Triton. Afterward,
cells were again washed in PBS and incubated for 5 min in a solution of 0.1%
of sodium borohydride. This was followed by three washes in PBS and 1 h
incubation at room temperature in blocking solution (5% of FBS in 0.4%
PBS-Tween 20). After blocking, cells were incubated in anti-�-III tubulin
(1:2000 in blocking buffer; Promega) for 1 h at room temperature. The cells
were then washed three times with PBS and incubated with the secondary
antibody, Alexa Fluor 488 goat anti-mouse (1:1000 in blocking buffer; Invit-
rogen). This step was followed by washes in PBS and mounting in
Vectashield medium (Vector Laboratories), after which slides were sealed.
Representative images were collected in an Axioskop 40 microscope with the
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Figure 3. A, Representative cystometrograms of 4 week SCI animals following acute intrathecal injection of saline and TrkB-Ig2 and parameter analysis of bladder function. A, Intrathecal
administration of saline did not alter bladder function when compared with baseline. In contrast, intrathecal injection of TrkB-Ig2 dose dependently abolished bladder hyperactivity. Bar graphs
depict the mean frequency (B), peak pressure (C), baseline pressure (D), and amplitude (E) of bladder contractions of 4 week SCI animals treated with either saline or 1 �g, and 10 and 20 �g of
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AxioVision 4.6 software (Carl Zeiss) for analysis of neurite branching, total
neurite length, and area of the soma.

Immunodetection of bladder interstitial cells. Bladder tissues (n � 5)
from all experimental groups were fixed in 4% paraformaldehyde,
washed in PBS, and blocked in 1% BSA/0.05% Triton X-100 in PBS
before incubation with primary antibodies (anti-vimentin, 1:200, Sigma-
Aldrich; anti-PDGFR�, 1:200, R&D Systems; or Phalloidin-TRITC) for
24 h. Tissues were washed in PBS for several hours and then incubated in
secondary antibodies (Invitrogen, 1:200) with DAPI for 1 h. After over-
night washing in PBS, tissues were mounted to glass slides with coverslips
and Immuno-mount (Thermo Shandon). Slides were imaged with a
Nikon C1 confocal microscope using an argon ion laser (488 nm), a
green HeNe laser (543 nm), and a 408 nm laser diode. Fluorophores were
imaged sequentially and images collected via appropriate filter sets to
minimize bleedthrough. Similar imaging settings (laser intensity and
gain) were used in all experiments. Series of optical sections were recon-
structed in the acquisition and analysis software, EZ-C1 (Nikon). Vi-
mentin immunofluorescence intensity was measured in ImageJ software.
Guinea pig bladder was used as a positive control; negative controls
included omission of all antibodies to test for autofluorescence. Signifi-
cant fluorescence was not detected in negative controls.

Quantification and statistics. Cystometrograms were analyzed using
the LabScribe software (version 2.34900; iWorx Systems). The frequency
and amplitude of bladder contractions, peak pressure, and baseline pres-
sure were analyzed by using Kruskal–Wallis ANOVA or Kruskal–Wallis
one-way repeated-measures ANOVA(in the 4 week SCI animals submit-
ted to BDNF sequestration) followed by the Student–Newman–Keuls
post hoc test in SigmaStat software (version 3.5.054). Data are presented
as mean value � SD and p � 0.05 was considered statistically significant.

The intensity of immunoreactivity was assessed using the Fiji Software
(based on ImageJ; http://fiji.sc/Downloads#Fiji). In all cases, staining
intensity was averaged from 8 to 10 sections per animal. A reference
intensity of unstained tissue was measured to determine background
intensity, which was deducted from the average intensity of each section
to calculate the mean net staining intensity. Staining intensities deter-
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Figure 4. Bar graphs showing the mean frequency, peak pressure, baseline pressure, and
amplitude of bladder contractions of spinal-intact and SCI injured animals. A, The frequency of
bladder reflex contractions was significantly decreased 1 week after SCI but upregulated 4
weeks after SCI (*p � 0.05 vs spinal-intact animals). Chronic delivery of sterile saline to SCI
animals for 1 and 4 weeks via an osmotic mini-pump connected to an indwelling intrathecal
catheter did not alter bladder function compared with nonintervened SCI rats at the same time
point. In these animals, there was a reduction of frequency of bladder contractions 1 week after
SCI followed by an increase at 4 weeks post-SCI (*p � 0.05 vs spinal-intact animals). One week

