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Abstract 23 

 24 

Dispersal limitation and environmental conditions are crucial drivers of plant species 25 

distribution and establishment. As these factors operate at different spatial scales, we asked: Do 26 

the environmental factors known to determine community assembly at broad scales operate at 27 

fine scales (few meters)? How much do these factors account for community variation at fine 28 

scales? In which way do biotic and abiotic interactions drive changes in species composition? 29 

We surveyed the plant community within a dry grassland along a very steep gradient of soil 30 

characteristics like pH and nutrients. We used a spatially explicit sampling design, based on 31 

three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were 32 

taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, 33 

water content and dehydrogenase activity as a proxy for overall microbial activity). We 34 

performed variance partitioning to assess the effect of these variables on plant composition and 35 

statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null 36 

model analysis to test for non-random patterns in species co-occurrence using randomization 37 

schemes that account for patterns expected under species interactions.  38 

At a fine spatial scale, environmental factors explained 18% of variation when controlling for 39 

spatial autocorrelation in the distribution of plant species, whereas purely spatial processes 40 

accounted for 14% variation. Null model analysis showed that species spatially segregated in a 41 

non-random way and these spatial patterns could be due to a combination of environmental 42 

filtering and biotic interactions. Our grassland study suggests that environmental factors found 43 

to be directly relevant in broad scale studies are present also at small scales, but are 44 

supplemented by spatial processes and more direct interactions like competition. 45 

  46 



1. Introduction 47 

 48 

Plant community assembly is significantly driven by filtering processes on several scales, like 49 

competition (Aarssen, 1989), dispersal limitation (Ai et al., 2012) and environmental conditions 50 

(Latimer and Jacobs, 2012). Understanding the processes involved in the assembly of 51 

communities is considered one of the most important challenges in ecology today 52 

(HilleRisLambers et al., 2012; O’Neill, 1989; Turner and O’Neill, 1995). While the 53 

understanding of community assembly has advanced significantly within the last 50 years, 54 

ecologists still lack precise insight on how the interplay of organisms and their environment 55 

determines the structure of natural communities (Götzenberger et al., 2012; Naaf and Wulf, 56 

2012). 57 

One common idea in ecology about the assembly of a diverse community involves filtering by 58 

the environment and interactions of organisms that establish local populations. This led to the 59 

niche-partitioning concept (Leibold, 1995; Silva and Batalha, 2011), where assemblages of 60 

species are viewed as having different tolerances to the abiotic environment and differing 61 

abilities to exploit resources. With the rise of neutral theory (Hubbell, 2001; Rosindell et al., 62 

2012), the debate on the processes influencing biodiversity was reinvigorated and the search 63 

for a unified theory has dominated the field (Adler et al., 2007). It has been suggested that the 64 

combination of investigating both local and short-term mechanisms as well as regional 65 

processes occurring over longer timescales may be crucial for the complete understanding of 66 

ecosystem assembly and function (HilleRisLambers et al., 2012).  67 

Grasslands cover one fourth of the Earth’s land surface and harbour the majority of annual plant 68 

diversity (Shantz, 1954). A significant amount of studies on grassland ecosystems are focused 69 

on the influence of soil characteristics on plant community composition (Wellstein et al., 2007), 70 

which, together with water, wind and sunlight, represents the bulk of abiotic influences on a 71 

plant community (Callaway, 1997; Parfitt et al., 2010). Soil characteristics can be strong 72 

predictors of plant community composition (Gough et al., 2000; Tilman and Olff, 1991), 73 

although the scale of the studies influences the predictive power of soil parameters like pH, 74 

carbon, nitrogen or phosphorus content (Sebastiá, 2004). But not only abiotic factors are 75 

influenced by the scale of a study; positive and negative species-species associations can occur 76 

at small scales and disappear with increasing scale (Wiegand et al., 2012).  77 

In this study we aimed at increasing the understanding of scale-dependence in community 78 

patterns by using a metacommunity approach to analyse the plant community composition of a 79 

semi-natural grassland (Leibold et al., 2004). While a lot of studies on grasslands are trying to 80 



approach community composition mechanisms by inferring local interactions via the 81 

observation of larger-scale composition (Eckhardt et al., 1996; Thomas and Palmer, 2007; 82 

