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Abstract 22 

A complete nucleotide sequence of the new Pseudomonas aeruginosa Luz24likevirus phiCHU was obtained. This virus was shown 23 

to have a unique host range whereby it grew poorly on the standard laboratory strain PAO1, but infected 26 of 46 clinical isolates 24 

screened, and strains harboring IncP2 plasmid pMG53. It was demonstrated that phiCHU has single strand interruptions in its 25 

genome. Analysis of the phiCHU genome also suggested that recombination event(s) participated in the evolution of the leftmost 26 

portion of the genome, presumably encoding early genes.  27 

 28 
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 43 

Pseudomonas aeruginosa strains are opportunistic pathogens and a significant source of morbidity and mortality (e.g. in cystic 44 

fibrosis patients). In the wake of growing antibiotic resistance, a resurgence of interest in bacteriophage therapy has taken place to 45 

relieve the growing burden observed in healthcare systems (Burns et al. 2012; Weinstein et al. 2001). 46 

P. aeruginosa bacteriophages (phages) are an extremely heterogeneous assemblage and in this work a novel phage of the 47 

Luz24likevirus genus, phiCHU, was characterized. PhiCHU was isolated from a small pond in the Moscow locality and shown to 48 



have a unique host range; it grew poorly on the standard P. aeruginosa laboratory strain PAO1, but infected efficiently a number of 49 

clinical isolates resistant to other phages and lysed mucoid strains isolated from wound infections revealing itself to be a potential 50 

therapeutic agent. How it can circumvent mucoidy is currently unknown. Table S1. shows a comparative analysis of phiCHU’s host 51 

range against known lytic phages phiKZ, EL, Lin68, PB1, 14/1, phiKF77, and phiKMV (Mesyanzhinov et al. 2002, Hertveldt et al. 52 

2005, Krylov et al. 2007, Ceyssens et al. 2009, Kulakov et al. 1986, 1991, Lavigne et al. 2003). Of the 46 isolates tested phiCHU 53 

grew well on 26, but exhibited turbid growth and varying plaque morphologies on a number of other strains. Our inability to isolate 54 

lysogens from any strains led us to conclude that phiCHU behaves like a virulent phage, at least in these instances. The 55 

Luz24likevirus genus has previously been reported as containing lytic phages apart from PaP3 (Tan et al. 2007). PhiCHU’s 56 

virulence and broad host range means that it is most likely suitable for use within therapeutic preparations. Importantly, phiCHU 57 

demonstrated good growth on PAO38; a P. aeruginosa strain containing the IncP2 plasmid pMG53. Figure S1. demonstrates the 58 

growth of phiCHU along with 8 other phages on P. aeruginosa strains.  IncP2 plasmids confer a broad spectrum of traits to 59 

pseudomonads including, but not limited to, multiple forms of antibiotic resistance and metabolism of unusual carbon sources 60 

(Jacoby et al. 1983). IncP2 being the most abundant plasmids found in nosocomial strains of P. aeruginosa (Hanson & Olsen, 61 

1978) were also shown to confer resistance to many phages of P. aeruginosa through interference in their intracellular 62 

development. This growth inhibition of different phages has been reported to be under the control of different loci within this plasmid 63 



group (Freizon et al. 1989). We subsequently investigated whether pMG53 promotes efficient phiCHU growth, by conjugatively 64 

transferring this plasmid to PAO1. Upon carrying this out, PAO1 acquired sensitivity to phiCHU.  65 

 66 

The need for phage genomics is paramount from a clinical perspective. Many phages can transfer bacterial genes by transduction, 67 

which poses a significant problem with respect to the potential dissemination of pathogenicity and resistance factors. Apt examples 68 

here would be the P. aeruginosa phages E79 and phiKZ (Morgan 1979, Dzhusupova 1982). Genomic analysis can help to elucidate 69 

whether these processes are likely to take place and therefore, whether a given phage is suitable for clinical use. Bacteriophage 70 

phiCHU particles were purified using isopycnic CsCl density gradient centrifugation and genomic DNA was extracted as described 71 

by Sambrook and Russell (2001). The phage was sequenced by the dideoxy method and both shotgun and primer walking on the 72 

whole genomic DNA was employed.  73 

 74 

The genomic map of phiCHU is presented in Fig 1. phiCHU was shown to have a linear dsDNA genome of 45,626 bp with a GC 75 

content of 52.02%. 73 ORFs were predicted and annotated in Artemis (Rutherford et al. 2000) and functionality was assigned to 22 76 

of these. Five ORFs encode proteins associated with genome replication, recombination and repair, 9 encode various structural 77 

proteins, 3 encode portal and terminase subunits, 2 encode the lysis machinery and the other 2 encode a putative gamma-glutamyl 78 

cyclotransferase and L-Glutamine-D-Fructose-6-Phosphate amidotransferase. All predicted genes lie in two bidirectionally 79 

transcribed units separated by a double intrinsic terminator; a structure indicative of the Luz24likevirus genus. Three tRNA genes 80 