4

SCI animals intrathecally treated with chronic TrkB-Ig2 presented a significant increase in blad-
der reflex activity when compared with spinal-intact animals and with nontreated animals at
the same time point (*p � 0.05). Chronic administration of BDNF (0.7 �g/d), lasting 4 weeks
and initiated immediately after spinal lesion, reduced urinary frequency compared with non-
treated SCI rats at the same time point (#p � 0.05). Urinary frequency was still elevated com-
pared with spinal-intact animals (*p � 0.05). Administration of 2.1 �g/d for 4 weeks did not
alter urinary frequency when compared with nontreated 4 week SCI rats (*p � 0.05 vs spinal-
intact and $p � 0.05 vs 4 week SCI treated with 0.7 �g/d of BDNF). B, Four week SCI animals,
with and without an indwelling intrathecal catheter for chronic saline delivery, and 1 week SCI
animals treated with TrkB-Ig2 presented an elevation of peak pressure when compared with
spinal-intact animals (*p � 0.05). BDNF administration for 4 weeks’ treatment with the lowest
dose of BDNF produced a significant reduction compared with SCI at the same time point ( #p �
0.05 vs 4 weeks SCI rats). Treatment with the highest dose of BDNF did not affect peak pressure,
which was similar to that observed in nontreated 4 week SCI rats (*p � 0.05 spinal-intact
animals and $p � 0.05 vs 4 week SCI animals treated with 0.7 �g/d of BDNF). C, One week and
4 week SCI animals, with and without an indwelling intrathecal catheter for chronic saline
delivery, presented a significant increase in baseline pressure (***p � 0.001 vs spinal-intact
animals). Chronic administration of TrkB-Ig2 did not change baseline pressure values when
compared with 1 week SCI animals at the same time point, but it was still elevated compared
with spinal-intact animals (***p � 0.001). Chronic intrathecal treatment with 0.7 and 2.1
�g/d for 4 weeks was also accompanied by high baseline pressure values (*p � 0.05, ***p �
0.001 vs spinal intact). D, Amplitude of bladder contractions was significantly reduced 1 week
after spinal lesion and increased 4 weeks post injury (***p � 0.001 vs spinal-intact animals).
Similar observations were made in SCI animals submitted to chronic delivery of saline via an
indwelling silicone catheter linked to an osmotic mini-pump (***p � 0.001 vs spinal-intact
animals). BDNF sequestration was accompanied by a reduction of amplitude of bladder con-
tractions compared with spinal-intact animals (***p � 0.001). It was increased when com-
pared with SCI animals at the same time point ( &&&p � 0.001 vs 1 week SCI animals).
Prolonged BDNF administration of 0.7 and 2.1 �g/d was accompanied by a slight reduction
when compared with 4 week SCI rats ( ###p � 0.001 vs 4 week SCI animals and $p � 0.05 vs 4
week SCI animals treated with lowest dose of BDNF).
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Figure 5. Photomicrographs showing GAP-43 expression in the L5-L6 spinal cord segment of spinal-intact (A), 1 week (B), and 4 week (C) SCI animals; 1 week (E) and 4 week (F) SCI animals with
an indwelling intrathecal catheter for saline delivery; 1 week SCI animals treated with chronic TrkB-Ig2 during the spinal shock (G); and 4 week SCI animals treated with chronic BDNF (0.7 �g/d for
28 d; H). Scale bars: A–C, E–H, 100 �m; D, 50 �m. GAP-43 was predominantly expressed in the superficial laminae of the dorsal horn, with a time-dependent increase after SCI (A–C), indicating
the occurrence of fiber sprouting. GAP-43 immunoreaction was restricted to thin fibers running along the superficial dorsal horn (D). The expression of GAP-43 was not altered by chronic delivery of
saline for 1 week (E) or 4 weeks (F). GAP-43 expression was significantly increased following administration of TrkB-Ig2 for 1 week (G) or BDNF (0.7 �g/d) for 4 weeks (F). I, Bar graph depicting the
mean intensity of GAP-43 expression in the L5-L6 segment. The strongest intensity of GAP-43 was observed in 4 week SCI animals. The immunoreaction was also strong following BDNF sequestration
TrkB-Ig2 compared with nontreated animals at the same time point. GAP-43 expression was unchanged in SCI animals that received chronic delivery of saline during 1 week or 4 weeks. BDNF
administration induced a slight nonsignificant decrease of GAP-43 expression compared with nontreated 4 week SCI rats, but immunoreaction was still stronger than in spinal-intact animals (*p �
0.05, ***p � 0.001 vs spinal intact). J–O, GAP-43 expression colocalization with CGRP neuropeptide in the dorsal horn. Scale bar, 20 �m. In all experimental groups, there was a strict colocalization
between GAP-43 and CGRP, which can be better observed in M.
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mined in intact animals were used as standardizing controls. Data were
analyzed by Kruskal–Wallis one-way ANOVA followed by the Student–
Newman–Keuls post hoc test. Data are presented as mean value � SD and
p � 0.05 was considered statistically significant. Statistical analysis was
SigmaStat software (version 3.5.054).

