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Localization in two-dimensional alternate quantum walks with periodic coin operations

Carlo Di Franco and Mauro Paternostro
Centre for Theoretical Atomic, Molecular and Optical Physics,

School of Mathematics and Physics, Queen’s University, Belfast, BT7 1NN, United Kingdom

Exploiting multi-dimensional quantum walks as feasible platforms for quantum computation and quantum
simulation is attracting constantly growing attention from a broad experimental physics community. We propose
a modification of the quantum walk scheme described in [C. Di Franco et al., Phys. Rev. Lett. 106, 080502
(2011)] that presents, in the considered regimes, a strong localization-like effect on the walker. We characterize
it in terms of the parameters of a step-dependent qubit operation that acts on the coin space before any standard
coin operation, showing that a proper choice can guarantee a non-negligible probability of finding the walker
at the origin even for large times. We finally discuss possible experimental realizations of this model with the
current state-of-the-art settings.

The field of quantum computation and quantum simulation
has been recently driven to a new rising edge by the experi-
mental realization of quantum walks in various setups, high-
lighting that different physical systems can be adapted for the
implementation of these models. In particular, optical sys-
tems have shown their full potential, allowing the experimen-
tal demonstration of two-dimensional quantum walks for the
first time [1, 2], even if several further progresses will surely
be obtained also in the other physical scenarios that have been
already exploited for the one-dimensional case [3, 4].

From the theoretical point of view, the interest in two-
dimensional quantum walks has been boosted by the fact
that, differently from the one-dimensional version, higher-
dimensional schemes (i.e., walkers moving on structures with
dimension larger than one) can be exploited for the efficient
implementation of quantum search algorithms [5]. In par-
ticular, the Grover walk has been intensively studied due to
its localization feature [6]. It has been proved that the non-
localized case of the Grover walk can be simulated by a walk
where the requirement of a higher dimensionality of the coin
space is substituted with the alternance of the directions in
which the walker can move [7].

In the quest for more feasible quantum walk models, an
important step forward is presented in this paper: a strong
localization-like effect can be indeed obtained in the modified
version of the alternate quantum walk presented here, reduc-
ing the gap with the standard two-dimensional version. This
result could pave the way for adapting this scheme to the re-
alization of quantum algorithms, providing a clear advantage
in terms of experimental resources. After a short introduction
on the quantum walk studied here, we characterize it in terms
of its relevant parameters and show that a proper choice can
guarantee a non-negligible probability of finding the walker at
the origin even for large times. We then hint at a qualitative
relation between the ability of the system to localize and the
behavior of coherences established in the state of the parti-
cles performing a two-particle equivalent scheme of the walk,
which in turns provides information on the way correlations
are set up between them. We discuss the robustness of this
model to imperfections and its possible experimental realiza-
tion with the current state-of-the-art settings in linear optics
and cold-atom devices.

Let us consider a quantum system with two degrees of
freedom, and thus described by a vector in the composite
Hilbert space H = HW ⊗ HC . The coin space HC is a
two-dimensional Hilbert space spanned by {|0〉, |1〉} and the
walker space HW is an infinite-dimensional Hilbert space
spanned by {|x, y〉}, with x and y assuming all possible in-
teger values. We take as a basis of this space H the set
{|x, y, c〉}, with |x, y, c〉 = |x, y〉W ⊗ |c〉C ; x and y could de-
note, for instance, the position of a particle (walker) along the
x and y directions, respectively, while |c〉C is an internal two-
level degree of freedom. From now on, we consider |0, 0〉W as
the initial state of our walker, and |+y〉C = (|0〉C+i|1〉C)/

√
2

as the coin one.
The evolution of the system is given by a sequence of con-

ditional shift, coin operations, and phase gates. The effect of
the two different conditional shift operations

Ŝx =
∑
i,j∈Z

|i− 1, j, 0〉〈i, j, 0|+
∑
i,j∈Z

|i+ 1, j, 1〉〈i, j, 1| (1)

and

Ŝy =
∑
i,j∈Z

|i, j − 1, 0〉〈i, j, 0|+
∑
i,j∈Z

|i, j + 1, 1〉〈i, j, 1| (2)

is to move the walker on a two-dimensional plane, in a way
that depends on the coin state. If we label the position in the
x and y directions with increasing numbers from left to right
and from bottom to top, respectively, Ŝx moves the walker
one step to the left (right) when the coin-component is in the
state |0〉C (|1〉C) and Ŝy moves the walker one step down (up)
when the coin-component is in the state |0〉C (|1〉C). Our coin
operation (acting only on the coin space) is the Hadamard gate

