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Abstract—The Field Programmable Gate Array (FPGA) 
implementation of the commonly used Histogram of Oriented 
Gradients (HOG) algorithm is explored. The HOG algorithm is 
employed to extract features for object detection. A key focus has 
been to explore the use of a new FPGA-based processor which 
has been targeted at image processing. The paper gives details of 
the mapping and scheduling factors that influence the 
performance and the stages that were undertaken to allow the 
algorithm to be deployed on FPGA hardware, whilst taking into 
account the specific IPPro architecture features. We show that 
multi-core IPPro performance can exceed that of against state-of-
the-art FPGA designs by up to 3.2 times with reduced design and 
implementation effort and increased flexibility all on a low cost, 
Zynq programmable system. 

Index Terms—FPGA, Memory, DSP, Video Processing, HOG 

I. INTRODUCTION 

Intelligent cameras used to be the preserve of factory 
inspection but are now increasingly used in public places and 
medical diagnostics.  However, increased intelligence needs to 
be deployed near image capture to reduce the need to transfer 
large volumes of data to the host system, whilst preserving the 
perceived useful information of the captured video [1]. An 
example is in immersive computing where situational 
characteristics are decoded from the environment locally by 
sensors and either appended to, or sent to, a central monitor, 
instead of a processed video stream [2].  
Video analysis is now predominantly automated requiring little 
operator involvement. In commercial video domain, algorithms 
are typically validated in software e.g. MATLAB and then 
implemented in FPGA hardware. There is reluctance to iterate 
the functionality due to perceived difficulty in making design 
changes as FPGAs are seen to offer high performance but with 
limited programmability compared to software. As system 
designers are usually not willing to invest this design effort, 
software implementations tend to be more prevalent. 

In this paper, we propose applying a processor design 
approach to the design of a HOG algorithm.  This is achieved 
by applying a reprogrammable FPGA-based, scalable, 
multicore SIMD processor approach called IPPro which has 
been developed within our research group. It has a 
reconfigurable datapath and memory structure and has low 
power consumption and is scalable to a size which is 
appropriate to the task in hand.  This allows the designer to 
trade resources with performance to achieve the required 

solution in a suitable form. This paper gives details of how the 
entire HOG algorithm has been decomposed to allow 
optimization of the newly developed architecture benefits and 
limitations. The design involves generation of the IPPro 
instructions and scheduling.  The work challenges the 
preconceptions around the flexibility of FPGA-based video 
processing by offering impressive FPGA performance but with 
the software programmability.  

The paper is organized as follows.  Section II outlines the 
HOG algorithm and defines how it is suited as a good test for 
our framework.  Section III details our new FPGA framework 
and Section IV bounds the method of deploying an algorithm 
onto the framework.  Section V evaluates our implementation 
and summarizes the papers findings. 
 

II. HOG AND ITS SUITABILITY TO IPPRO 

Dalal and Triggs [3] illustrates that human form can be 
characterized rather well by the distribution of local intensity 
gradients or edge directions. Their algorithm converts the pixel 
intensity information in Fig. 1(a) to gradient information, as 
illustrated by the image of gradients for the pedestrian’s heel 
(see Fig. 1(b)). Gradients have both magnitude and direction. 

 

Fig. 1(a) Image of Intensities (b) Image of Gradients [4] 

For this example, the detection window is fixed at 64 x 128 
pixels and is divided up into small 8x8 pixel spatial regions or 
cells, which consist of histograms of gradient directions (edge 
orientations) over the 64 pixels of the cell as shown in Fig. 2.  
The algorithm shown in Fig. 3, comprises of 6 stages.  In the 
1st stage, the camera image is normalized for human vision and 
luminosity values are extracted from the RGB values. 



The gradient of each pixel relative to its surrounding 
pixels is calculated in the 2nd stage.  The 3rd stage involves 
calculation of the magnitude of each x and y gradient pair 
and addition of the result to the relevant cell bin.  Over an 
8x8 pixel cell, a single 9-element vector is produced which 
is referred to as the histogram of gradients. In the 4th stage, 
blocks are generated by locally normalising groups of four 
cells i.e. 2x2 cells, in order to improve the invariance to 
illumination and shadowing.  The resultant block vector has 
36 elements.  Collation of the blocks over the full detection 
window (7x15 blocks) is carried out in the 5th stage to 
produce HOG descriptors.  In the final stage, a Support 
Vector Machine (SVM) classifier receives the 3780 
(7x15x36) vectors and multiplies with its set weights to 
achieve the human detection chain.   

