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Abstract

Positron scattering and annihilation on noble gas atoms is studied ab initio using many-body

theory methods for positron energies below the positronium formation threshold. We show that

in this energy range the many-body theory yields accurate numerical results and provides a near-

complete understanding of the positron-noble-gas-atom system. It accounts for positron-atom and

electron-positron correlations, including the polarization of the atom by the positron and the non-

perturbative process of virtual positronium formation. These correlations have a large effect on the

scattering dynamics and result in a strong enhancement of the annihilation rates compared to the

independent-particle mean-field description. Computed elastic scattering cross sections are found

to be in good agreement with recent experimental results and Kohn variational and convergent

close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective

number of electrons participating in annihilation) rise steeply along the sequence of noble gas atoms

due to the increasing strength of the correlation effects, and agree well with experimental data.
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I. INTRODUCTION

The scattering of low-energy positrons from noble gas atoms has been the subject of

theoretical studies for many decades [1]. For an overview of the field of low-energy positron

scattering, see the review [2]. Although the exchange interaction is absent, positron scat-

tering from atoms is considerably more challenging to treat theoretically than the related

problem of electron-atom scattering. For positrons, the static interaction with the atom is

repulsive. At low incident positron energies the attractive polarization potential induced

by the positron on the atom overcomes the static repulsion, leading to a delicate balance

between the opposing potentials. A key role is thus played by positron-atom and positron-

electron correlations. In addition, phenomena unique to positrons occur, namely, positron-

ium formation (virtual or real) and positron annihilation.

Positronium (Ps) formation is a process in which a positron captures an atomic electron

into a bound state. It occurs when the positron energy exceeds the Ps-formation threshold

εPs = I +E1s(Ps) = I − 6.8 eV, where I is the ionization potential of the atom and E1s(Ps)

is the ground-state energy of Ps. In positron-atom collisions this is usually the first inelastic

channel to open, and it has a pronounced effect on positron scattering [2]. Ps formation also

affects the positron-atom interaction at energies below εPs, where it is virtual. Besides elastic

scattering, another channel open at all positron energies is positron annihilation. For atomic

and molecular targets the positron annihilation cross section is traditionally parameterized

as σa = πr2
0(c/v)Zeff , where r0 is the classical electron radius, c is the speed of light, v is the

incident positron velocity, and Zeff is the effective number of electrons participating in the

annihilation process. For Zeff = 1 this formula gives the basic electron-positron annihilation

cross section in the nonrelativistic Born approximation [3]. For many-electron targets Zeff

may naively be expected to be close to the number of electrons in the atom. However,

the positron-atom interaction and electron-positron correlations have a strong effect on the

annihilation rates [4, 5]. Experimental studies of positron annihilation in heavier noble

gases yield Zeff values that are orders of magnitude greater than those obtained in a simple

static-field approximation [6, 7].

In this paper we use diagrammatic many-body theory to describe the interaction of

positrons with noble gas atoms. Many-body theory allows one to understand and quantify

the role and magnitude of various correlation effects. Scattering phase shifts, differential and
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total elastic scattering cross sections, and Zeff are calculated ab initio with proper inclusion

of the correlations [8]. Excellent agreement with experimental results and the results of

other sophisticated theoretical approaches is found. This work, taken together with the

many-body theory calculations of γ-spectra and rates for annihilation on core electrons of

noble gases [9], forms a comprehensive study that provides a near-complete understanding of

the positron-noble-gas-atom system at positron energies below the Ps-formation threshold.

Many-body theory [10] provides a natural framework for the inclusion of electron-electron

and electron-positron correlations. It uses the apparatus of quantum field theory to develop

a perturbative expansion for the amplitudes of various processes. The ability to show vari-

ous contributions pictorially by means of Feynman diagrams makes the theory particularly

transparent and helps one’s intuition and understanding of many-body quantum phenom-

ena. This theory is ideally suited to the problem of a particle interacting with a closed-shell

atom, with successful applications to electron scattering from noble-gas atoms (see, e.g.,

Refs. [11–15]). The study of positron-atom scattering using the many-body theory thus

should have been straightforward. However, progress in this direction was stymied by the

difficulty in accounting for virtual Ps formation, as the Ps bound state cannot be accurately

described by a finite number of perturbation terms. The need for this was realised early on

[16], but a proper solution including summation of an infinite series of “ladder” diagrams

was achieved only much later [17]. The effect of virtual Ps formation nearly doubles the

strength of the positron-atom correlation potential, as the terms in the series are of the

same sign, leading to a large total. In contrast, in electron-atom scattering, such series is

sign-alternating, giving a small, often negligible, overall contribution.