Toogood et al., 2008), we were aiming at understanding these processes by looking for patterns 83 

of species composition that could be either deterministically or stochastically structured while 84 

choosing the smallest local community possible: a single focal plant and its direct rhizosphere 85 

interaction partners, making the community unit as small as possible. Other small-scale studies 86 

have dealt with similar grain sizes like ours (Chu et al., 2007; Reitalu et al., 2009; Turtureanu 87 

et al., 2013), however, they do not approach single plants with their rhizosphere environment 88 

or combine small grain and extent. We consider everything beyond the single plant rhizosphere 89 

environment a metacommunity, implicitly embodying the idea of interactions of plants with the 90 

environment and each other.  91 

Our study area offers unique possibilities of studying steep environmental gradients within only 92 

a few meters in a very species-rich grassland which also harbours one highly abundant plant 93 

species, enabling us to observe potential environmental filtering as well as spatial processes and 94 

biotic interactions in a spatially well-defined small-scale area. We selected this plant species, 95 

namely Festuca brevipila R. TRACEY (Aiken and Darbyshire, 1990; Klotz et al., 2002), as our 96 

focal plant to be able to target the whole gradient of environmental conditions which our study 97 

area offers, and still be able to standardize the metacommunity perspective on one species. We 98 

used patterns of co-variation among plant species, environmental and spatial variables derived 99 

from a neighbour matrix to answer the following questions: i) Do the environmental factors, 100 

like soil characteristics, that are known to determine community assembly at broad scales also 101 

operate at fine scales (1-15 meters) and how much do these factors account for community 102 

variation at fine scales? ii) In which way do biotic and abiotic factors drive changes in species 103 

composition? Our questions involve the disentanglement of patterns at various small scales, 104 

which calls for tools able to quantify the contributions of environmental, spatial patterns and 105 

their shared effect. Therefore state-of-the-art multivariate analysis will be applied (Borcard et 106 

al., 1992; Dray et al., 2006). Given the small scale at which we conduct our study, we are able 107 

to compare the importance of the environment found on larger scales with the processes shaping 108 

our analyzed community that are strongly spatially structured. Large-scale environmental 109 

effects that determine plant community structure in a range from a few to several hundred 110 

kilometres, include climatic gradients (Ludewig et al., 2014), altitudinal changes (Krömer et 111 

al., 2013) or differences in soil biogeochemistry (Khan et al., 2013). It might be that due to the 112 

small scale of our study area the environment will only have a minor influence despite the 113 



strong gradient since biotic interactions could be more influential and random effects or neutral 114 

dynamics might overlay species sorting effects.  115 

  116 



2. Materials and Methods 117 

 118 

2.1. Data collection 119 

The grassland studied is situated in a natural reserve (Mallnow Lebus, Brandenburg, Germany, 120 

52°27.778' N, 14°29.349' E). The region is influenced by sub-continental climate with a mean 121 

annual precipitation of below 500 mm (Ristow et al., 2011) and the area is managed by sheep 122 

grazing twice a year. The sampling strategy was based on a hierarchical nesting of macroplots 123 

and plots, and was done at the end of June 2011 to minimize influences by spring ephemerals. 124 

Three macroplots of 15 x 15, 12 x 12 and 12 x 12 meters, respectively (Fig. 1), were located on 125 

the slopes of mostly undisturbed hills in an area of about five hectares. Grazing was very limited 126 

on our macroplots due to the strong slope and only minor traces of sheep trails were found. We 127 

ensured that all macroplots were part of two closely related grassland communities found in 128 

Mallnow, namely Sileno otitae-Festucetum-brevipilae Libbert 1933 corr. Kartzert & Dengler 129 

1999 and Festuco psammophilae-Koelerietum glaucae Klika 1931. Our macroplots were 130 

comparable concerning vegetation and soil related factors like distance from trees, stone content 131 

or depth of A-horizon, as well as slope and sun exposure, and therefore can be considered a 132 

replicated design. The uphill-downhill axes of the macroplots are characterized by a steep 133 

textural gradient from highly sandy (downhill macroplot) to sandy-loamy (uphill macroplot) 134 

soils. Preliminary analyses revealed that this gradient causes gradients in many other soil 135 

parameters, namely pH, carbon, nitrogen and plant available phosphorus. Each macroplot was 136 

divided into 3 x 3 m plots (Fig. 1). From each macroplot the vegetation of the four corner plots 137 