Neurite branching, total neurite length, and area of the soma were
analyzed in MATLAB using SYnapse Detector (SynD; Schmitz et al.,

2011), a synapse and neurite detection software
program. SynD is able to quantify neurite
branching by calculating the number of cellu-
lar processes crossing concentric circles placed
around the cell body. Statistical analysis was
performed in SigmaStat software (version
3.5.054) using one-way repeated-measures
ANOVA followed by the Student–Newman–
Keuls post hoc test for neurite branching and
the Kruskal–Wallis ANOVA followed by the
Dunn’s test for the neurite length and for the
area of the soma. In this case, values are pre-
sented as mean � SEM as SynD automatically
generates them. As above, p � 0.05 was consid-
ered statistically significant.

Results
Effect of BDNF on the emergence of
NDO after spinal cord transection
The effects of SCI on bladder reflex activ-
ity were investigated 1 and 4 weeks after
spinal cord lesion. The pattern of bladder
reflex activity in spinal-intact animals, in
what concerns the frequency, peak pres-
sure, baseline pressure, and amplitude of
bladder reflex contractions, is shown in
Figures 1A and 4A–D. One week after SCI,
the animals were in spinal shock and blad-
der reflex contractions were practically
abolished (Figs. 1B, 4A–D). Four weeks
after SCI, NDO was evident in all SCI an-
imals (Fig. 1C), with significant increase
in the values of frequency, peak pressure,
baseline pressure, and amplitude of uri-
nary function (Fig. 4A–D). This was ac-
companied by spinal upregulation of
BDNF expression (see below; Fig. 2B–D),
suggesting the involvement of BDNF in
NDO emergence.

Chronic intrathecal BDNF sequestra-
tion was performed during the first week
after spinal cord transection, by chronic
delivery of TrkB-Ig2. Results indicate that
BDNF scavenging promoted an earlier
appearance of NDO (Fig. 1D), as shown
by a significant increase of frequency and
amplitude of bladder contractions, peak
pressure in 1 week SCI animals treated
with TrkB-Ig2 compared with nontreated
1 week SCI animals (which were in spinal
shock; *p � 0.05; Fig. 4A–D). Baseline
pressure remained elevated after treat-
ment (Fig. 4C). Since BDNF sequestration
during spinal shock resulted in early
NDO, one could speculate that spinal
BDNF may be counteracting the emer-
gence of NDO. To confirm this hypothe-
sis, SCI rats continuously received

intrathecal BDNF. Treatment was initiated immediately after spi-
nal injury. Preliminary experiments in which BDNF was admin-
istered for 1 week to SCI rats did not produce any effects on
bladder function (data not shown). Thus, BDNF administration
was prolonged for 4 weeks. Intrathecal administration of BDNF
(0.7 �g/d) to SCI rats during 4 weeks had a marked effect on

Figure 6. Photomicrographs illustrating �3-tubulin expression of L5-S1 DRG neurons in culture. Scale bar, 50 �m. Neurons
from 1 week SCI animals (B) presented shorter neurites when compared with those from spinal-intact animals (A). In cells obtained
from 4 week SCI animals (C) neurites were long and ramified. Neurons from 1 week SCI animals treated with chronic TrkB-Ig2 had
long neurites, which were extremely ramified (D). Similar observations were made in DRG neurons from 4 week SCI rats receiving
chronic BDNF, although neurite branching was less exuberant (E). F, G, Graphs indicating the correlation between the mean number of
branches with the distance from the soma (�m). F, One week SCI animals treated with TrkB-Ig2 presented a higher number of branches in
short and long distances from the soma (up to 200 �m) when compared with spinal-intact and 1 week SCI animals (*p � 0.05). G, Four
week SCI animals presented an increase in the number of branches until 60 �m from the soma, when compared with spinal-intact and 4
week SCI animals treated with BDNF ( #p�0.05). In contrast, 4 week SCI animals treated with chronic BDNF presented a significant higher
number of neurites from 110 to 200 �m (*p � 0.05 vs spinal-intact and 4 week SCI animals).
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bladder function, with a signifi-cant decrease of frequency, am-
plitude, and peak pressure of bladder contractions compared
with nontreated SCI animals at 4 weeks (Figs. 1G, 4A–D).
Chronic BDNF administration at higher doses during 4 weeks
(2.1 �g/d) did not affect bladder function and the pattern of
bladder reflex contractions was similar to that observed in non-
treated 4 week SCI animals ( $p � 0.05; Figs. 1H, 4A–D). Hence,
BDNF administration, initiated after spinal lesion, might exert a
positive effect on bladder function. However, the dose of BDNF
to be delivered is critical since bladder function was compro-
mised and similar to 4 week SCI animals when higher doses of
BDNF were used. Therefore, because of the poor effects of the
high dose of BDNF on bladder function, the following experi-
ments only focused on the 4 week SCI rats receiving the lower
dose of BDNF (0.7 �g/d).

