
Histogram of oriented gradients front end processing: An FPGA
based processor approach

Kelly, C., Siddiqui, F. M., Bardak, B., & Woods, R. (2014). Histogram of oriented gradients front end processing:
An FPGA based processor approach. In Proceedings of the 2014 IEEE workshop on Signal Processing Systems
. Institute of Electrical and Electronics Engineers Inc.. DOI: 10.1109/SiPS.2014.6986093

Published in:
Proceedings of the 2014 IEEE workshop on Signal Processing Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33583796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/histogram-of-oriented-gradients-front-end-processing-an-fpga-based-processor-approach(3139c7f6-d29a-4d15-8e55-843bc8ae029a).html

Histogram of Oriented Gradients front end processing:
an FPGA Based Processor Approach

Colm Kelly1, Fahad Manzoor Siddiqui2, Burak Bardak2, Roger Woods2
1Thales UK, Belfast

2 ECIT, Queens University, Belfast
colm.kelly@uk.thalesgroup.com, (f.siddiqui, b.bardak, r.woods)@qub.ac.uk

Abstract—The Field Programmable Gate Array (FPGA)
implementation of the commonly used Histogram of Oriented
Gradients (HOG) algorithm is explored. The HOG algorithm is
employed to extract features for object detection. A key focus has
been to explore the use of a new FPGA-based processor which
has been targeted at image processing. The paper gives details of
the mapping and scheduling factors that influence the
performance and the stages that were undertaken to allow the
algorithm to be deployed on FPGA hardware, whilst taking into
account the specific IPPro architecture features. We show that
multi-core IPPro performance can exceed that of against state-of-
the-art FPGA designs by up to 3.2 times with reduced design and
implementation effort and increased flexibility all on a low cost,
Zynq programmable system.

Index Terms—FPGA, Memory, DSP, Video Processing, HOG

I. INTRODUCTION

Intelligent cameras used to be the preserve of factory
inspection but are now increasingly used in public places and
medical diagnostics. However, increased intelligence needs to
be deployed near image capture to reduce the need to transfer
large volumes of data to the host system, whilst preserving the
perceived useful information of the captured video [1]. An
example is in immersive computing where situational
characteristics are decoded from the environment locally by
sensors and either appended to, or sent to, a central monitor,
instead of a processed video stream [2].
Video analysis is now predominantly automated requiring little
operator involvement. In commercial video domain, algorithms
are typically validated in software e.g. MATLAB and then
implemented in FPGA hardware. There is reluctance to iterate
the functionality due to perceived difficulty in making design
changes as FPGAs are seen to offer high performance but with
limited programmability compared to software. As system
designers are usually not willing to invest this design effort,
software implementations tend to be more prevalent.

In this paper, we propose applying a processor design
approach to the design of a HOG algorithm. This is achieved
by applying a reprogrammable FPGA-based, scalable,
multicore SIMD processor approach called IPPro which has
been developed within our research group. It has a
reconfigurable datapath and memory structure and has low
power consumption and is scalable to a size which is
appropriate to the task in hand. This allows the designer to
trade resources with performance to achieve the required

solution in a suitable form. This paper gives details of how the
entire HOG algorithm has been decomposed to allow
optimization of the newly developed architecture benefits and
limitations. The design involves generation of the IPPro
instructions and scheduling. The work challenges the
preconceptions around the flexibility of FPGA-based video
processing by offering impressive FPGA performance but with
the software programmability.

The paper is organized as follows. Section II outlines the
HOG algorithm and defines how it is suited as a good test for
our framework. Section III details our new FPGA framework
and Section IV bounds the method of deploying an algorithm
onto the framework. Section V evaluates our implementation
and summarizes the papers findings.

II. HOG AND ITS SUITABILITY TO IPPRO

Dalal and Triggs [3] illustrates that human form can be
characterized rather well by the distribution of local intensity
gradients or edge directions. Their algorithm converts the pixel
intensity information in Fig. 1(a) to gradient information, as
illustrated by the image of gradients for the pedestrian’s heel
(see Fig. 1(b)). Gradients have both magnitude and direction.

