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Abstract—In this paper, we propose a sparse signal modula-
tion (SSM) method for precoded orthogonal frequency division
multiplexing (OFDM) systems and study the signal detection.
Although a receiver is able to exploit a path diversity gain with
random precoding in OFDM, the complexity of the receiver is
usually high as the orthogonality is not retained due to precoding.
However, with SSM, we can derive a low-complexity detector
that can provide reasonably good performances with a low
sparsity ratio based on the notion of compressive sensing (CS).
An important feature of a CS detector is that it can estimate
SSM signals with a small fraction of the received signals over
sub-carriers. This feature can allow us to build a low cost receiver
with a small number of demodulators.

Index Terms—compressive sensing, sparse signal modulation

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been extensively studied and employed for wireless standards
[1], [2] due to various advantages over other schemes. In par-
ticular, OFDM effectively mitigates inter-symbol interference
(ISI) and allows to use low-complexity a one-tap equalizer
for signal detection. However, OFDM cannot exploit path
diversity at the expense of no ISI [3].

To exploit path diversity, precoding can be used in OFDM
[4]. Unfortunately, precoding can offset one of the advantages
of OFDM systems, which is the orthogonality. Since the
orthogonality cannot be retained due to precoding, one-tap
equalizers cannot be used and more complicated equalizers or
detectors are to be used to mitigate ISI. There can be certain
precoding schemes for the trade-off between performance and
complexity of detectors. To this end, low density spreading is
devised in [5] and extended for multiple access in [6] to exploit
path diversity by receivers of reasonably low complexity.

In [7], spatial modulation (SM) is proposed to transmit
signals over multiple input multiple output (MIMO) channels
with a single transmit antenna at a time. In SM, the index
of the active transmit antenna is to bear information bits.
Thus, if there are 4 transmit antennas, SM can transmit 2
bits per channel use. Furthermore, a modulated symbol can
be transmitted by the active transmit antenna. SM can be
generalized by activating more than one transmit antennas.
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Thus, the number of bits that can be transmitted by the indices
of the active transmit antennas becomes blog2

(
NTX

K

)
c, where

NTX is the number of transmit antennas and K is the number
of active antennas at a time. Since a fraction of NTX antennas
are activated, SM can be energy efficient, and cost-effective as
only K radio frequency (RF) chains are required. Furthermore,
if K = 1, there is no interference from the other transmit
antennas, which allows to use low-complexity detectors [7],
[8]. In order to improve the performance of SM, the notion of
channel coding can also be employed [9], [10].

The notion of SM can be applied to OFDM, which results
in sub-carrier-index modulation (SIM) OFDM [11]. In SIM
OFDM, a subset of sub-carriers are activated and their indices
are used to transmit information bits. While SIM OFDM is
energy efficient as SM, it cannot exploit path diversity, which
is the same as OFDM. For a path diversity gain, precoding can
be used in SIM OFDM. In this case, however, the complexity
of detection can be high as the orthogonality is not retained.

In this paper, we study SIM for precoded OFDM with a
small number of activated sub-carriers. Since only a fraction of
sub-carriers are activated, the resulting modulation is referred
to as sparse signal modulation (SSM). Due to the sparsity, the
notion of compressive sensing (CS) [12], [13] can be employed
to derive a low-complexity detector in this paper. CS is to
recover sparse signals with a considerably low sampling rate
compared to the bandwidth of observed signals. There have
been various CS algorithms for the estimation of sparse signals
[14]–[16]. The main advantage of a CS detector is that it can
estimate SSM signals by using only a small fraction of the
received signals over sub-carriers. Since a small number of
demodulators would be required, we can see that the cost to
build a CS detector can be low.

Notation: Matrices and vectors are denoted by upper-
and lower-case boldface letters, respectively. The superscripts
T and H denote the transpose and complex conjugate, re-
spectively. The p-norm of a vector a is denoted by ||a||p.
E[·] denotes the statistical expectation. CN (a,R) (N (a,R))
represents the distribution of circularly symmetric complex
Gaussian (CSCG) (resp., real-valued Gaussian) random vec-
tors with mean vector a and covariance matrix R.



II. SYSTEM MODEL

Consider an OFDM system with L sub-carriers. The signal
vector to be transmitted is denoted by s. For convenience, s is
referred to as an OFDM signal block, while its elements are
referred to as data symbols. The received signal is given by

r = Hs + n, (1)

where n ∼ CN (0, NoI) is the background noise vector and
H = diag(H0, . . . ,HL−1) is a diagonal channel matrix and

Hl =

P−1∑
p=0

hpe
−j2π pl

L .

Here, {hp} is the channel impulse response (CIR) and P is
the length of CIR.

In the conventional OFDM system, each data symbol is
an element of a given signal constellation. That is, sl ∈ S ,
where sl is the lth element of s and S represents the signal
constellation. Since H is diagonal, sl can be detected from
the lth element of r, i.e., rl, as

ŝl = argmin
sl∈S

|rl −Hlsl|2.

Thus, the performance depends on each sub-carrier’s channel
coefficient, Hl, and no path diversity can be exploited.