Chronic intrathecal administration of saline for 1 week or 4
weeks (Fig. 1D,E, respectively) did not change bladder function
compared with SCI animals without a chronic indwelling cathe-
ter at the same time point (Fig. 4A–D). For that reason, we did not
analyze BDNF levels in these animals and focused attention in
groups with changes in bladder reflex contractions.

NDO emergence is accompanied by a time-dependent
increase in spinal BDNF levels
After assessing the effects on bladder function, expression of
BDNF in the L5-L6 segments of the spinal cord was performed to
confirm BDNF sequestration or administration. BDNF was
found throughout the gray matter of the spinal cord, the stron-
gest immunoreaction was observed in the dorsal horns (Fig. 2B–
G). The specificity of the antibody has been previously tested
(Frias et al., 2013) and no immunoreaction was observed when
sections were incubated in the absence of primary antibody (Fig.
2A). Analysis of the intensity of the immunostaining showed a
time-dependent increase in spinal levels of BDNF after SCI, the
strongest intensity observed 4 weeks after SCI in the superficial
laminae of the cord (***p � 0.001 vs spinal intact; Fig. 2B–H).
The efficacy of BDNF sequestration using TrkB-Ig2 was con-
firmed by a marked decrease in spinal BDNF staining in the dor-
sal horn (Fig. 2E,H). Chronic BDNF delivery resulted in stronger
immunoreactivity in spinal sections from treated animals com-
pared with nontreated SCI at the same time point (Fig. 2F–H),
confirming delivery of exogenous BDNF.

BDNF sequestration improves bladder function in rats with
established NDO
Given that BDNF expression was increased in animals with es-
tablished NDO, the effect of BDNF sequestration on bladder
function was assessed at this time point. For that, 4 week SCI rats
received increasing doses of TrkB-Ig2 during cystometry. The
recombinant protein was injected every 30 min in a cumulative
manner. We found that a dose-dependent BDNF sequestration
minimized the effects of NDO on bladder function (Fig. 3A–E).
At doses of 10 �g TrkB-Ig2 bladder reflex contractions were prac-

tically abolished. These results suggest that BDNF is involved in
the long-term maintenance of NDO arising after SCI.

GAP-43 expression in the spinal cord is altered after SCI
The emergence of NDO after SCI has been previously linked to
sprouting and synaptic reorganization of bladder sensory affer-
ents (de Groat et al., 1990; de Groat and Yoshimura, 2006). These
events can be monitored by analyzing GAP-43 expression, a
marker of axonal sprouting (Benowitz and Routtenberg, 1997;
Vizzard, 1999). GAP-43 immunoreaction was very modest in
spinal sections from spinal-intact rats (Fig. 5A). On the con-
trary, GAP-43 expression significantly increased in a time-
dependent manner after SCI in thin fibers coursing in the
superficial laminae of the dorsal horn (***p � 0.001 vs spinal
intact; Fig. 5B–D,I ).

Continuous BDNF sequestration during spinal shock resulted
in intense GAP-43 expression, compared with spinal-intact rats
and nontreated 1 week SCI animals (*p � 0.05 vs spinal intact;
Fig. 5G,I).

Expression of GAP-43 was also analyzed after 4 weeks of in-
trathecal BDNF administration (0.7 �g/d) to SCI animals. De-
spite being more prominent than in spinal-intact rats and 1 week
SCI animals (***p � 0.001), GAP-43 immunoreactivity was not
as intense as that observed in nontreated 4 week SCI rats (Fig.
5H, I).

In all experimental animals, immunolabeling was found bilat-
erally in the superficial layers of the dorsal horn, in fibers coursing
the superficial laminae suggesting that GAP-43-postive fibers
were sensory afferents (Fig. 5D). To confirm this, we assessed if
GAP-43 was colocalized with CGRP, a marker of sensory af-
ferents. We found that GAP-43 immunoreaction was present
in CGRP-positive structures, confirming our hypothesis (Fig.
5I–L).

To exclude the hypothesis that placement of the catheter, con-
nected to an osmotic mini-pump, could by itself induce axonal
sprouting, we analyzed GAP-43 expression in sections from SCI
animals submitted to catheter placement and saline infusion for 1
and 4 weeks. Expression of GAP-43 was comparable to SCI ani-
mals without a chronic indwelling catheter at the same time point
(Fig. 5E,F).

These findings indicate that changes in spinal BDNF levels,
induced by SCI or exogenous manipulation of this NT, influence
the sprouting of bladder afferents.