Fig. 1(a) Image of Intensities (b) Image of Gradients [4]

For this example, the detection window is fixed at 64 x 128
pixels and is divided up into small 8x8 pixel spatial regions or
cells, which consist of histograms of gradient directions (edge
orientations) over the 64 pixels of the cell as shown in Fig. 2.
The algorithm shown in Fig. 3, comprises of 6 stages. In the
1st stage, the camera image is normalized for human vision and
luminosity values are extracted from the RGB values.

The gradient of each pixel relative to its surrounding
pixels is calculated in the 2nd stage. The 3rd stage involves
calculation of the magnitude of each x and y gradient pair
and addition of the result to the relevant cell bin. Over an
8x8 pixel cell, a single 9-element vector is produced which
is referred to as the histogram of gradients. In the 4th stage,
blocks are generated by locally normalising groups of four
cells i.e. 2x2 cells, in order to improve the invariance to
illumination and shadowing. The resultant block vector has
36 elements. Collation of the blocks over the full detection
window (7x15 blocks) is carried out in the 5th stage to
produce HOG descriptors. In the final stage, a Support
Vector Machine (SVM) classifier receives the 3780
(7x15x36) vectors and multiplies with its set weights to
achieve the human detection chain.

Fig. 2: Detection window divided into blocks and cells
producing an array of histograms per window

In Benkrid et al.’s categorization of image processing
operations which is given in Table 1 [5], it is shown how
memory and computational requirements vary. As the HOG
descriptor for a single HD frame requires all operations
listed by Benkrid with the exception of Temporal/Frame
based operations, it represents a good test case for assessing
the architecture approach.

The results of our datapath analysis are illustrated in Fig. 3.
It shows that the most intensive calculations are performed
in the Compute Gradients and Weighted Vote into Spatial
and Orientation Cells blocks, so their acceleration would
provide the largest processing performance gain. The
algorithm reduces the data transmission needs from 1.5Gbs-1
to a humble 30bs-1 (Fig. 3) which is important in remote
surveillance applications where long range RF
communications have very low bandwidth and minimal
energy levels. Fig. 3 also indicates that computation
hotspots are to be found between the 2nd and 3rd blocks
where a peak bandwidth of 1990Mbs-1 is required.
Conventional software approaches struggle to achieve real-
time implementations with these computational hotspots but
as we shall demonstrate, the IPPro approach can. Initially,
this algorithm was the preserve of high performance
computing systems but now have been realized in real–time
FPGA implementations [6], [7], [8]. However these fixed
implementations are created using hand written HDL which
is a time consuming process and it is believed that this work
will be the first to implement the HOG descriptor using a
‘processor only’ orientated FPGA framework providing
FPGA performance in a truly programmable environment.

III. IPPRO SYSTEM ARCHITECTURE

The IPPro processor has been developed as part of the
Rathlin research project [9]. The IPPro is a soft processor
solution that allows the full potential of the FPGA fabric to
be exploited by utilizing the incorporated dedicated FPGA
processing blocks and memory resource. Implementing
processor architectures on FPGA is not new and earlier
instances include a reconfigurable data path processor in an
early Xilinx FPGA [10]. However, IPPro outperforms other
examples giving a clock rate of 509MHz. Compared to
earlier examples [9], the HOG algorithm was deemed to be a
challenging exemplar for this emerging design due to its
computational throughput. In order to achieve dependable
high performance, we have firmly fixed the IPPro core
architecture and interconnects between cores is also tightly
controlled. This permits the device utilization and the
overall system performance to be accurately

Table 1: Image processing operations categorization [5]

Operation Type Domain Definition Examples

Point Spatial Output depends on single input
Intensity change by factor, Negative image –

inversion
Neighborhood/

Local
Spatial

Output depends on single input
& neighbours

Convolution functions: Sobel, Sharpen, Emboss

Global Spatial
Output depends on whole input

image
Histogram (peak, top-hat, valley or well analysis),

Thresholding of entire image

Geometric Spatial
Output requires a whole input

image
Rotate, Scale, translate, reflect, perspective &

affine
Temporal/

Frame based
Frequency

Output calculated as a result of
several input images

Frequency domain filtering, Target tracking,
Motion Estimation

Fig. 3. Original and new definition of HOG algorithm [3] annotated with inter-function data rates and their characteristics

estimated prior to synthesis enabling more accurate
exploration of the mapping of the algorithm to hardware.
We have invested considerable effort up front to achieve the
most from the Xilinx architecture and as such make it
possible to outperform some hand written implementations
with our soft programmable solution. The following text
highlights some of the IPPro defining features but the reader
is referred to work in [9] for more detail.