 

Fig. 2: Detection window divided into blocks and cells 
producing an array of histograms per window 

In Benkrid et al.’s categorization of image processing 
operations which is given in Table 1  [5], it is shown how 
memory and computational requirements vary.  As the HOG 
descriptor for a single HD frame requires all operations 
listed by Benkrid with the exception of Temporal/Frame 
based operations, it represents a good test case for assessing 
the architecture approach. 

The results of our datapath analysis are illustrated in Fig. 3.  
It shows that the most intensive calculations are performed 
in the Compute Gradients and Weighted Vote into Spatial 
and Orientation Cells blocks, so their acceleration would 
provide the largest processing performance gain. The 
algorithm reduces the data transmission needs from 1.5Gbs-1 
to a humble 30bs-1 (Fig. 3) which is important in remote 
surveillance applications where long range RF 
communications have very low bandwidth and minimal 
energy levels. Fig. 3 also indicates that computation 
hotspots are to be found between the 2nd and 3rd blocks 
where a peak bandwidth of 1990Mbs-1 is required.   
Conventional software approaches struggle to achieve real-
time implementations with these computational hotspots but 
as we shall demonstrate, the IPPro approach can.  Initially, 
this algorithm was the preserve of high performance 
computing systems but now have been realized in real–time 
FPGA implementations [6], [7], [8].  However these fixed 
implementations are created using hand written HDL which 
is a time consuming process and it is believed that this work 
will be the first to implement the HOG descriptor using a 
‘processor only’ orientated FPGA framework providing 
FPGA performance in a truly programmable environment.  
 

III. IPPRO SYSTEM ARCHITECTURE 

The IPPro processor has been developed as part of the 
Rathlin research project [9]. The IPPro is a soft processor 
solution that allows the full potential of the FPGA fabric to 
be exploited by utilizing the incorporated dedicated FPGA 
processing blocks and memory resource. Implementing 
processor architectures on FPGA is not new and earlier 
instances include a reconfigurable data path processor in an 
early Xilinx FPGA [10]. However, IPPro outperforms other 
examples giving a clock rate of 509MHz. Compared to 
earlier examples [9], the HOG algorithm was deemed to be a 
challenging exemplar for this emerging design due to its 
computational throughput.  In order to achieve dependable 
high performance, we have firmly fixed the IPPro core 
architecture and interconnects between cores is also tightly 
controlled.  This permits the device utilization and   the   
overall    system    performance    to    be    accurately  

Table 1: Image processing operations categorization [5] 
 

Operation Type Domain Definition Examples 

Point Spatial Output depends on single input 
Intensity change by factor, Negative image – 

inversion 
Neighborhood/ 

Local 
Spatial 

Output depends on single input 
& neighbours 

Convolution functions: Sobel, Sharpen, Emboss 

Global Spatial 
Output depends on whole input 

image 
Histogram (peak, top-hat, valley or well analysis), 

Thresholding of entire image 

Geometric Spatial 
Output requires a whole input 

image 
Rotate, Scale, translate, reflect, perspective & 

affine 
Temporal/ 

Frame based 
Frequency 

Output calculated as a result of 
several input images 

Frequency domain filtering, Target tracking, 
Motion Estimation 



 

Fig. 3. Original and new definition of HOG algorithm [3]  annotated with inter-function data rates and their characteristics 

estimated prior to synthesis enabling more accurate 
exploration of the mapping of the algorithm to hardware.  
We have invested considerable effort up front to achieve the 
most from the Xilinx architecture and as such make it 
possible to outperform some hand written implementations 
with our soft programmable solution.  The following text 
highlights some of the IPPro defining features but the reader 
is referred to work in [9] for more detail. 

 

A. IPPro Core 

The IPPro core is at the heart of the IPPro system and it is 
based around the FPGA signal processing unit, the Xilinx 
DSP48E. It has a number of key features: 
 Two pipelining stages 
 Different arithmetic and logical functions employed at 

each cycle period 
 Optimal use of Dynamic Random Access Memory 

(DRAM) for registers and BlockRAMs (BRAMs) for 
Instruction Memory (IM) 

 Data forwarding techniques employed to reduce 
latency during successive computations 

It has the following memories, the sizes of which have been 
carefully chosen to ensure the highest clock rate: 

 
1. Instr. Memory/ Instr. Register 
2. Register File  
3. Data Memory     
4. Kernel Memory 

(IM/IR) 
(RF) 
(DM) 
(KM) 

34 bits 
32x16 bits 
32x16 bits 
32x16 bits 

 

B. IPPro Framework Architecture 

The IPPro system comprises multicore Processors 
connected as 3x3 arrays of IPPro cores, each with nearest 

neighbor connections by either FIFO or by direct addressing 
between cores.  Depending on the target device and the 
algorithm implementation demands, an array of IPPro Multi 
Core Processors or IPPro Platform can be created.   