DRG cells presented elevated intrinsic growth ability
As increased levels of GAP-43 suggested increased axonal growth
ability, DRG were collected from all experimental groups and
cultured to confirm growth ability. Following dissociation, DRG
neurons were cultured for 12 h to investigate their intrinsic
growth ability. All neurons adhered to the cell substrate and emit-
ted long neurites (Fig. 6A–E). Neurite branching was the param-
eter that showed more variation across the different experimental
groups. Branching was significantly altered by SCI, as 1 week after

Table 2. Mean total neurite length (�m) and mean soma area (�m 2) from cultured DRG cells from spinal-intact animals, 1 and 4 weeks SCI animals, 1 week SCI animals
treated with chronic TrkB-Ig2 , and 4 week SCI animals treated with chronic BDNF (0.7 �g/d)

Spinal intact SCI 1 week SCI 1 week � chronic TrkB-Ig2 SCI 4 weeks SCI 4 weeks � chronic BDNF (0.7 �g/d)

Mean neurite length (�m) 1723.3 � 140.3 1545.7 � 153.3* 2307.3 � 192.7 # 1892.9 � 138.2 2020.4 � 153.3
Mean soma area (�m 2) 1383.0 � 152.2 1188.2 � 67.9 976.8 � 70.1 � 1237.4 � 67.9 �� 1002.7 � 39.2

Spinal lesion resulted in a decrease in growth ability as neurites were shorter 1 week after SCI compared with spinal intact rats (*p � 0.05 vs spinal intact). BDNF sequestration potentiated cell growth as cells from 1 week SCI animals treated
with TrkB-Ig2 presented longer neurites, compared with nontreated animals at the same time point (#p � 0.05 vs SCI 1 week). In what concerns the soma area, DRG neurons from 1 week SCI animals treated with TrkB-Ig2 had slightly smaller
cell bodies compared with nontreated SCI rats at the same time point (�p � 0.05 vs SCI 1 week). Four week SCI animals presented an increase of the soma area compared with other experimental groups (��p � 0.05 vs remaining groups).
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injury the mean number of branches per
cell was significantly lower than in cells
obtained from spinal-intact rats (***p �
0.001 vs spinal intact; Fig. 6B,F). In con-
trast, branching was much more promi-
nent in DRG neurons, particularly in the
vicinity of the soma, obtained from 4 week
SCI rats with NDO (Fig. 6C,G). In SCI
animals submitted to BDNF sequestra-
tion during the first week after transec-
tion, neurite branching was significantly
increased (*p � 0.05 vs spinal intact and
SCI 1 week; Fig. 6D,F). In DRG neurons
collected from 4 week SCI rats submitted
to chronic BDNF administration, branch-
ing was also evident and slightly more
prominent than in cells obtained from
nontreated 4 week SCI rats, particularly in
regions located �100 �m from the soma
(Fig. 6E,G).

Other parameters like neurite length
and area of the soma showed less variation
across experimental groups. Nevertheless,
there was a significant reduction in the
neurite length of DRG cells collected 1
week after SCI (*p � 0.05 vs spinal-intact
animals; Table 2).

Activation of JNK signaling pathways
might be involved in the mechanisms
regulating axonal sprouting
Several studies have provided evidence
linking JNK activation at the tip of grow-
ing axons of sensory neurons to elonga-
tion of processes (Oliva et al., 2006; Barnat
et al., 2010; Atkinson et al., 2011). To in-
vestigate if the same mechanism was op-
erating in our SCI rats, we assessed the
levels of JNK activation in the L6 spinal
cord segment. In the absence of the pri-
mary antibody, no immunoreaction was
observed (Fig. 7A). Little phosphoJNK
immunoreaction was found in sections
from spinal-intact animals (Fig. 7B, J,K).
In contrast, positive immunoreaction oc-
curred throughout the dorsal horn, par-
ticularly in laminae I–II; in SCI animals;
and increased in a time-dependent man-
ner after cord lesion (Fig. 7C–E, J,K).
Treatment with BDNF scavenger, TrkB-
Ig2, during the spinal shock caused a
marked increase of phosphoJNK expres-
sion to levels comparable to those ob-
served in 4 week nontreated SCI rats (*p �
0.05 vs spinal intact; Fig. 7H, J,K). Spinal
phosphoJNK expression in 4 week SCI
rats submitted to chronic treatment with
BDNF was similar to that found in spinal-
intact animals (Fig. 7I–K).