III. SSM FOR PRECODED OFDM

Denote by P the precoding matrix. Then, the received
signal becomes

r = HPs + n

= Gs + n, (2)

where G = HP. In SSM, most sl’s are zero, while infor-
mation bits can be delivered through non-zero data symbols
as well as their indices. Assume that there are K non-zero
symbols within s, i.e.,, s is a K-sparse signal. The number of
bits that can be sent through indices is

NI = blog2

(
L

K

)
c,

while the number of bits that can be sent by non-zero data
symbols is Kblog2 |S|c. For example, if L = 64 and K =
6, we have NI = 26 bits. Since each non-zero symbol can
represent log2 |S| bits, the total number of bits becomes

N = blog2

(
L

K

)
c+K log2 |S|,

if |S| is a power of 2.
If K � L, from [17], we can show that

N ≈ Lψ
(
K

L

)
+K log2 |S|. (3)

where ψ(x) = −x log2 x − (1 − x) log2(1 − x), 0 ≤ x ≤ 1,
which is the entropy of a binary random variable. Furthermore,
using the Taylor series, it can be shown that

ψ(x) = x log2

1− x
x

+O(x2).

Letting α = K
L , it can be shown that

N ≈ LK
L
β +K log2 |S|

= K (log2 |S|+ β)

= Lα (log2 |S|+ β) , (4)

where β = log2
L−K
K = log2

(
1
α − 1

)
. This shows that the

number of bits, N , grows linearly with L as long as α� 1 is
fixed. For convenience, α is referred to as the sparsity ratio.

On the other hand, for a given large L, N can grow quickly
with K. In particular, NI , which is the number of bits that can
be transmitted by the indices of activated sub-carriers, can be
maximized as K approaches L/2. Thus, the maximum NI is

maxNI = blog2

(
L

bL/2c

)
c.

However, the number of bits that can be reliably detected at
a receiver would be lower than the maximum NI under a
finite signal-to-noise (SNR). Furthermore, the performance of
the detector employed affects the number of bits that can be
reliably detected. In the next section, we propose a CS based
detector and study a bound on NI for reliably detection.

IV. COMPRESSIVE SENSING BASED DETECTION

To derive a low-complexity detector, we consider CS
approach under the assumption that K is sufficiently smaller
than L. The proposed approach consists of two steps and the
second step is optional.

A. Two-Step Approach for Detection

The maximum likelihood (ML) detection can be consid-
ered to detect s when SSM is used. Let S̃ = S ∪ {0}, which
is the extended signal constellation of S including zero. Then,
the ML detection is given by

ŝ = argmins ||r−Gs||2
subject to sl ∈ S̃ and s ∈ ΣK , (5)

where ΣK is the set of K-sparse signals, which is defined as

ΣK = {x
∣∣ ||x||0 = K}.

Certainly, an exhaustive search for the ML detection in (5) is
infeasible due to a high computational complexity.

Prior to deriving a CS detector in this section, we briefly
discuss its complexity. In general, CS algorithms do not
require all the samples to estimate sparse signals [12], [13].
In our context, it implies that all the received signals from
L sub-carriers are not required in a CS detector, while the
ML detector should have all the signals. Denote by M the
number of samples. In a CS detector, M is the number of
the sub-carriers that are used to detect SSM signals. Usually,
M is greater than K, but less than L. This implies that a CS
detector does not need to have all the received signals from
L sub-carriers. Thus, the complexity of a CS detector can be
much lower as it only needs received signals from M out of L
sub-carriers. Furthermore, the cost for building a CS detector



can be lower than that for building an ML detector, since only
M demodulators would be required.

For practical detection schemes, we can consider two-
step approaches with CS. In the first step, we can solve the
following problem:

s̃ = argmin
s
||r−Gs||22 + λ||s||1, (6)

where λ is a design parameter. From (5), λ can be considered
as the Lagrange multiplier. As λ increases, the sparsity con-
straint is more emphasized. The problem in (6) is a typical CS
problem that has a number of algorithms to solve it (e.g., [15]).
Alternatively, we can use the orthogonal matching pursuit
(OMP) algorithm [14] to estimate K-sparse signals.

The second step is optional. From the estimated K-sparse
signals, the detection of non-zero symbols can be carried out
using the ML approach with the estimated indices of the active
sub-carriers. Let I denote the (estimated) index set of non-zero
elements. In addition, let

r̄ = [r]I

s̄ = [s]I

Ḡ = [G]I . (7)

Then, the values of the non-zero symbols in s can be detected
as

ˆ̄s = argmin
s̄∈SK

||r̄− Ḡs̄||2. (8)

It is also possible to employ the minimum mean squared error
(MMSE) detector at the expense of degraded performance.

B. An Upper-Bound on Throughput

The performance of the first step in the CS based detection
mainly depends on α, not the SNR, while the second step
depends on the SNR. Thus, at high SNR, the performance of
the overall CS based detection mainly depends on α.