This platform and essentially the routing of high level 
data are managed by an overseeing host. In this scenario, the 
two ARM Cortex A9 processors in the Xilinx Zynq are used 
as they have good support for Ethernet and DDR interfaces. 
 

IV. ALGORITHM DEPLOYMENT ONTO IPPRO 

The IPPro System functions as the computational stage 
between the video source, e.g. the surveillance camera and 
the distribution of the processed video data to a host over a 
network.  For present, our implementation is deployed on a 
Xilinx Zed board with images from the onboard SD memory 
card in lieu of an actual camera source.  Image data is fed 
directly into the DDR and stored as frames.  The ARM 
Cortex A9 host processor manages the flow of data from the 
frame buffer to the programmable fabric that accommodates 
the IPPro cores. 
 

A. Algorithm Partitioning 

The mapping to the IPPro begins with a functional 
breakdown of the algorithm, coded as a Simulink Model or 
M-Code of the algorithm.  We started with the partition in 
Dalal and Triggs but modified it to facilitate the reuse of 
already computed gradient, absolute gradient and magnitude 
data.  We passed this additional data between the two IPPro 
functional blocks, giving an increase in required bandwidth 
from 1990Mbs-1 to 4976Mbs-1.  As within the FPGA fabric, 
we have access to several Tbs-1 of bandwidth, it is deemed to 
be more beneficial to trade bandwidth for reduction in 
computation time.  



The algorithm segments are further broken down to 
sequences of fundamental mathematical operations such as 
multiply, add subtract etc., which in turn are mapped to the 
IPPro cores instructions. The IPPro core Program Memory 
(PM) code is generated to produce an efficient ratio of 
read/write to ALU instructions whilst maximizing the 
quantity of input data to process.  Partitioning of the input 
image data is such that smaller blocks and their computation 
fit within the IPPro core registers.  In order to determine the 
highest throughput, all PMs must be coded and different 
configurations examined.  The configuration with the highest 
throughput of 209 frames per second (fps) was chosen. 

In FPGAs memory is limited, so the optimization of the 
memory access/computation ratio is essential particularly as 
each IPPro Core has very limited local storage in the form of 
high speed registers on which to carry out its calculations.  
This encourages the designer to re-use intermediate results 
rather than recalculate them again later.  Temporal 
parallelism is exploited by the reuse of local data in the IPPro 
core registers.  For example, we found that we could append 
the Pixel Gradients function with the Magnitude (M) 
function thus saving costly additional load and store of the 
Gradient values as the IPPro core already had the pixel 
intensities loaded with gradients stored in its register file; 
there were enough unused register locations to store the 
results.  This increased the throughput by 6% which in real 
terms for our multi-IPPro core is a real increase of 13fps. 

The following mathematical optimization was also 
incorporated when calculating the gradient values Gx = [-1, 
0, 1] and Gy = [-1, 0, 1]T; as the gradient calculation kernel 
values use only -1, 0 and 1 as factors, we only need to do one 
subtraction instruction to generate each gradient.  Factors 
other than -1, 0 and 1 for Gx and Gy would each require three 
multiply-accumulate i.e. MULACCK instructions.  Negi [6] 
and Xie [7] have already shown that these optimizations have 
negligible effect on the accuracy of the algorithm. 

The next stage is that of binning which allocates each of 
the derived pixel magnitudes to one of the nine available bins 
as shown in the lower left corner of Fig. 2.  Each bin has a 
20˚ range but rather than perform a trigonometric calculation 
to determine its bin, a series of comparisons are run to check 
if the angle is greater than a threshold [4]. Cell histograms 
are generated by accumulating M value of each pixel at the 
appropriate bin for that pixel over a cell. 

 

B. Instruction Mapping and scheduling Single IPPro 

Currently the step of translating the algorithm’s 
mathematical functions to the available IPPro instruction set 
is a manual activity.  Care was taken to maximize the ratio of 
ALU instructions to memory access instructions to ensure a 
high IPPro ALU core activity. 

Our approach is summarized by the four steps in Fig. 4. 
Continuing on from the initial algorithm exploration and 
design stage, it is essential that functional partitioning 
identifies a linear path or paths through the algorithm.  This 
allows the host to manage the coarse grained flow of 
processed data more efficiently.  

At this point we are faced with allocating the functions to 
hardware.  As the register size is tightly constrained, we need 
to work out whether or it is more efficient to heavily process 
small amounts of data (complex PM) or lightly process large 
amounts of data (simple PM).  Complex PMs will result in 
longer instruction lengths and reduce the granularity of the 
high level functional blocks. This reduction in granularity 
will reduce the ability to explore the mapping across multiple 
IPPro cores.  