Expression of phosphoJNK was also
analyzed in sections from SCI animals
submitted to catheter placement and sa-
line infusion for 1 and 4 weeks to ex-
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Figure 7. A–I, Photomicrographs showing JNK expression in the superficial laminae I and II of the dorsal horn of the L5/L6 spinal cord
segment of spinal-intact (B), 1 week (C), and 4 week (C) SCI animals; 1 week (F) and 4 week (G) SCI animals receiving chronic saline; 1 week
SCI animals treated with chronic TrkB-Ig2 during the spinal shock (H); and 4 week SCI animals treated with chronic BDNF (I; 0.7 �g/d for
28 d). Scale bars: A–D, F–I, 100 �m; E, 50 �m. The specificity of the antibody was tested by incubating spinal sections in the absence of
primary antibody. In these conditions, no immunostaining was observed (A). A time-dependent increase in JNK expression was observed in
the superficial laminae I and II of the dorsal horn, when compared with spinal-intact animals (B–E, J, K; *p�0.05). Immunoreaction was
present in fibers and not observed in cells (E). Chronic intrathecal administration of saline did not induce any changes (F, G). Upon chronic
treatmentwithTrkB-Ig2 for1week,JNKexpressionremainedelevated,particularly in laminaeII (*p�0.05vsspinal-intactanimals),while
chronic administration of BDNF was able to decrease JNK expression to similar levels of what was observed in spinal-intact animals. J, K, Bar
graphs showing the mean intensity of JNK expression in laminae I and laminae II. Analysis of the intensity of phosphoJNK immunoreaction
showed a time-dependent increase in the spinal cord of SCI rats and in cord sections from 1 week SCI animals treated with chronic TrkB-Ig2

(*p � 0.05 vs spinal intact). PhosphoJNK immunoreaction in cord sections from SCI rats treated with BDNF was no different from that
observed in sections from spinal-intact animals.
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clude the occurrence of axonal growth due to placement of the
intrathecal catheter. Immunoreaction was similar to that ob-
served in sections from SCI animals without a chronic in-
dwelling catheter at the same time point (Fig. 7 F, G, J, K ).

Bladder interstitial cells are differently expressed in the
bladder after SCI
Previous work has shown that significant remodeling of ICs oc-
curs in the chronic SCI rat bladder (Johnston et al., 2012). In the
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Figure 8. Photomicrographs of IC populations in the detrusor muscle. ICs were identified by anti-vimentin (green; A–C, G, H) or anti-PDGFR� (green; D–F, I, J) immunolabeling. Smooth muscle cells were
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present study, it was of interest to determine whether there was an
IC lesion at 1wk SCI and if IC populations could be restored with
intrathecal BDNF sequestration or BDNF administration. Detru-
sor IC, labeled with anti-vimentin or anti-PDGFR�, which are
normally closely associated with detrusor smooth muscle bun-
dles (intramuscular IC, IC-IM), were notably reduced 1 and 4
weeks after SCI compared with spinal-intact rats (Fig. 8A–F). In
contrast, interbundle ICs (IC-IBs) located between bundles were
strikingly increased in acute SCI, but were diminished by 4 weeks
post injury, assuming a more rounded morphology with loss of
cell— cell contacts (Fig. 8B,C,E,F). While BDNF sequestration
during spinal shock did not restore normal IC-IM or IC-IB pop-
ulations (Fig. 8G,I), chronic BDNF treatment partially prevented
loss of IC-IM within smooth muscle bundles with little effect on

the IC-IB populations (Fig. 8H, J). Quan-
titative analysis of vimentin immunofluo-
rescence is shown in the bar charts (Fig.
8). BDNF sequestration had no significant
effect on vimentin fluorescence (n � 16
control images, n � 14 treatment images,
p � 0.05). Chronic BDNF did not signifi-
cantly affect vimentin fluorescence (n �
16 treatment images, n � 9 control im-
ages, p � 0.05).

Discussion
This work analyzed the contribution of
BDNF to NDO emergence and mainte-
nance caused by SCI. We propose a model
in which SCI results in NDO via sprouting
of bladder afferents (Fig. 9). In an early
phase, spinal BDNF is upregulated in an
attempt to downregulate abnormal ax-
onal growth and prevent bladder dysfunc-
tion. Once the new micturition reflex is
established, the protective role of BDNF is
lost and this NT acts as a neurotransmit-
ter, exacerbating bladder dysfunction.

BDNF is involved in SCI-induced
bladder dysfunction
The observation that development of
bladder dysfunction was accompanied by
the upregulation of spinal BDNF expres-
sion suggested a link between BDNF and
NDO. BDNF sequestration during cys-
tometry in 4 week SCI rats leads to a dose-
dependent reduction in the frequency and
amplitude of bladder reflex contractions.
Likewise, in rats with cystitis acute BDNF
sequestration also produced a swift im-
provement of bladder function (Frias et
al., 2013). The reason for this may relate to
inactivation of second-order neurons.
BDNF, released by sensory afferents, is a
potent activator of the ERK pathway in
spinal neurons (Pezet et al., 2002a; Lever
et al., 2003b; Salio et al., 2007; Merighi et
al., 2008). An early study showed that
pharmacological dose-dependent ERK
inhibition also improved bladder func-
tion, similar to what was found here (Cruz
et al., 2006).