(tRNAAsn, tRNAAsp, and tRNAPro) were predicted which are clustered at the extreme right of the genome. The genome is delineated 81 

by 185 bp direct terminal repeats. This genomic organization and a high nucleotide homology of 94.79% to the Luz24likevirus 82 

vB_PaeP_C1-C14_Or (Its closest relative) (Accession: HE983844) demonstrates that phiCHU unequivocally belongs to the 83 

Luz24likevirus genus of the family Podoviridae.  84 

 85 

Alignments of phiCHU and closely related Luz24likeviruses infecting P. aeruginosa with the Progressive Mauve algorithm (Darling 86 

et al. 2010) highlighted the presence of a gap of approximately 1.5 kb encompassing gp1 – gp4 (Fig. S2). This region shows a 87 

greater homology (94%) to different phages of the group (Luz24 and TL) (Ceyssens et al. 2008, Accession: NC_023583), which 88 

also exclusively infect P. aeruginosa. This finding suggests that the phiCHU genome may have evolved as a result of recombination 89 

between ancestors of vB_PaeP_C1-C14_Or and Luz24. 90 

 91 

Knowledge of the nature of receptors utilized in phage adsorption is important for therapeutic applications. Investigations into tail 92 

fibre proteins can yield useful information with respect to variations in host range. A number of authors have implicated the 93 

presence of glycine rich regions in the identification of tail fibre proteins (Lucchini et al. 1999; Nilsson et al. 2000; Tetart et al. 1998). 94 

20 of the 50 C-terminal residues of ORF 58 are glycines, thereby making this a likely candidate as one constituent of the tail fibre 95 

complex. Variations in this ORF were investigated amongst Luz24likeviruses and it was found that phiCHU differed by only a single 96 



residue from phiMR299-2 (Alemayehu et al. 2012). At this point (residue 267) phiMR299-2 like other Luz24likeviruses, possess the 97 

isoteric residues serine or threonine (Fig S3). phiCHU however, possesses proline at this point. Molecular modelling and alignment 98 

of phiCHU and phiMR299-2 putative tail fibres (Fig S4) demonstrated the extent to which this substitution alters protein structure 99 

and therefore, this may represent one mechanism contributing to altered host specificity of phiCHU.  100 

 101 

It was previously demonstrated that a P. putida phage tf, which is distantly related to Luz24likeviruses has localized single-strand 102 

interruptions (nicks) in its genome (Glukhov et al. 2012). This genomic feature was not previously demonstrated for 103 

Luz24likeviruses infecting P. aeruginosa. Here it was shown that denatured phiCHU DNA produces multiple bands on agarose gels, 104 

which disappeared upon ligation (Fig. S5a). The use of total genomic DNA as a template in sequencing reactions permitted the 105 

localization of nicks (Fig. 1 and Fig. S5b) and allowed the identification of the consensus associated with this feature (5’ – 106 

TACT/RTGMC – 3’). This proved to be the same consensus as previously reported in tf (Glukhov et al. 2012). 14 such sites were 107 

reported for tf and 15 for the P. fluorescens phage UFV-P2 (Eller et al. 2014, Glukhov et al. 2012). phiCHU possesses 7 instances 108 

of this consensus. The purpose of this enigmatic feature in phage genomes remains unknown. 109 

 110 

In this work, a novel member of the Luz24likevirus genus of phages infecting P. aeruginosa was isolated and characterized. 111 

phiCHU was shown to possess localized single-strand interruptions in its genome. It was also found that this phage exhibited a 112 



unique host range, whereby it grew well on PAO1 only in the presence of a plasmid from the IncP2 group. In addition, we found 113 

some evidence suggesting that recombination within disparate members of the genus contributed to the evolution of phiCHU.  114 

 115 
Genbank Accession Number: KP233880 116 
 117 
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Figure Legends 244 

 245 

Figure 1. Genome map of the P. aeruginosa bacteriophage phiCHU.   246 

Predicted ORFs are displayed as arrows indicating the direction of transcription. Functional annotations (if any) are displayed 247 

above ORFs and colour/symbol codes are presented at the bottom of the figure. Sequences associated with localized nicks are 248 

displayed at their respective positions 249 