(top left, top right, bottom left, bottom right) was sampled: For the measurement of soil 138 

properties one soil core per plant was taken atop of five randomly chosen F. brevipila plants 139 

per plot, creating 60 samples in total. In a radius of 15 cm around the chosen F. brevipila plant, 140 

the local plant community was assessed visually as presence or absence of plant species. This 141 

sampling unit represents our main community unit and below we refer to it as “sample”. With 142 

regard to the smallest sampling unit (“sample”), the 15 cm radius ensures that interactions 143 

within the rhizosphere of F. brevipila plants were captured. We preferred this method to a 144 

totally random location of the sampling units (i.e. not having a focal species) for the following 145 

mutually reinforcing reasons: a random location would have been strongly biased towards F. 146 

brevipila in a non-controlled way because F. brevipila is by far the most abundant species in 147 

the area (in some case the species can cover up to 70 % of one plot); by controlling for this 148 

critical source of certain bias, we could minimise possible very small scale environmental 149 

heterogeneity that could confound the interpretation of co-occurrence analysis based on null 150 



models (see methods below) and the comparison between null models and multivariate analyses 151 

based on RDA; the plant assemblage can be objectively defined at a biologically meaningful 152 

small scale (i.e. rhizosphere) as the neighbourhood community of the dominant species. This 153 

makes the community unit highly replicable: the average composition of this particular but 154 

representative assemblage can be assessed throughout plots and macroplots as a function of 155 

changes in the environment and the effects of the environments on how species interact within 156 

this assemblage. By having a focal species and defining the assemblage as a function of it, we 157 

lost some degree of generality but it is also true that our focal species and the genus to which it 158 

belongs (Festuca) is one of the most abundant if not the most abundant and widespread species 159 

in dry grasslands overall the world. Thus, we could compare total plant species richness of each 160 

plot with the species richness found in the proximity of each of the five randomly sampled F. 161 

brevipila plant per plot. The corner plots were chosen to use the maximum of the environmental 162 

gradient along one direction (the downhill-uphill axis) and a minimum of it in the direction 163 

orthogonal to the environmental gradient while keeping the spatial distances between plots 164 

equal. Thus, the three macroplots represent three spatial replicates while the environmental 165 

gradient is replicated twice within each macroplot.  166 

Each soil core was thoroughly homogenized and representatively subsampled for the different 167 

analyses. Soil water content was measured as the weight difference between fresh and oven-168 

dried soil cores. Soil carbon and nitrogen analysis was performed on a EuroEA 3000 Elemental 169 

Analyser (EuroVector, Milano, Spain) with a TDC detector using 25 mg of pulverized soil per 170 

core. Soil pH was measured in 10 mM CaCl2 solution (van Lierop and Mackenzie, 1977) using 171 

3 grams of soil per core. Plant available phosphorus was characterized following the CAL-172 

method (Sparks, 1996) using 1 gram of soil per core. Dehydrogenase assays were conducted 173 

according to Rossel (1997), using 1 gram of soil per core. The pH, carbon, nitrogen and 174 

phosphorus content data were used to create maps based on ordinary kriging to visualize 175 

environmental gradients within the macroplots (Fig. S1). This was used to elucidate the actual 176 

presence and orientation of a gradient.  177 

 178 

2.2. Statistical analysis 179 

Normality was checked with the Kolmogorov–Smirnov test and variables were transformed to 180 

meet the requirements of parametric analysis when necessary. The subsequent analysis of 181 

patterns in community structure was conducted in R 2.15.2 (2013), with functions from the 182 

vegan (Oksanen et al., 2012) and the SPACEMAKER (Dray, 2011) package. Source code from the 183 

analysis in R is provided in the supporting information. We created a presence ⁄ absence matrix 184 



for the plant species recorded in each sample, containing 60 samples and 68 identified plant 185 

species. Environmental factors for each sample were summarized in a matrix containing seven 186 

columns for the factors and 59 rows for the samples. Eventually, one row had to be omitted 187 

from all matrices since one soil core was lost prior to analysis. All the species matrices including 188 

the subsets used were stripped from zero-occurrences spots and species, respectively, prior to 189 

the subsequent analysis. For completeness reasons, the whole species matrix is included in the 190 

supplementary information. Multivariate analysis was done on a per-sample basis, while the 191 

null model analysis was conducted on various subsets of the whole data matrix (see below). 192 