The first application of the many-body theory to positron scattering was for helium

[16]. This study accounted for polarization of the target by the positron and demonstrated

the importance of virtual Ps formation by using a rather crude approximation (see also

[18]). This approximation was also used in subsequent studies for helium and other noble-

gas atoms [19, 20]. A more sophisticated approximation to the virtual Ps contribution

was developed and applied to positron scattering, binding and annihilation in Refs. [21–24]

(see also [25]). It was later used to calculate real Ps formation in noble-gas atoms [26]

and produced mixed results. The complete evaluation of the ladder-diagram series was

implemented in the positron-hydrogen study [17] which used B-spline basis sets to discretize

the positron and electron continua. This approach has since been applied to positron binding
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to the halogen negative ions [27], to positron scattering and annihilation on hydrogen-like

ions [28], to the calculation of gamma-ray spectra for positron annihilation on the core and

valence electrons in atoms [9, 29] and in molecules [30]. Another many-body theory technique

that allows one to sum the dominant series of diagrams to all orders is the linearized coupled-

cluster method which was used to calculate positron-atom bound states for a large number

of atoms [31, 32].

Recently, a series of high-quality experimental measurements and convergent close-

coupling (CCC) calculations have been performed for low-energy positron scattering along

the noble gas sequence [33–40]. In the light of these new data, the many-body theory ap-

proach developed by the authors is applied here to a thorough study of positron interaction

with the noble gas atoms.

The rest of the paper is organized as follows. In Secs. II and III we describe the many-

body theory and the numerical implementation of this theory. In Sec. IV we present results

for the scattering phase shifts, differential and total elastic scattering cross sections, and the

annihilation parameter Zeff (both energy-resolved and thermally averaged), and compare

with existing experimental and theoretical data. We conclude with a brief summary and

outlook. Algebraic expressions for the many-body diagrams are provided in Appendix A

and tabulated numerical results are in Appendix B. We use atomic units (a.u.) throughout,

unless stated otherwise.

II. MANY-BODY THEORY

A. Dyson equation and self-energy

The many-body-theory description of a positron interacting with an atom is based on the

Dyson equation (see, e.g., Ref. [41]),

(H0 + Σε)ψε = εψε, (1)

where ψε is the (quasiparticle) wave function of the positron, H0 is the zeroth-order Hamil-

tonian of the positron in the static field of the atom (usually described in the Hartree-Fock

(HF) approximation), ε is the positron energy, and Σε is a nonlocal, energy-dependent cor-

relation potential. This potential is equal to the self-energy of the single-particle Green’s
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FIG. 1. Main contributions to the positron self-energy Σε. The lowest, second-order diagram

(a), Σ
(2)
ε , describes the effect of polarization; diagram (b), Σ

(Γ)
ε , accounts for virtual Ps formation

represented by the Γ-block. Top lines in the diagrams describe the incident and intermediate-state

positron. Other lines with the arrows to the right are excited electron states, and to the left, holes,

i.e., electron states occupied in the target ground state. Wavy lines represent Coulomb interactions.

Summation over all intermediate positron, electron and hole states is assumed.

function of the positron in the presence of the atom [42]. It incorporates the many-body dy-

namics of the positron-atom interaction. As the potential Σε is nonlocal, Dyson’s equation

is an integral equation,

H0ψε(r) +

∫
Σε(r, r

′)ψε(r
′)dr′ = εψε(r). (2)

The correlation potential Σε can be evaluated as an infinite perturbation series in powers

of the residual electron-positron and electron-electron interactions. Because of the spherical

symmetry of the atomic potential, Eq. (2) can be solved separately for each partial wave of

the incident positron.

The main contribution to the positron self-energy Σε is given by the two diagrams shown

in Fig. 1. The second of these in fact represents an infinite subsequence of diagrams which

describe virtual Ps formation. For a positron interacting with a one-electron target (the

hydrogen atom or hydrogen-like ion), the diagrams shown in Fig. 1 constitute a complete

expansion of Σε. The algebraic expressions for these diagrams can be found in [17].

Diagram 1 (a), Σ
(2)
ε , accounts for the polarization of the atom by the positron. At large

positron-atom separations this diagram has the asymptotic behaviour,

Σ(2)
ε (r, r′) ≈ −αde

2

2r4
δ(r− r′), (3)

where αd is the static dipole polarizability of the atom (here, in the HF approximation).
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FIG. 2. Electron-positron ladder diagram series and its sum, the vertex function Γ (shaded block).

Comparison between the left- and right-hand sides of the diagrammatic equation shows that Γ can

be found by solving a linear equation, Eq. (4).

This second-order diagram (with its exchange counterparts) is known to provide a good ap-

proximation for Σε in electron-atom scattering (e.g., for argon [13] or xenon [14]). However,

the same approximation in positron-atom scattering is seriously deficient [16, 25].