The next step is the translation of the image processing 
functions to the IPPro instruction set.  In order to increase 
efficiency, no operation (NOP) instructions are reduced by 
interleaving the sub-tasks within the functional blocks.  Sub-
tasks begin when sufficient registers are loaded; the 
remaining input data for subsequent sub-tasks is loaded by 
paying attention to the pipeline delays during sub-tasks.  
Interleaving of IPPro processors is also employed in a multi-
IPPro core implementation such that scheduling of each of 
the processors is initialized serially; this reduces the 
bandwidth needs on the higher level memory accesses. 

 

 

Fig. 4. Key Features in IPPro Mapping and Scheduling 
 

The final stage of the process involves mapping the 
generated PMs onto the available hardware. With a single 
IPPro Core there are two approaches. The first approach 
relies upon each of the PMs carrying out tasks that are not 
data-dependent and thus events are scheduled to execute 
sequentially on a small volume of data. However, if each 
functional stage is dependent on a group or entire frame of 
results from the current PM, then the second approach is 
adopted to perform the function across the entire frame, 
producing intermediate results which are stored in the higher 



level memory.  The subsequent PM then retrieves the data 
from the high level memory and executes the next stage of 
dependent processing from the entire frame or block of 
intermediate results.  Whilst this process is very similar to 
the traditional mapping of functions, we put an emphasis on 
maximizing the utilization of the DSP48E whilst minimizing 
the overhead caused by the memory accesses. 

C. Instruction mapping and scheduling Multiple IPPro 

Whilst we have undertaken the mapping of the HOG 
algorithm onto a single core, we also consider the 
performance of a 3x3 core array.  The same IPPro PM code 
and functional decomposition as earlier is used but spatial 
and temporal parallelism is also considered (see Fig. 5). 
Mapping involves allocating the number of processing steps 
to processor elements and generating a schedule.  In the 
instance of one processor element, hardware reuse is used 
whereas parallelism is exploited in the multi-core case by 
duplicating the functionality across single IPPro cores as 
illustrated in Fig. 5. During the many core IPPro 
implementation, data will be streamed, so careful scheduling 
is essential to balance the computation phases thus avoiding 
blocking.  For now, this is achieved in a deterministic 
manner by inserting NOP instructions.   

D. Results generation 

Two versions of the functional blocks were explored, one 
a hand-coded VHDL description and the other an IPPro 
implementation. Both designs were coded in and taken 
through Xilinx ISE 14.6 Place and Route (PAR) tools with 
the results recorded in Table 2.  In each case, the target 
platform was the programmable fabric within the Zynq 7020 
used in the ZED board.  After place and route, the single 
IPPro core operated at 509MHz for both functions (PMs) and 
the hand coded implementation operated at 288MHz for the 
Gradients and Magnitude design and at 164MHz for the 
Binning & Cell Histogram. 

 

Fig. 5. HOG Architecture for single-IPPro(top) and multi-
IPPro (bottom) implementations 

The PM for the Gradients and Magnitude functions 
required 199 instructions to generate the values for 6 output 
pixels.  The PM for the Binning and Cell Histogram required 
251 instructions to generate the values for 5 output pixels. 
Implementation and results were verified on the ZED board. 
For the architecture in Fig. 5, it is possible to achieve a 
maximum throughput of 264 fps at a 1920x1280 pixel 
resolution.  This architecture consumes 90 IPPro cores and 
can be implemented on the smallest Xilinx 7 Series FPGA 
(XC7A35TCPG236) which has 90 DSP48E available – the 
clock speed is limited to 404MHz on the Zynq 7020. To 
make a fair comparison with respect to resources between 
hand coded VHDL and IPPro, we have used 16 IPPro cores.  
Our total processing time per frame is 41.92ms for IPPro 
versus 19.78ms for the hand coded designs. 