The species presence / absence matrix was Hellinger transformed and subjected to a 193 

multivariate analysis to disentangle spatial and environmental factors influencing community 194 

variation (Legendre and Legendre, 1998). At first a canonical correspondence analysis (CCA) 195 

was conducted with the coordinates of the samples as constraints in order to remove linear 196 

spatial patterns. The remaining spatial patterns of the detrended community data were 197 

summarized, together with the geographical distance matrix of the samples, in the Moran 198 

eigenvector mapping matrix (MEM) that best accounted for autocorrelation (Dray et al., 2006). 199 

The final spatial matrix used for analysis then contained both the MEMs and the linear trends. 200 

Spatial autocorrelation represents the predictability of a locally observed response value by 201 

response variables observed in the surrounding area (Legendre, 1993). The MEM is calculated 202 

by multiplying a connectivity binary matrix with a weighting matrix. The connectivity matrix 203 

represents a graph in which samples are connected as networks while the weighting matrix is 204 

used to quantify the sample dissimilarity by weighting each link of the network (Caruso et al., 205 

2012). In order to test multiple spatial patterns, the connectivity and/or weighting algorithms 206 

were modified and the best model was selected following the Akaike Information Criterion AIC 207 

(Akaike, 1973). Thus, the best linear combination of eigenvectors was chosen so the correlation 208 

with the data would be maximal and the AIC values would be minimal (Dray et al., 2006). An 209 

extracted eigenvector summarizes spatial patterns at a given scale; therefore the cumulative 210 

matrix of eigenvectors can describe several spatial scales. This matrix then can be used in 211 

multivariate regression approaches to predict spatial patterns (Dray et al., 2006). The 212 

eigenvector method we utilised is able to detect patterns down to a scale of 1m, which equals 213 

roughly twice the average distance between our samples. We used redundancy analysis (RDA) 214 

and variance partitioning to resolve the contribution of environmental and spatial factors to the 215 

total variance (Legendre and Legendre, 1998). The community matrix was used as response 216 

matrix and measured environmental factors like carbon, nitrogen or pH, plus the MEM vectors 217 

representing spatial autocorrelation were used as explanatory factors for the response matrix. 218 



Since plants tend to respond more strongly to a change in nutrient availability when the nutrient 219 

is scarce than when it is abundant, we followed suggestions by Jones et al. (2008) and tried to 220 

transform the environmental data by taking their natural logarithm and generate a polynominal 221 

environmental dataset prior to variance partitioning. However, this did not change the results 222 

compared to untransformed data, we therefore only report results from the latter dataset. 223 

Variance partitioning is a tool to quantify the unique contribution of these two components plus 224 

the spatial patterning shared by the environmental data (Borcard et al., 1992). Multivariate 225 

variances were visualized using principal coordinate analysis (Anderson and Willis, 2003). 226 

Each of the variance partitions was subjected to a constrained redundancy analysis and 227 

subsequent statistical test at P < 0.05, based on permutation (Oksanen et al., 2012). We applied 228 

automatic stepwise model building for constrained ordination methods using the ordistep 229 

function (Blanchet et al., 2008) with forward and backwards selection to include important 230 

environmental variables only and calculate their respective P-values.  231 

Since mosses and lichens can affect seedling establishment of higher plants (Soudzilovskaia et 232 

al., 2011), their cover was considered as an additional environmental factor; however, this did 233 

not increase the variance explained by the environment (data not shown). Lichens and mosses 234 

were thus excluded from further analysis albeit their inclusion slightly increased the explained 235 

variation of the spatial component. 236 

Since variance partitioning quantifies variation in our community data but does not indicate a 237 

positive or negative trend of the species coexistence necessary to judge the role of biotic 238 

interactions, we applied a null model analysis done in PAIRS (Ulrich, 2008). In our null model 239 

analysis the C-score index was used to compute values of co-occurrence for the given set of 240 

presence/absence data. Since the C-score does not require perfect checkerboard distributions 241 

and has a low susceptibility to type II errors, it seemed best suited for our purpose (Gotelli, 242 