Our initial hypothesis, that time-dependent BDNF upregula-
tion leads to NDO, implied that early BDNF sequestration would
prevent bladder dysfunction. A similar hypothesis was proposed,
which showed that NGF sequestration, initiated 10 d after SCI,
prevented NDO and DSD (Seki et al., 2002, 2004). Surprisingly,
BDNF sequestration during the spinal-shock period induced
early NDO emergence. Using a model of dorsal root injury,
Ramer et al. (2007) also verified that BDNF sequestration re-
sulted in opposite effects depending on whether it was performed
chronically and initiated immediately after lesion or only by a
single intrathecal bolus at later stages. The early NDO phenotype
was not explained by changes in the bladder IC population, al-
ready significantly altered in the spinal-shock period. It is there-

SCI Spinal shock NDONDONDO

Normal disease progression:

Spro erents
creates new spinal neuronal circuits, leading to NDO

Experimental findings:

1 week

Spinal BDNF incr empt
to downregulate spro rol NDO

BDNF sequestra g
spinal shock: early NDO

4 weeks

Long-term BDNF administra
ameliora n

Bladder 
arreflexia reflex

Figure 9. Proposed model of BDNF role in NDO emergence and maintenance. Our main experimental findings show that
preventing the increased spinal BDNF, which occurs after cord injury, induces early NDO, as a consequence of premature sprouting
of sensory afferents, This suggests that BDNF may exert a protective role on bladder function after SCI. Thus, chronic BDNF
administration at the spinal cord level, also initiated immediately after spinal lesion, resulted in an amelioration of bladder function
of SCI, compared with animals receiving vehicle. In this case, axonal growth was less prominent. We propose that SCI induces
sprouting of sensory afferents, possibly as a consequence of upregulation of trophic factors, such as NGF. These afferents establish
new synaptic connections at the spinal cord, which lead to an abnormal micturition reflex, totally located at the lumbosacral spinal
cord. At the same time, spinal BDFN increases in an attempt to repress axonal sprouting at the spinal cord. Once the new connec-
tions are established, BDNF acts as a neurotransmitter, released upon stimulation of bladder afferents, and potentiates bladder
dysfunction. Accordingly, BDNF sequestration in rats with established NDO blocked bladder reflex contractions.
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fore more likely to result from axonal reorganization and growth
at the spinal cord level rather than local mechanisms within the
bladder wall. Therefore, one can infer that spinal BDNF increase
during early stages of SCI may modulate the reorganization of
spinal neuronal circuits, in an attempt to block NDO emergence.

Chronic BDNF administration protects bladder function in
SCI rats
To clarify the putative protective role of BDNF on bladder func-
tion, SCI animals were submitted to chronic BDNF administra-
tion initiated immediately after cord injury. We found that
administration of 0.7 �g/d of BDNF for 4 weeks minimized blad-
der dysfunction, despite elevated urinary frequency and low
compliance when compared with spinal-intact animals. Never-
theless, it is possible to infer that the BDNF role in mitigating
NDO appearance and its maintenance is crucial. This moderating
action of BDNF may occur via potentiation of the GABAergic
neurotransmission. Because GABAergic neurons express TrkB
receptor, the increased amount of BDNF at the spinal cord may
have sufficed to increase GABA release (Pezet et al., 2002b; Lever
et al., 2003a; Bardoni et al., 2007). One should recall that this
neurotransmitter depresses bladder function and the potentia-
tion of GABAergic neurotransmission has already been for-
warded as a potential therapeutic measure for NDO (Miyazato et
al., 2008, 2009). In addition, chronic BDNF may have been pro-
tective of the IC-IM. We have previously shown that loss of nerve/
IC-IM contacts is associated with loss of IC-IM (Johnston et al.,
2012) and it is possible that in the present study, BDNF preserved
detrusor nerve varicosities, limiting the denervation that is typi-
cal in chronic SCI and minimizing IC-IM loss.

It is tempting to speculate a possible therapeutic application of
BDNF in SCI patients. Accordingly, upregulation of BDNF fol-
lowing electrical stimulation has been linked to axonal motoneu-
ron regeneration following peripheral nerve injury (Al-Majed et
al., 2000). Given that spinal electrical stimulation via sacral neu-
romodulation (SNM) in SCI patients improved urinary inconti-
nence (Sievert et al., 2010), one could propose that combining
BDNF administration with SNM would be advantageous. How-
ever, it should be noted that a higher dose of this NT did not
produce any improvement of bladder function. Presently, we
cannot forward a conclusive explanation for these findings but it
may be possible that the excess of BDNF administered could
activate nonspecific NT receptors and/or other intracellular sig-
naling pathways in spinal neurons.