Suppose that the elements of the precoding matrix P are
independent identically distributed (iid). Furthermore, the Hl’s
are also iid. Then, from [13], it is known that the number of
samples, M , to detect K-sparse signals is bounded as

M ≥ cK ln
L

K
, (9)

where c is a positive constant. This inequality is valid with
a sufficiently high probability. In most CS applications, it is
desirable to find a minimum M . However, we are interested
in finding a maximum K. Suppose that the receiver uses all
the received signals for signal detection, i.e., M becomes L.
In this case, we have

L

K
≥ c′ log2

L

K
,

where c′ = c ln 2. Since α = K
L , we have

1

α
≥ c′ log2

1

α
≥ c′ log2

(
1

α
− 1

)
. (10)

For a sufficiently small α, from (4) and (10), it can be shown
that

NI ≈ Lα log2

(
1

α
− 1

)
≤ Lα 1

c′α

=
L

c′
. (11)

This shows that the number of bits to be reliably transmitted
by indices is bounded for a given L and its growth rate cannot
be faster than linear when L increases for reliable K-sparse
signal detection. Therefore, in SSM, α is to be fixed or K is
to be proportional to L for reliable K-sparse signal detection.

V. SIMULATION RESULTS

We consider the SSM for a precoded OFDM system of
L = 128 sub-carriers with various configurations: K ∈
{1, 2, 4, 8, 16, 32} and M ∈ {10, · · · , 100} (per-cent) mea-
sured samples. The average bit error rates (BERs) are ob-
tained by simulating the compressive sensing detector for the
proposed scheme. For convenience, it is assumed that the
Hl’s are independent CSCG random variables, i.e., an inde-
pendent Rayleigh fading channel per sub-carrier is assumed.
For random precoding, we assume a random matrix with iid
[P]l,m ∼ N (0, 1).

At the receiver, we employ the OMP algorithm to estimate
K-sparse signals. The number of samples, M , is considered as
a design parameter for the receiver. In implementing a receiver
based on the OMP algorithm (or other CS algorithms), since
we only need to demodulate the received signals from M out
of L sub-carriers, we can claim that the complexity of the
receiver grows linearly with M .

Fig. 1 depicts the average BER of the SSM with K ∈
{1, 2, 4, 8, 16, 32}, Es/No = 15 (dB) and M = 50 per-
cent measured samples for a given L = 128. Binary phase
shift keying (BPSK) is employed for modulation of non-zero
signals. This figure illustrates that the average BER increases
with α = K

L . For a small α, intuitively, the CS detector with
only a subset of measured samples is capable of decreasing
the average BER at the cost of the data rate, and it can be seen
in this figure that the average BER performance relies on α at
the properly chosen number M of measured samples. Overall,
since the transmission rate increases with K, we can observe
a trade-off between the transmission rate and performance in
Fig. 1.

In order to capture the relationship between the average
BER and the number M of samples, simulations are carried
out with various values of M and results are illustrated in
Fig. 2 with the average BERs for fixed α = K

L and SNR.
In this figure, the impact of M on the average BER can
be observed at different SNRs. Particularly, it can be seen
in this figure that for given SNR and α, the average BER
decreases with M which validates our analysis in (9). Also,
its decreasing rate with M becomes faster at a higher SNR.
For example, to achieve an average BER of 10−2, the required
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Fig. 3. Average BER performance versus the SNR with a CS detector over
an independent Rayleigh fading channel per sub-carrier at various values of
α = K

L
∈ {1/16, 1/64, 1/128}. We have assumed that L = 128, BPSK,

and M = 50 per-cent.

minimum number of samples, M , at Es/No = 20 dB is
30 per-cent (i.e., M = 30 per-cent), which increases up to
M ≥ 90 per-cent at a low SNR (i.e., Es/No = 15 dB).
This leads us to that at a high SNR, the required number of
samples, M , to obtain the desired average BER can be small.
This implies that the complexity of the receiver can be low
when the SNR is high as M can be small.

Similarly, in Fig. 3, the average BER is illustrated with
respect to Es/No. For the illustrations, it is assumed that
BPSK, α ∈ {1/16, 1/64, 1/128}, and M = 50 per-cent
measured samples. We can observe from this figure that the
average BER decreases with the SNR for a given α and its
decreasing rate relies on the values of α, at the cost of the
data rate. In particular, considering α = 1/64, the average
BER decreases with the SNR slowly at high SNRs (i.e.,
Es/No ≥ 20 dB). The intuition behind this behavior is that
the accuracy level of the CS detector can be limited by the
number of samples, M .

VI. CONCLUSIONS

In this paper, we proposed the SSM for precoded OFDM
that can exploit a path diversity gain with a low-complexity CS
detector. Since a CS detector requires a small fraction of the
received signals over sub-carriers, the number of demodulators
can be small, which could allow us to build it at a low
cost. In addition, another important feature of the derived
CS detector was that it can exploit the trade-off between the
SNR, complexity, and performances (in terms of BER and
transmission rates). For example, the complexity of the CS
detector could be lower as the SNR increases with a reasonable



SNR.
While we only considered the OMP algorithm for the CS

detector in this paper, other CS algorithms can be employed.
Furthermore, we did not address bit allocation problems (over
sub-carrier indices as well as non-zero symbols) to optimize
performances. Other CS algorithms as well as bit allocation
problems will be studied for further work in the future.
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