Ĥ =
1√
2

(
1 1
1 −1

)
, (3)

as in the original quantum walk [8]. In order to include some
dependence on the (discrete) time (similarly to what has been
done in Ref. [9]) in the single walk step, we also add the phase
gate

P̂φ(t) =

(
e−i

φ
2 t 0

0 ei
φ
2 t

)
, (4)
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FIG. 1: Probability to find the walker in the origin, against the total
number of time steps t, for values of φ equal to π/6 (black line), π/4
(red dashed line), π/3 (blue dotted line). Only the odd time steps are
shown, as the probability is zero for all even steps.

with t the corresponding time step of the quantum walk [also
P̂φ(t) acts only on the coin space]. A single time step con-
sists here of two Hadamard operations, two phase gates and
two movements on the x and y directions, according to the
sequence: coin operation - phase gate - movement on x - coin
operation - phase gate - movement on y.

Let us first consider the case where both the phase gates (the
one before the movement on x and the one before the move-
ment on y) have the same φ. We are interested in the spatial
probability distribution after a fixed number of steps, that can
be obtained by tracing out the state of the coin. In particu-
lar, we want to investigate the probability to find the walker
in the origin, and check if it quickly decreases with time, or
any localization-like effect is present. Fig. 1 shows this prob-
ability for different values of φ (we have investigated several
other random values of φ, finding always a similar behavior).
For comparison, let us remember that in the case φ = 0 (i.e.,
the standard alternate quantum walk) this probability is a non-
increasing function of the time. However, for φ 6= 0, there are
peaks showing a return of the walker in the origin.

It would be interesting to check the walker behavior for
long times. In order to do that, we consider the return prob-
ability (i.e., the probability to be in the origin after a certain
number of steps t), averaged over t (or, more precisely, over
t/2, as the probability is zero for all even steps). We plot it
against t in Fig. 2, for the same values of φ as in Fig. 1. We
can notice that the average probability rapidly goes to zero.
Also in this case, we have investigated several random values
of φ, finding always a similar behavior.

Due to the freedom given by the fact that the scheme in
Refs. [7] separates the movement of x and y, another possi-
bility is clearly to have different phase gates before the two
movements, i.e. having different φ. Let us define φx (φy)
the angle in the phase gate before the movement on x (move-
ment on y). We can therefore investigate the whole region of
the φx − φy plane and check for localization-like effects. In
order to do that, as a reasonable trade-off between the compu-
tational power required by the simulation and the readability
of the plot, we fix the total number of steps to t = 40 and
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FIG. 2: Average probability to find the walker in the origin, against
the total number of time steps t, for values of φ equal to π/6 (black
line), π/4 (red dashed line), π/3 (blue dotted line).

FIG. 3: Average probability to find the walker in the origin, for a
total number of time steps t = 40, against the values of φx and φy .

study the average return probability against the two angles,
as shown in Fig. 3. It is straightforward to notice in this plot
(as well as in other plots that we obtained for different val-
ues of the total number of steps t) that the maximal values are
reached when only one of the two φ’s is different from zero.
Moreover, the average probability is symmetric with respect
to φx ↔ 2π − φx, φy ↔ 2π − φy , and φx ↔ φy .

If we want to find the proper choice of φ parameters in or-
der to maximize the localization-like effect, and then study its
long-time behavior, we can thus just fix one of the φ’s equal
to zero (in the following investigation, we choose φy = 0),
and vary the other. This will allow us to reduce the number of
parameters and investigate longer times. We plot the obtained
results in Fig. 4, where also more points have been taken for
the values of φx. The total number of step is t = 100, in
this case. We can notice that there are wide regions where the
average return probability is much larger than the value cor-
responding to φx = φy = 0 (i.e., the stardard alternate walk,
for which the value is around 0.025). For comparison, for the
same number of time steps, when φx = φy 6= 0 (the case an-
alyzed previously), the average return probability never goes
above 0.1. We have already a strong evidence that this choice
(φx 6= 0, φy = 0) could guarantee a localization-like effect.

We thus take the value for which we have the maximum at
t = 100 (φx = 19/25) and we plot again the average return
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probability against t (as done in Fig. 2) for this case. The
difference is evident: The probability does not go rapidly to
zero and seems to have an asymptotic value. It is interesting
to notice that a localization-like effect has been observed in
one-dimensional quantum walk with periodic coin operation
as well [9], but in that case it is a transition behavior before the
walker starts to spread. A localization effect could strikingly
widen the possible applications of the alternate quantum walk,
considering in particular the importance of localization in the
Grover walk [5], the two-dimensional quantum walk exploited
for the implementation of Grover search algorithm.