Mechanisms modulating BDNF action on bladder function
Plastic reorganization of the sensory synaptic connections of
bladder afferents in the spinal cord has been forwarded as one of
the main causes for NDO (de Groat et al., 1990; Vizzard, 2006)
and detrusor overactivity following bladder outlet obstruction
(Steers et al., 1991; Gabella et al., 1992; Tuttle and Steers, 1992).
Early studies have demonstrated that both conditions are associ-
ated with NGF upregulation, leading to hypertrophy of major
pelvic ganglion and DRG neurons (Steers et al., 1991, 1996) and
sprouting of central branches of bladder sensory afferents (Viz-
zard, 1999).

As before (Vizzard, 1999), we observed sprouting of peptider-
gic sensory afferents during the natural progression of the dis-
ease. Axonal growth was evaluated by analyzing the expression of
GAP-43, a marker of axonal growth (Benowitz and Routtenberg,
1997), which gradually increased in the superficial laminae of the
cord in 1 and 4 week SCI animals. This was confirmed by DRG

cell culture assays, which demonstrated increase of neurite out-
growth and branching. The reason underlying sprouting of vis-
ceral afferents during the progression of the disease may be
related to the reported elevation of spinal NGF levels (Seki et al.,
2002; Brown et al., 2004), which stimulates DRG neuron growth
(Gavazzi et al., 1999). Increased density of sensory afferents may
lead to increased release of BDNF, leading to ERK activation in
second-order neurons, previously linked to bladder dysfunction
in SCI rats (Cruz et al., 2006). BDNF sequestration in 1 week SCI
animals enhanced axonal growth as shown by the increase in
GAP-43 expression. Likewise, in our cell culture assays, DRG cells
showed a significant increase in neurite branching. In vitro stud-
ies had already documented the inhibitory effects of BDNF on
NGF-driven neurite growth (Gavazzi et al., 1999; Kimpinski et
al., 1999). Although not measured in the present study, it is very
likely that in our SCI animals the amount of spinal NGF was very
high and promoted axonal growth, which was more exuberant
and occurred earlier in the absence of the inhibitory presence of
BDNF.

As expected (Ondarza et al., 2003), we observed full colocal-
ization of GAP-43 with CGRP, indicating that axonal sprouting
of bladder peptidergic sensory afferents is the key event for blad-
der dysfunction after SCI (Zinck et al., 2007). Likewise, sprouting
of peptidergic afferents after complete SCI is also associated with
autonomic dysreflexia (Krenz and Weaver, 1998; Krenz et al.,
1999; Weaver et al., 2001) as a positive correlation between hy-
pertension and sprouting of CGRP-positive axons has already
been identified (Cameron et al., 2006).

Molecular mechanisms governing afferent sprouting at
dorsal horns
An important intracellular signaling pathway involved in neurite
outgrowth and elongation is the JNK pathway. This signaling
cascade is a member of the MAPKs, a large family of signaling
kinases (Widmann et al., 1999; Johnson and Lapadat, 2002;
Krishna and Narang, 2008). It was recently demonstrated that
JNK activation was required for axon elongation (Oliva et al.,
2006; Barnat et al., 2010; Atkinson et al., 2011), to stabilize and
modulate the microtubule dynamics at the growth cone and neu-
rite tips (Barnat et al., 2010). Accordingly, we found stronger
expression of phosphoJNK in laminae I–II of the experimental
groups in which axonal sprouting was more pronounced. This
was the spinal location where GAP-43 immunoreactivity was also
stronger, corresponding to the areas of sprouting of bladder sen-
sory afferents. Interestingly, administration of BDNF was also
associated to neuronal sprouting, albeit branching was not so
exuberant. In this case, JNK activation was not different from
controls, indicating that BDNF-mediated axonal sprouting was
JNK independent.

Conclusions
Here, we used the complete transection model and identified
BDNF as an important modulator of sensory afferent sprouting,
the key mechanism underlying NDO emergence. This SCI model
reflects symptoms of complete SCI patients, not necessarily the
most common injury, but it is highly reproducible, frequently
used when studying NDO and well established in our research
group (de Groat et al., 1990; Kruse et al., 1995; Yoshiyama et al.,
1999; Cruz et al., 2006, 2008; Cruz and Cruz, 2011; Santos-Silva et
al., 2012). We propose that upregulation of BDNF during disease
progression may act to control exaggerated axonal sprouting.
Once sprouting has occurred, acute BDNF sequestration may
serve to depress bladder hyperactivity, although restoration of
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bladder cellular architecture is unlikely achieved. Thus, BDNF is
an attractive therapeutic target to be differentially manipulated at
different stages of NDO establishment. Future studies will ana-
lyze the most effective BDNF treatment, in terms of dosages, time
of delivery, and combination with other therapeutic measures,
including the use of biomaterials and undifferentiated cells for
spinal regeneration.
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