2000). The input matrix was randomized following the suggestions of Gotelli (2000) to 243 

minimize type I errors and test for patterns of co-occurrence expected under non-random 244 

assembly processes and interacting species. The algorithm used fixed sums of rows and sums 245 

of columns and applied the Random Knight’s Tour approach for shuffling the matrix. Retaining 246 

the row and column totals preserves differences in species richness among sites and differences 247 

in occurrence frequencies among species, therefore representing a conservative approach when 248 

testing for patterns in species composition. We applied a nestedness analysis using the matrix 249 

temperature method (Atmar and Patterson, 1993). Since the results indicated a strongly nested 250 

community, the data set was split up according to geographic orientation, and in addition to the 251 

whole community matrix, the subsets of the top, bottom, left and right plots were each subjected 252 



to a null model analysis. The top and bottom subsets represent the spatial distance since the 253 

gradient in each subset is minimized. The left and right subsets represent the whole gradient 254 

together with the spatial component (see Fig. 1) In addition, we included a subset of the diagonal 255 

patterns (that is, the top left plus the bottom right plots and the top right plus the bottom left 256 

plots) in order to account for potential tilting of the gradient orientation (compare Fig. 2).  257 

The null hypothesis was considered rejected when the observed C-Score was significantly 258 

different from the average simulated C-Scores (P < 0.05). A C-score lower than the simulated 259 

average represents an aggregated community, while a higher score represents a segregating 260 

community. Standardized effect sizes were used to compare results meaningfully and calculate 261 

probability values. The effect size is calculated as (observed C-score - simulated C-score) / 262 

(standard deviation of simulated C-score). Negative standardized effect sizes indicate that the 263 

observed index was less than the mean of the simulated indices while positive values indicate 264 

that the observed index was greater than the mean of the simulated indices (Gotelli and 265 

Entsminger, 2012).   266 

  267 



 268 

3. Results 269 

 270 

3.1. Sampling 271 

We detected a total of 68 herb and grass species plus five different species of mosses and lichens 272 

in the survey of the entire plots, outlining the high abundance found in our sample region. Out 273 

of these herb and grass species, 47 species were found inside the 15 cm radius environment of 274 

sampled Festuca brevipila plants (see Table S1). Species not found in the 15 cm radius around 275 

samples were excluded from the species matrix prior to analysis so no zero-occurrences were 276 

present in the matrices subsequently used. The majority of plant cover was attributed to the 277 

grasses Festuca brevipila and F. psammophila, accounting together for up to 70% of the plant 278 

canopy in a plot. Other abundant plants were Arrhenatherum elatius, Carex humilis and Rumex 279 

acetosella, which are all common representatives of sunny-dry nutrient poor grassland habitats 280 

(Hensen, 1997). 281 

All plots showed steep gradients in pH, carbon and nitrogen content (Fig. 1, Table S2), with 282 

macroplot 3 being generally richer in nutrients than macroplots 1 and 2. Plant available 283 

phosphorus content was poor in all three macroplots, ranging from 8.7 mg/kg soil to 42.2 284 

mg/kg. Soil C to N ratios ranged between 11:1 and 23:1. Measured pH ranged from 3.7 to 7.6, 285 

encompassing four orders of magnitude in pH change. Macroplot 1 represented almost the 286 

whole pH range, while macroplot 2 was more acidic and macroplot 3 more alkaline than 287 

macroplot 1. Distances between samples in the plots ranged from 0.32 meters to 2.6 meters, 288 

with an average of 1.56 metres. 289 

 290 

3.2. Variance partitioning 291 

From the different models tested for the MEMs, the “Nearest Neighbour” approach for 292 

calculating the connectivity matrix with a concave-down weighting function yielded the lowest 293 

AIC and was subsequently used for calculating the eigenvector maps. The spatial component 294 

of the variation could be described by five low-rank MEMs and one high-ranking MEM, 295 

pointing out that in our community spatial influences are predominantly small-scaled, that is to 296 

say there is more significant spatial structure within plots and macroplots than between 297 

macroplots. The variance partition attributed 17.9% of the community variation to spatially 298 

independent environmental variables, from which carbon, nitrogen and pH were significant at 299 