If the model has to be used for realistic implementation, it is
clearly necessary to analyze how robust it is against imperfec-
tions. A systematic error in the value of φx will not strongly
affect the localization-like effect, as it can be already noticed
in Fig. 4. Even if the value of φx is not exactly the one cor-
responding to the maximum, wide regions of φx give reason-
able return probability. The other possibility is that the error
on φx is not systematic. For instance, at each time step the an-
gle could assume a value equal to (1 + δ)φ0, where φ0 is the
ideal value and δ is a random variable taking into account pos-
sible inaccuracies. In order to check the robustness, we have
thus studied the return probability sampling δ at each time step
from a uniform distribution in the range [−0.01, 0.01] (corre-
sponding to a possible error up to 1% of the optimal value).
We present the results, averaged over 100 trails, in Fig. 6.

There are two regions that can be distinguished in the plot.
The first one is for short times, where the effect of the pe-
riodicity in the operation acting on the coin space keeps the
return probability quite high, very close to the optimal value
in Fig. 5. Then, in the second region, the probability starts to
decay, due to the effect of randomization of the the phase an-
gle. The value is still higher than the standard alternate quan-
tum walk, but the probability clearly goes to zero for long
times. This can be understood by considering that disorder in
the quantum walk coin operation can have some localization
effect as well [10]. However, three different kinds of disorder
can appear: one only depending on the time (i.e., a fixed value
of δ at each time step, as we have considered previously), one
only on the position (i.e., a fixed value of δ at each position of
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FIG. 4: Average probability to find the walker in the origin, for a
total number of time steps t = 100 and φy = 0, against the values
of φx.
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FIG. 5: Average probability to find the walker in the origin, against
the total number of time steps t, for φx = 19/25 and φy = 0.
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FIG. 6: Average probability to find the walker in the origin, against
the total number of time steps t, for a value of φx = (1 + δ)φ0,
φ0 = 19/25, δ sampled at each time step from a uniform distribu-
tion in the range [−10−2, 10−2], and φy = 0. The black line corre-
sponds to time-dependent disorder, the red dashed line corresponds
to position-dependent disorder, the blue dotted line corresponds to
disorder depending both on position and time.

the lattice on which the walker is moving), and one on both. In
particular, only the second gives rise to Anderson localization
effects, even if the other two still have localization effects. In
all the three cases, however, the probability to find the walker
in the origin goes to zero for the time going to infinity. For
the sake of completeness, we have studied the other two cases
and reported also these results in Fig. 6 (red dashed and blue
dotted lines, respectively).

It is very interesting to compare the localization phe-
nomenon to the behavior of coherences established between
the particles performing a two-particle equivalent scheme of
the walk. As described in Ref. [11], the alternate quantum
walk can also been seen from a different point of view: two
particles both moving on a line, not interacting directly but
sharing a common degree of freedom, embodied by the coin.
The one-dimensional movement of the first particle corre-
sponds to the shift of the original walker on the x direction,
and the one-dimensional movement of the second particle to
the shift of the original walker on the y direction. Intuitively,
one expects that the achievement of localization in the alter-
nate walk would affect the way the two walkers are able to
correlate each other, establishing some form of localization-
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FIG. 7: Coherence norm against the total number of time steps t, for
φx = 19/25, φy = 0 (black line), φx = π/4, φy = 0 (red dashed
line), and φx = 0, φy = 0 (blue dotted line).

radius. Only within such radius the motion along the x di-
rection would be tied to that along the y direction. In turn,
this would be reflected in the way off-diagonal elements in
the two-walker density matrix are populated as the number of
steps in our process grows. In the non-localized case, on the
other hand, we expect sizeable coherences to be established
even when the walkers are beyond the localization-radius de-
scribed above.