A. IPPro Core

The IPPro core is at the heart of the IPPro system and it is
based around the FPGA signal processing unit, the Xilinx
DSP48E. It has a number of key features:
 Two pipelining stages
 Different arithmetic and logical functions employed at

each cycle period
 Optimal use of Dynamic Random Access Memory

(DRAM) for registers and BlockRAMs (BRAMs) for
Instruction Memory (IM)

 Data forwarding techniques employed to reduce
latency during successive computations

It has the following memories, the sizes of which have been
carefully chosen to ensure the highest clock rate:

1. Instr. Memory/ Instr. Register
2. Register File
3. Data Memory
4. Kernel Memory

(IM/IR)
(RF)
(DM)
(KM)

34 bits
32x16 bits
32x16 bits
32x16 bits

B. IPPro Framework Architecture

The IPPro system comprises multicore Processors
connected as 3x3 arrays of IPPro cores, each with nearest

neighbor connections by either FIFO or by direct addressing
between cores. Depending on the target device and the
algorithm implementation demands, an array of IPPro Multi
Core Processors or IPPro Platform can be created.

This platform and essentially the routing of high level
data are managed by an overseeing host. In this scenario, the
two ARM Cortex A9 processors in the Xilinx Zynq are used
as they have good support for Ethernet and DDR interfaces.

IV. ALGORITHM DEPLOYMENT ONTO IPPRO

The IPPro System functions as the computational stage
between the video source, e.g. the surveillance camera and
the distribution of the processed video data to a host over a
network. For present, our implementation is deployed on a
Xilinx Zed board with images from the onboard SD memory
card in lieu of an actual camera source. Image data is fed
directly into the DDR and stored as frames. The ARM
Cortex A9 host processor manages the flow of data from the
frame buffer to the programmable fabric that accommodates
the IPPro cores.

A. Algorithm Partitioning

The mapping to the IPPro begins with a functional
breakdown of the algorithm, coded as a Simulink Model or
M-Code of the algorithm. We started with the partition in
Dalal and Triggs but modified it to facilitate the reuse of
already computed gradient, absolute gradient and magnitude
data. We passed this additional data between the two IPPro
functional blocks, giving an increase in required bandwidth
from 1990Mbs-1 to 4976Mbs-1. As within the FPGA fabric,
we have access to several Tbs-1 of bandwidth, it is deemed to
be more beneficial to trade bandwidth for reduction in
computation time.

The algorithm segments are further broken down to
sequences of fundamental mathematical operations such as
multiply, add subtract etc., which in turn are mapped to the
IPPro cores instructions. The IPPro core Program Memory
(PM) code is generated to produce an efficient ratio of
read/write to ALU instructions whilst maximizing the
quantity of input data to process. Partitioning of the input
image data is such that smaller blocks and their computation
fit within the IPPro core registers. In order to determine the
highest throughput, all PMs must be coded and different
configurations examined. The configuration with the highest
throughput of 209 frames per second (fps) was chosen.

In FPGAs memory is limited, so the optimization of the
memory access/computation ratio is essential particularly as
each IPPro Core has very limited local storage in the form of
high speed registers on which to carry out its calculations.
This encourages the designer to re-use intermediate results
rather than recalculate them again later. Temporal
parallelism is exploited by the reuse of local data in the IPPro
core registers. For example, we found that we could append
the Pixel Gradients function with the Magnitude (M)
function thus saving costly additional load and store of the
Gradient values as the IPPro core already had the pixel
intensities loaded with gradients stored in its register file;
there were enough unused register locations to store the
results. This increased the throughput by 6% which in real
terms for our multi-IPPro core is a real increase of 13fps.

The following mathematical optimization was also
incorporated when calculating the gradient values Gx = [-1,
0, 1] and Gy = [-1, 0, 1]T; as the gradient calculation kernel
values use only -1, 0 and 1 as factors, we only need to do one
subtraction instruction to generate each gradient. Factors
other than -1, 0 and 1 for Gx and Gy would each require three
multiply-accumulate i.e. MULACCK instructions. Negi [6]
and Xie [7] have already shown that these optimizations have
negligible effect on the accuracy of the algorithm.