P < 0.05 (Table 1). The spatial component represented by the MEMs accounted for 14.5% of 300 

the community variation and was highly significant (Table 1), while the spatially structured 301 



environmental component (i.e. shared variation between spatial and environmental variables) 302 

accounted for 4.7% of the variation. Roughly 63% of variance remained unexplained (Table 1). 303 

When we tested for the effect of environmental variables ignoring spatial autocorrelation (Table 304 

1, second column), all tested environmental factors except water content and microbial activity 305 

were significant, indicating that spatial structure in the environment could drive some of the 306 

spatial changes observed in the plant community (Table 1, compare first two columns). The 307 

linear effect of the linear spatial coordinates alone accounted for 3.6% of total variation. 308 

 309 

3.3. Null model analysis 310 

The null model analysis revealed that the C-score was consistently higher in the sampled 311 

communities than in the random ones, making the matrix overall segregated. This was also true 312 

for every subset of the metacommunity we tested. This clearly shows that species associate non-313 

randomly (Table 2). PAIRS reported a list of significant plant pair interactions, which we used 314 

to examine types of interactions between plants. When we tested the subsets of the community 315 

matrix, we noticed that the difference in effect size was higher for the left and right subset (i.e. 316 

along the environmental gradient) than for the top and bottom ones (i.e. orthogonal to the 317 

environmental gradient, Table 2). The effect size represents a measure of segregation strength, 318 

with larger effects sizes indicating more strongly segregating communities. The results indicate 319 

that the spatially structured environment is a bigger segregating factor than the environmental 320 

gradient alone, which is consistent with our variance partition results. In order to check for 321 

biases in the pooling of the subsets, we also compared the effect sizes of the three macroplots 322 

plus the possible two-macroplot-combinations (1 and 2; 2 and 3; 1 and 3), however, the effect 323 

sizes were comparable in all three subsets (Table 2). Since some of the individual gradients 324 

were not perfectly aligned with the sides of the macroplots, we also examined effect sizes of 325 

cross-plot subsets (that is, all plots in the southwest – northeast axis and all plots in the southeast 326 

– northwest axis). We noticed that the gradient axis oriented towards the pH causes a less 327 

segregating community than the axis oriented towards carbon and nitrogen (Fig. 2, Table S2). 328 

Mosses and lichens were not included in the null model analysis; however, including them did 329 

not change the result (data not shown).  330 



4. Discussion 331 

 332 

4.1. Do the environmental factors that are known to determine community assembly at 333 

broad scales operate at fine scales? 334 

Given the steep gradients and the high species richness we found in our study area, we initially 335 

expected that environmental filtering account for significantly more of community variance 336 

than the spatial component. We found that the environment is on par with spatial processes 337 

similar to the results found in other ecosystems (Li et al., 2011). The fact that environmental 338 

filtering play a significant part in shaping plant communities is a common idea in community 339 

ecology (Medinski et al., 2010; Olff and Ritchie, 1998; Payne et al., 2011; Silva and Batalha, 340 

2010; Tilman and Olff, 1991; Wellstein et al., 2007). We included the environmental factors 341 

that are generally considered important drivers of plant growth and distribution and that should 342 

cover the majority of abiotic influences (Bardgett, 2005). Even so, we lack a complete analysis 343 

of the micronutrients like Mg, Fe or Zn, and in general any aboveground environmental data 344 

like temperature, rainfall distribution or wind strength (even though these macroscopic factors 345 

definitely operate at scales much broader than those of our study). This might obscure some 346 

patterns currently not attributed to the environmental factors. Nonetheless, given the influence 347 

of key parameters like pH or phosphorus and the conservative analysis approach, it is unlikely 348 

that measuring more environmental variables would significantly increase the amount of 349 

variation accounted for by the environment. In fact, variables such as micronutrients generally 350 

correlate well with the general parameters (e.g., C and pH) we have measured. Since every 351 

environmental variable was spatially structured in our study area, it is possible that a significant 352 

influence from an unmeasured variable would be reflected in the spatial eigenvectors and could 353 

therefore be accounted for indirectly. Also, given the variables we measured, it is unlikely that 354 

we missed out major environmental predictors of plant communities. Next to the environmental 355 

part of the variation, a smaller fraction of variation was accounted for by the spatially structured 356 

environment component, which suggests that the environment might exert its effect in a 357 

spatially structured fashion (see below). The processes behind patterns found when analysing 358 

communities oriented along the different environmental gradients via null models may account 359 

for a significant part of the variation that remained unexplained after multivariate analysis.  360 