In order to provide a quantitative assessment of such expec-
tations, we have studied the behavior of the quantity

C = ‖ρW − ρW,x ⊗ ρW,y‖ (5)

with ‖A‖ = Tr
√
A†A the trace-norm of an operator A, ρW

the density matrix of the walkers and ρW,k (k = x, y) its
reduction for the walker align the k axis. We dub C as the
coherence norm. By providing the sum of the moduli of the
off-diagonal elements of the density matrix ρW , the coherence
norm is adopted, in our study, as a quantifier of the global be-
havior of walker-walker coherences. Notice that a very recent
investigation has put forward similar tools as genuine mea-
sures of coherence in a quantum system [12]. We have com-
pared the trend followed by the coherence norm for three dif-
ferent arrangements of the walk, namely one case of strong
localization (φx = 19/25, φy = 0, black line), one case of
weak localization (φx = π/4, φy = 0, red dashed line), and
one case of no-localization (φx = 0, φy = 0, blue dotted
line). The results, presented in Fig. 7, show that C displays
rather distinctive features and confirm our predictions. As co-
herence in the extended Hilbert space of the two walkers is
directly related to the correlations established by the two par-
ticles moving along the orthogonal axes of our lattice, this
suggests in a quantitative and measurable way a strong con-
nection between the phenomenology of inter-walker correla-
tions and the features of the walk itself, an aspect that clearly
deserves further in-depth investigation.

Let us now discuss possible experimental implementations
of this model. The standard alternate quantum walk has been
recently realized in a optical loop setup [2]. In order to obtain
the model proposed here, we should add a phase gate after

the first coin operation (denoted as “coin 1” in Figure 1 of
Ref. [2]). This can be implemented by means of an electro-
optic modulator (EOM), as done in Ref. [13] for demonstrat-
ing the effects of disorder in one-dimensional case. As shown
in Ref. [13], the EOM can be properly programmed in order to
change the phases between single steps of the quantum walk,
therefore allowing the dependency of the phase gate operation
on the time step, as required in the proposed model. Clearly,
this time-dependent alternate quantum walk can also be real-
ized in any other physical setups suitable for the standard al-
ternate version. For instance, when an alternate quantum walk
will be implemented by means of neutral atoms in optical lat-
tices, along the lines of the one-dimensional experiment in
Ref. [3], the only change to obtain the model studied here will
be in the operation acting on the internal degree of freedom
(ı.e., in the pulse allowing transitions between the considered
hyperfine levels of the atoms).

We have studied a time-dependent alternate quantum walk
obtaining, in the considered regimes, a strong localization-
like effect on the walker. We have investigated this behavior
and found the optimal strategy to enhance it. This could pave
the way for adapting the scheme to the realization of feasible
quantum algorithms, providing a clear advantage in terms of
experimental resources. We have also shown that it can be
experimentally implemented with the current state-of-the-art
technology.
Acknowledgments.– MP is grateful to S. F. Huelga for in-
valuable discussions on the issue of coherence in quantum
processes. The authors acknowledge financial support from
the UK EPSRC under the Career Acceleration Fellowship
and “New Directions for EPSRC Research Leaders” schemes
(EP/G004579/1), and the John Templeton Foundation (grant
ID 43467).

[1] A. Schreiber et al., Science 336, 55 (2012).
[2] Y-C. Jeong et al., Nat. Commun. 4, 2471 (2013).
[3] M. Karski et al., Science 325, 174 (2009).
[4] H. Schmitz et al., Phys. Rev. Lett. 103, 090504 (2009); F.

Zähringer et al., Phys. Rev. Lett. 104, 100503 (2010); M. A.
Broome et al., Phys. Rev. Lett. 104, 153602 (2010).

[5] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 67,
052307 (2003); A. Ambainis, J. Kempe, and A. Rivosh, in Proc.
16th ACM-SIAM SODA, Vancouver (SIAM, Philadelphia, USA,
2005), p. 1099; A. Tulsi, Phys. Rev. A 78, 012310 (2008).

[6] N. Inui, Y. Konishi, and N. Konno, Phys. Rev. A 69, 052323
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[9] M. C. Bañuls et al., Phys. Rev. A 73, 062304 (2006).
[10] A. Ahlbrecht et al., J. Math. Phys. 52, 042201 (2011); A. Joye,

Comm. Math. Phys. 307, 65 (2011); A. Joye and M. Merkli, J.
Stat. Phys. 140, 1 (2010); A. Ahlbrecht, V. B. Scholz, and A. H.



5

Werner, J. Math. Phys. 52, 102201 (2011); A. Ahlbrecht et al.,
arXiv:1201.4839 (2013).

[11] C. Di Franco, M. Mc Gettrick, T. Machida, and Th. Busch, J.
Comput. Theor. Nanosci. 10, 1613 (2013).

[12] F. Levi, and F. Mintert, arXiv:1310.6962 (2013); T. Baumgratz,
M. Cramer, and M. B. Plenio, arXiv:1311.0275 (2013).

[13] A. Schreiber et al., Phys. Rev. Lett. 106, 180403 (2011).