The next stage is that of binning which allocates each of
the derived pixel magnitudes to one of the nine available bins
as shown in the lower left corner of Fig. 2. Each bin has a
20˚ range but rather than perform a trigonometric calculation
to determine its bin, a series of comparisons are run to check
if the angle is greater than a threshold [4]. Cell histograms
are generated by accumulating M value of each pixel at the
appropriate bin for that pixel over a cell.

B. Instruction Mapping and scheduling Single IPPro

Currently the step of translating the algorithm’s
mathematical functions to the available IPPro instruction set
is a manual activity. Care was taken to maximize the ratio of
ALU instructions to memory access instructions to ensure a
high IPPro ALU core activity.

Our approach is summarized by the four steps in Fig. 4.
Continuing on from the initial algorithm exploration and
design stage, it is essential that functional partitioning
identifies a linear path or paths through the algorithm. This
allows the host to manage the coarse grained flow of
processed data more efficiently.

At this point we are faced with allocating the functions to
hardware. As the register size is tightly constrained, we need
to work out whether or it is more efficient to heavily process
small amounts of data (complex PM) or lightly process large
amounts of data (simple PM). Complex PMs will result in
longer instruction lengths and reduce the granularity of the
high level functional blocks. This reduction in granularity
will reduce the ability to explore the mapping across multiple
IPPro cores.

The next step is the translation of the image processing
functions to the IPPro instruction set. In order to increase
efficiency, no operation (NOP) instructions are reduced by
interleaving the sub-tasks within the functional blocks. Sub-
tasks begin when sufficient registers are loaded; the
remaining input data for subsequent sub-tasks is loaded by
paying attention to the pipeline delays during sub-tasks.
Interleaving of IPPro processors is also employed in a multi-
IPPro core implementation such that scheduling of each of
the processors is initialized serially; this reduces the
bandwidth needs on the higher level memory accesses.

Fig. 4. Key Features in IPPro Mapping and Scheduling

The final stage of the process involves mapping the
generated PMs onto the available hardware. With a single
IPPro Core there are two approaches. The first approach
relies upon each of the PMs carrying out tasks that are not
data-dependent and thus events are scheduled to execute
sequentially on a small volume of data. However, if each
functional stage is dependent on a group or entire frame of
results from the current PM, then the second approach is
adopted to perform the function across the entire frame,
producing intermediate results which are stored in the higher

level memory. The subsequent PM then retrieves the data
from the high level memory and executes the next stage of
dependent processing from the entire frame or block of
intermediate results. Whilst this process is very similar to
the traditional mapping of functions, we put an emphasis on
maximizing the utilization of the DSP48E whilst minimizing
the overhead caused by the memory accesses.

C. Instruction mapping and scheduling Multiple IPPro

Whilst we have undertaken the mapping of the HOG
algorithm onto a single core, we also consider the
performance of a 3x3 core array. The same IPPro PM code
and functional decomposition as earlier is used but spatial
and temporal parallelism is also considered (see Fig. 5).
Mapping involves allocating the number of processing steps
to processor elements and generating a schedule. In the
instance of one processor element, hardware reuse is used
whereas parallelism is exploited in the multi-core case by
duplicating the functionality across single IPPro cores as
illustrated in Fig. 5. During the many core IPPro
implementation, data will be streamed, so careful scheduling
is essential to balance the computation phases thus avoiding
blocking. For now, this is achieved in a deterministic
manner by inserting NOP instructions.

D. Results generation

Two versions of the functional blocks were explored, one
a hand-coded VHDL description and the other an IPPro
implementation. Both designs were coded in and taken
through Xilinx ISE 14.6 Place and Route (PAR) tools with
the results recorded in Table 2. In each case, the target
platform was the programmable fabric within the Zynq 7020
used in the ZED board. After place and route, the single
IPPro core operated at 509MHz for both functions (PMs) and
the hand coded implementation operated at 288MHz for the
Gradients and Magnitude design and at 164MHz for the
Binning & Cell Histogram.