Variance partitioning revealed that roughly half of the explained variance in species 361 

composition is due to the spatial position of the plant species in our sampled macroplots, 362 

regardless of environmental variation (Table 1). The permutation tests pointed out that the 363 

spatial structure of the environment can be a major determinant, given the significance of the 364 



environmental terms with and without spatial autocorrelation corrected (Table 1). This suggests 365 

that the prevalent environmental filtering could determine changes in species composition via 366 

its own spatial structure and/or by interacting with other processes, especially biotic interactions 367 

which are expressed by stabilizing niche differences (Hall et al., 2003). The scale of our study 368 

is so small that we can rule out dispersal limitation or considered it a very minor source of 369 

spatial variation. Thus, we have a spatially structured effect of the environment, which could 370 

also be due to biotic interactions mediated by the environment, plus much spatial variation that 371 

neither the environment nor dispersal limitation can account for.  372 

The remaining proportion of unexplained variation in community composition is likely to 373 

represent either random variation or variation related to unmeasured variables that are not 374 

spatially auto-correlated at the scales considered by our sampling design and MEM method 375 

(Table 1). It might be possible that processes in the sub-meter range may be responsible for 376 

parts of the unexplained variation; however, our analysis was designed to capture processes 377 

taking place between our community sampling units on a scale of more than one meter. 378 

 379 

 380 

 381 

4.2. In which way do biotic and abiotic factors drive changes in species composition? 382 

Null model analysis confirmed that changes in species between sampling spots are not random. 383 

We found that the segregation of species is higher in our studied area than expected by chance 384 

(Table 2).  385 

The effect sizes of different subsets we analysed were all positive, indicating that the 386 

segregating effects are ubiquitous and do not necessarily correlate with spatial changes in the 387 

environment, a result consistent with the multivariate results discussed two paragraphs above. 388 

Given that it is a fair assumption that dispersal limitation does not play a significant role in our 389 

study system, we can thus assume that negative biotic interactions (consistent with segregation) 390 

can act as a structuring factor alongside the environmental filtering processes in our system, 391 

alongside other potential effects attributed to small-scale environmental heterogeneity too small 392 

to be addressed by the design of our study. We noticed that the effect sizes differed noticeably 393 

in certain subsets of our data. These differences can be linked to some characteristics of the 394 

gradient in our plots, thereby suggesting a potential effect of environmental gradients exerted 395 

via biotic interactions. For example, we see that the plants in the top plots are segregating more 396 

strongly, thus we can infer that biotic processes like competitive exclusion should be more 397 

prevalent there. In fact, the upper part of the hills was less sandy and more densely populated 398 



with generally larger plants, which implies more competition for space or light. It has also been 399 

suggested that positive relationships between species are related to stressful conditions and 400 

negative relationships to productive environments (Callaway et al., 2002; Walker and Chapin, 401 

1987), which is in consent with our observations given that the upper hill part of our sampling 402 

areas is indeed more productive due to higher resource availability (like water, nutrients and 403 

sunlight).  404 

Complex interactions among conflicting processes such as competition for space, optimization 405 

of space utilization or demand for similar resources can facilitate exclusion (Sebastiá, 2004). 406 

We found a large difference in effect size and hence segregation when comparing the left and 407 

right subsets of the macroplots, which cannot be attributed just to environmental gradients, but 408 

also to patchy processes which remain to be investigated. In part, patterns of variation in the 409 

effect size of segregation seem to correlate with some environmental heterogeneity observed 410 

within macroplots (Table 2).  411 

We never detected aggregation in any heterogeneous subset of the community matrix, which 412 

suggests that environmental filtering can take place mostly via niche partitioning, although care 413 

must be taken when inferring these processes from co-occurrence patterns. Given the small 414 

scale of our sampling design, we are not likely to find local coexistence, therefore any niche 415 

partitioning will be observed as segregation of species. The scale of observation may influence, 416 

how positive and negative interactions are related to biodiversity (Gotelli et al., 2010).  417 