Table 2: Algorithm resource usage on a single  IPPro 
versus a hand coded approach 

Function 
Resource 

type 

Single IPPro  
 Hand coded 
(Single Core) 

Usage 
Single  
Frame 

Usage 
Single  
Frame 

Gradient, |Gradient| 
& Magnitude 

LUTs 
DSPs 

BRAMs 

140 
1 
0 

135ms 
422 
0 
0 

7.18ms 

Binning & Cell 
Histogram 

LUTs 
DSPs 

BRAMs 

140 
1 
0 

204ms 
1463 

0 
0 

12.6ms 

 

E. Comparison with other work 

FPGAs have been used to implement elements of the 
HOG algorithm [6] and [7] but these have been hand coded 
in VHDL, requiring a considerable design effort and major 
redesign effort should the algorithm change.  Other FPGA-
based processor design approaches have also been explored.  
The iDEA processor [11] is based around the DSP48E1 
primitive but has some differences in that it uses Block RAM 
rather than Distributed RAM for the RF and DM.  iDEA has 
a maximum frequency of 407MHz (compared to 509MHz 
here) for a single core implementation and also uses a 9-stage 
pipeline which can be a problem when NOP instructions are 
required as discussed above.  iDEA consumes 335 LUTs, 2 
RAMB36E1, 1 DSP48E1 compared to 140 LUTS and 1 
DSP48E1 here. 

An approach which deals with the difficulties of multi-
core programming and the dissemination of tasks across 
many processing elements is FlexGrip [12].  By creating a 
soft GPGPU which can be controlled by a Xilinx MicroBlaze 
soft core microprocessor on the AXI bus, they are able to 
leverage the existing programming environments established 
for GPUs namely CUDA but the resource usage is high and 
it has lower operating frequency. 

Table 3 compares some recent FPGA implementations of 
the HOG algorithm.  The Hahnle design [13] only quotes the 
resource and performance for HOG descriptor generation, so 
this is the closest to our implementation.  Whilst the ratio of 
fps to resource usage is very similar for the 90 core IPPro 
solution and Hahnle design, our solution is achievable 



quickly and without any HDL knowledge.  Our solution is 
also very amenable to reconfiguration should the algorithm 
evolve.  The frame rate of the IPPro 90 core solution is 
comparable to Xie’s solution [7] but the number of pixels 
processed per frame by Xie is 27 times less than our multi-
IPPro solution.  The clock rates for considered solutions are 
much less than IPPro, which achieves 404MHz. 

We used Xilinx’s Power Analyzer 14.6 tool to determine 
the power consumption for our multi-IPPro implementation.  
The resultant 3.6W total power consumption is considerably 
lower than that of any comparable GPU or CPU solution, 
indeed more than an order of magnitude lower.  Our designs 
power consumption is in line with other current HOG FPGA 
implementations. 

Table 3. Comparisons of the resources for different recent 
FPGA implmentations 

Ref 
(Device) 

Clock 
(MHz) 

Resource Performance 

Type Use 
Frame 

size 
Frame/s 

[7] 
(Spartan-3e 
XC3S500E) 

67.75 
LUTs 
DSPs 

BRAMs 

3,379 
no data 

6 

320 x 
240 

293 

[6] 
(Virtex 5  
VLX-50) 

44.85 
LUTs 
DSPs 

BRAMs 

17,383 
no data 

36 

640 x 
480 

112 

[13] 
(Virtex 5 

VFX200T) 
270 

LUTs 
DSPs 

BRAMs 

3642 
12 
26 

1920 x 
1080 

64 

Hand Coded 
(Zynq 7020) 

164 
LUTs 
DSPs 

BRAMs 

1885 
0 
0 

1920 x 
1080 

79  

IPPro - 90 cores 
(Zynq 7020) 

404 
LUTs 
DSPs 

BRAMs 

10694 
90 
24 

1920 x 
1080 

209  
 

 

V. SUMMARY AND CONCLUSIONS 

A processor-based approach for implementing HOG 
which avoids the recursive design loops associated with 
HDL-based FPGA design is presented. The multi-core IPPro 
approach achieves high performance on a Zynq, comparable 
to a highly optimized implementation [7] which makes many 
approximations to achieve high throughput.  Our multi-IPPro 
design achieves 2.6 times the throughput of our hand coded 
design and 3.2 times the closest recent work [13].    

The work demonstrates that our architecture is highly 
scalable and using mapping and scheduling, we can easily 
employ more parallelism without impeding levels of 
complexity.  Reuse of the same PM from single core to 
multicore implementations allows scaling with only minor 
adjustments to the interconnection and collation of data 
outputs. This higher dataflow is managed at the highest i.e. 
platform level by the ARM host and efficiently controlled by 
simple software. Our IPPro architecture implementation 
effort was 10 man days as opposed to 40 days for the hand 
crafted VHDL implementation.  Whilst only considered for 

FPGA in this study, the IPPro architecture could suit ASIC 
implementation permitting high performance and 
reconfigurability on an even lower powered platform. 
Currently, a programming environment based on dataflow to 
allow efficient extraction of parallelism from a high level 
description and optimization of the allocation of the 
functions to the IPPro Platform, is being created.  This will 
allow deployment of image processing algorithms onto 
FPGA in a cost effective and efficient manner. 
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