Fig. 5. HOG Architecture for single-IPPro(top) and multi-
IPPro (bottom) implementations

The PM for the Gradients and Magnitude functions
required 199 instructions to generate the values for 6 output
pixels. The PM for the Binning and Cell Histogram required
251 instructions to generate the values for 5 output pixels.
Implementation and results were verified on the ZED board.
For the architecture in Fig. 5, it is possible to achieve a
maximum throughput of 264 fps at a 1920x1280 pixel
resolution. This architecture consumes 90 IPPro cores and
can be implemented on the smallest Xilinx 7 Series FPGA
(XC7A35TCPG236) which has 90 DSP48E available – the
clock speed is limited to 404MHz on the Zynq 7020. To
make a fair comparison with respect to resources between
hand coded VHDL and IPPro, we have used 16 IPPro cores.
Our total processing time per frame is 41.92ms for IPPro
versus 19.78ms for the hand coded designs.

Table 2: Algorithm resource usage on a single IPPro
versus a hand coded approach

Function
Resource

type

Single IPPro
 Hand coded
(Single Core)

Usage
Single
Frame

Usage
Single
Frame

Gradient, |Gradient|
& Magnitude

LUTs
DSPs

BRAMs

140
1
0

135ms
422
0
0

7.18ms

Binning & Cell
Histogram

LUTs
DSPs

BRAMs

140
1
0

204ms
1463

0
0

12.6ms

E. Comparison with other work

FPGAs have been used to implement elements of the
HOG algorithm [6] and [7] but these have been hand coded
in VHDL, requiring a considerable design effort and major
redesign effort should the algorithm change. Other FPGA-
based processor design approaches have also been explored.
The iDEA processor [11] is based around the DSP48E1
primitive but has some differences in that it uses Block RAM
rather than Distributed RAM for the RF and DM. iDEA has
a maximum frequency of 407MHz (compared to 509MHz
here) for a single core implementation and also uses a 9-stage
pipeline which can be a problem when NOP instructions are
required as discussed above. iDEA consumes 335 LUTs, 2
RAMB36E1, 1 DSP48E1 compared to 140 LUTS and 1
DSP48E1 here.

An approach which deals with the difficulties of multi-
core programming and the dissemination of tasks across
many processing elements is FlexGrip [12]. By creating a
soft GPGPU which can be controlled by a Xilinx MicroBlaze
soft core microprocessor on the AXI bus, they are able to
leverage the existing programming environments established
for GPUs namely CUDA but the resource usage is high and
it has lower operating frequency.

Table 3 compares some recent FPGA implementations of
the HOG algorithm. The Hahnle design [13] only quotes the
resource and performance for HOG descriptor generation, so
this is the closest to our implementation. Whilst the ratio of
fps to resource usage is very similar for the 90 core IPPro
solution and Hahnle design, our solution is achievable

quickly and without any HDL knowledge. Our solution is
also very amenable to reconfiguration should the algorithm
evolve. The frame rate of the IPPro 90 core solution is
comparable to Xie’s solution [7] but the number of pixels
processed per frame by Xie is 27 times less than our multi-
IPPro solution. The clock rates for considered solutions are
much less than IPPro, which achieves 404MHz.

We used Xilinx’s Power Analyzer 14.6 tool to determine
the power consumption for our multi-IPPro implementation.
The resultant 3.6W total power consumption is considerably
lower than that of any comparable GPU or CPU solution,
indeed more than an order of magnitude lower. Our designs
power consumption is in line with other current HOG FPGA
implementations.

Table 3. Comparisons of the resources for different recent
FPGA implmentations

Ref
(Device)

Clock
(MHz)

Resource Performance

Type Use
Frame

size
Frame/s

[7]
(Spartan-3e
XC3S500E)

67.75
LUTs
DSPs

BRAMs

3,379
no data

6

320 x
240

293

[6]
(Virtex 5
VLX-50)

44.85
LUTs
DSPs

BRAMs

17,383
no data

36

640 x
480

112

[13]
(Virtex 5

VFX200T)
270

LUTs
DSPs

BRAMs

3642
12
26

1920 x
1080

64

Hand Coded
(Zynq 7020)

164
LUTs
DSPs

BRAMs

1885
0
0

1920 x
1080

79

IPPro - 90 cores
(Zynq 7020)

404
LUTs
DSPs

BRAMs

10694
90
24

1920 x
1080

209

V. SUMMARY AND CONCLUSIONS

A processor-based approach for implementing HOG
which avoids the recursive design loops associated with
HDL-based FPGA design is presented. The multi-core IPPro
approach achieves high performance on a Zynq, comparable
to a highly optimized implementation [7] which makes many
approximations to achieve high throughput. Our multi-IPPro
design achieves 2.6 times the throughput of our hand coded
design and 3.2 times the closest recent work [13].