 418 

 419 

5. Conclusion 420 

 421 

Overall, our data supports the hypothesis that at small scales steep environmental gradients 422 

share equal importance in structuring the plant assemblage dominated by Festuca brevipila with 423 

either spatially structured environmental effects or species spatial segregation due to negative 424 

interactions or a combination of these two factors. Small scale and high resolution sampling 425 

design will in the future allow teasing apart these two factors and scaling up their effects. 426 
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Legends to Figures 579 

 580 

Figure 1: Sampling location and sampling design: all three macroplots were located on a hill 581 

slope in a German natural reserve close to the Polish border, offering a high environmental 582 

gradient within a few meters. A: A general map of Germany with the sampling area as red 583 

rectangle (left) and a satellite picture of the sampling area (right) (Google, 2013). Purple 584 

rectangles labelled as P1, P2 and P3 depict the location and orientation of the three macroplots. 585 

B: Diagrams of the three macroplots. The spatial gradient is oriented orthogonally to the 586 

environmental gradient. From the four corner plots (green), five F. brevipila plants were 587 

sampled randomly as described in the materials and methods section (black dots). Numbers on 588 

the diagrams represent the size of the respective macroplots in metres. 589 

  590 



Table 1: P-Values of the RDA (redundancy analysis) based permutation tests and 591 

decomposition of the total variation in the community matrix into unique environmental (soil 592 

properties) and spatial (geographic position) components. Significant values are bold. 593 

Important variables were selected by applying automatic stepwise model building for 594 

constrained ordination methods including forward and backward selection. Values in italic were 595 

dismissed in the step-wise selection process from the model. The last line (“explained 596 

variation”) shows the percentage of explained variation of each component. The amount of 597 

unexplained variation was 62.9%. P-values for the environmental variables in the column “env” 598 

are based on partial-RDA, which accounts for spatial autocorrelation. P-values for the same 599 

variables but in the column “space + env.” are based on the RDA that does not correct for spatial 600 

autocorrelation, which can therefore include spatially structured environmental effects. Missing 601 

values marked with a "-" are non-testable. 602 

 603 

 604 

component env. space + env. space 

Carbon 0.48 0.01 - 

Nitrogen 0.06 0.05 - 

C/N ratio 0.85 0.21 - 

Phosphorus 0.07 0.01 - 

pH 0.01 0.01 - 

microbial activity 0.04 0.02 - 

water content 0.51 0.64 - 

cumulative <0.01 - <0.01 

explained variation 17.9% 4.7% 14.5% 

 605 

  606 



Table 2: Null model analysis of community variation, using the C-Score index and the 607 

algorithm MOD9 in PAIRS as described by Ulrich & Gotelli (Gotelli and Entsminger, 2012; 608 

2007). The effect sizes and P-values of different subdivisions of the plant community matrix 609 

are shown. Positive effect sizes implies a segregating community (species repel each other), 610 

negative values indicate an aggregating one (species attract each other). P-Values are depicted 611 

as stars: * = P<0.05; ** = P<0.01; *** = P<0.001; NS = not significant. The left table represents 612 

heterogeneous subsets used for inferences on community composition, while the right table 613 

represents homogenous subsets used to check the validity of our heterogeneous subset 614 

assumptions. 615 

 616 

community matrix 
effect 
size 

P  community matrix 
effect 
size 

P 

all plots 7.25 ***  macroplot 1 left 3.53 ** 
top plots 5.48 ***  macroplot 2 left 1.85 NS 

bottom plots 3.24 **  macroplot 3 left 4.41 ** 
left plots 2.24 *  macroplot 1 right 5.54 *** 

right plots 8.04 ***  macroplot 2 right 1.55 NS 
macroplot 1 6.40 ***  macroplot 3 right -1.03 NS 
macroplot 2 2.75 *  plot 1 -1.19 * 
macroplot 3 6.18 ***  plot 2 0.16 NS 

diagonal with gradient 6.49 ***  plot 3 0.71 NS 
diagonal w/o gradient 3.31 **  plot 4 0.77 NS 

    plot 5 3.51 ** 
    plot 6 1.15 NS 

    plot 7 1.14 NS 
    plot 8 0.66 NS 
    plot 9 -0.37 NS 
    plot 10 0.00 NS 
    plot 11 -0.15 NS 
    plot 12 -0.58 NS 

 617 

 618 