The work demonstrates that our architecture is highly
scalable and using mapping and scheduling, we can easily
employ more parallelism without impeding levels of
complexity. Reuse of the same PM from single core to
multicore implementations allows scaling with only minor
adjustments to the interconnection and collation of data
outputs. This higher dataflow is managed at the highest i.e.
platform level by the ARM host and efficiently controlled by
simple software. Our IPPro architecture implementation
effort was 10 man days as opposed to 40 days for the hand
crafted VHDL implementation. Whilst only considered for

FPGA in this study, the IPPro architecture could suit ASIC
implementation permitting high performance and
reconfigurability on an even lower powered platform.
Currently, a programming environment based on dataflow to
allow efficient extraction of parallelism from a high level
description and optimization of the allocation of the
functions to the IPPro Platform, is being created. This will
allow deployment of image processing algorithms onto
FPGA in a cost effective and efficient manner.

ACKNOWLEDGEMENTS

This work has been undertaken in collaboration with Heriot-
Watt University in a project funded by the Engineering and
Physical Science Research Council (EPSRC) through the
EP/K009583/1 grant.

REFERENCES

[1] F. Catthoor, K. Danckaert, K. K. Kulkarni, E. Brockmeyer, P. G.
Kjeldsberg, T. Achteren and T. Omnes, Data Access and Storage
Management for Embedded Programmable Processors, Springer,
2010.

[2] Y. Gat, I. Kozintsev and O. Nestares, “Fusing image data with
location and orientation sensor data streams for consumer video
applications,” in Computer Vision and Pattern Recognition
Workshops, 10.1109/CVPRW.2010.5543781.

[3] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, CA, 2005, pp886 - 893.

[4] S. Bauer, U. Brunsmann and S. Schlotterbeck-Macht, “FPGA
Implementation of a HOG-based Pedestrian Recognition System,” in
MPC-Workshop, Karlsruhe, 2009.

[5] K. Benkrid and D. Crookes, “High Level Programming for FPGA
Based Image and Video Processing Using Hardware Skeletons,” in
IEEE Ninth Annual Symposium on FPGA Custom Computing
Machines, 2001, 0-7695-2667-5.

[6] K. Negi, K. Dohi, Y. Shibata and K. Oguri, “Deep pipelined one-chip
FPGA implementation of a real-time image-based human detection
algorithm,” in International Conference on Field-Programmable
Technology, 10.1109/FPT.2011.6132679.

[7] S. Xie, Y. Li, Z. Jia and L. Ju, “Binarization based implementation for
real-time human detection,” in 23rd International Conference on Field
Programmable Logic and Applications, 2013,
10.1109/FPL.2013.6645590.

[8] R. Kadoto, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto and Y.
Nakamura, “Hardware Architecture for HOG Feature Extraction,” in
Fifth International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, 2009.

[9] F. Siddiqui, B. Baradak, R. Woods and K. Rafferty, “IPPro: FPGA
based Image Processing Processor,” in IEEE International Workshop
on Signal Processing Systems, Belfast, 2014.

[10] G. Maki, S. Whitaker and G. Ganesh, “A Reconfigurable Data Path
Processor,” in Fourth Annual IEEE International ASIC Conference
and Exhibit, 1991.

[11] H. Cheah, S. Fahmy and D. Maskell, “iDEA: A DSP Block Based
FPGA Soft Processor,” in International Conference on Field-
Programmable Technology, 2012.

[12] K. Andryc, M. Merchant and R. Tessier, “FlexGrip: A soft GPGPU
for FPGAs,” in International Conference on Field-Programmable
Technology (FPT), Kyoto, 2013.

[13] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann and K. Doll, “FPGA-
based Real-Time Pedestrian Detection on High-Resolution Images,” in
IEEE Conference on Computer Vision and pattern Recognition
Workshops, 2013.