Diagram 1 (b), which we denote Σ
(Γ)
ε , describes the short-range attraction between the

positron and the atom due to virtual Ps formation. The shaded block Γ represents the sum

of electron-positron ladder diagrams, referred to as the vertex function. It satisfies a linear

integral equation represented diagrammatically in Fig. 2 and written in the operator form

as

Γ = V + V χΓ, (4)

where Γ is the vertex function, V is the electron-positron Coulomb interaction and χ is

the propagator of the intermediate electron-positron state. With the electron and positron

continua discretized as described in Sec. III, Γ and V become matrices, with χ being a

diagonal matrix of energy denominators. In this case Eq. (4) is a linear matrix equation,

which is easily solved numerically [17]. Such discretization of the electron and positron

continua is valid for energies below the Ps formation threshold, for which the electron-

positron pair cannot escape to infinity.

In order to describe the polarization of multi-electron atoms more accurately, a set of

third-order diagrams is also included in the calculation of Σε. These diagrams, denoted

collectively Σ
(3)
ε , are shown in Fig. 3. Algrebraic expressions for these diagrams are given

in Appendix A. Diagrams 3 (a), (b), (c) and (d) represent corrections to the second-order

polarization diagram Fig. 1 (a) due to electron correlations of the type described by the

random-phase approximation with exchange [43]. They account for the electron-hole inter-

action and screening of the positron and electron Coulomb field. Diagram 3 (e) describes
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the positron-hole repulsion.
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FIG. 3. Third-order correction diagrams, Σ
(3)
ε . Mirror images of the diagrams (c) and (d) are also

included. In all diagrams the top, horizontal lines represent the positron.

Instead of computing the self-energy Σε(r, r
′) in the coordinate representation, it is more

convenient to deal with its matrix elements

〈ε′|ΣE|ε〉 =

∫
ϕ∗ε′(r

′)ΣE(r′, r)ϕε(r)drdr
′, (5)

with respect to the zeroth-order static-field positron wave functions ϕε with a given orbital

angular momentum `. The latter are eigenstates of the zeroth-order Hamiltonian,

H0ϕε = εϕε, (6)

which satisfy the correct boundary conditions and are appropriately normalized. For true

continuous-spectrum positron states the radial wave functions are normalized to a δ-function

of energy in Rydberg, δ(k2 − k′2). This corresponds to the asymptotic behaviour P
(0)
ε` (r) '

(πk)−1/2 sin(kr − `π/2 + δ
(0)
` ), where δ

(0)
` are the static HF-field phase shifts, and k is the

wavenumber related to the positron energy by ε = k2/2. The intermediate states in the

diagrams are square-integrable electron and positron basis functions – eigenstates of H0

constructed from B-splines in a finite-size box of radius R (see Sec. III A).
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B. Scattering phase shifts

The self-energy matrix (5) can be used to obtain the phase shifts directly [43, 44]. First,

a “reducible” self-energy matrix 〈ε′|Σ̃E|ε〉 is found from the integral equation,

〈ε′|Σ̃E|ε〉 = 〈ε′|ΣE|ε〉+ P
∫ 〈ε′|Σ̃E|ε′′〉〈ε′′|ΣE|ε〉

E − ε′′ dε′′, (7)

where P denotes the principal value of the integral. The scattering phase shift is then given

by,

δ`(k) = δ
(0)
` (k) + ∆δ`(k), (8)

where

tan [∆δ`(k)] = −2π〈ε|Σ̃ε|ε〉, (9)

determines the additional phase shift ∆δl(k) due to positron-atom correlations described by

the self-energy.

The reducible self-energy matrix also allows one to find the positron quasiparticle wave

function (i.e., solution to the Dyson equation), as

ψε(r) = ϕε(r) + P
∫
ϕε′(r)

〈ε′|Σ̃ε|ε〉
ε− ε′ dε

′. (10)

Numerically, the integrals in Eqs. (7) and (10) are calculated using an equispaced positron

momentum grid of 200 intervals of ∆k = 0.02. In order for the quasiparticle radial wave

function to be correctly normalized and have the asymptotic behaviour

Pε`(r) '
1√
πk

sin

(
kr − `π

2
+ δ

(0)
` + ∆δ`

)
, (11)

the wave function obtained from Eq. (10) must be multiplied by the factor

cos ∆δ` =
[
1 +

(
2π〈ε|Σ̃ε|ε〉

)2
]−1/2

. (12)

C. Positron annihilation

The annihilation rate λ for a positron in a gas of atoms or molecules with number density

n is usually parameterized by

λ = πr2
0cnZeff , (13)
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where r0 is the classical radius of the electron, c is the speed of light, and Zeff is the effective

number of electrons that participate in the annihilation process [4, 45]. In general the

parameter Zeff is different from the number of electrons in the target atom, Z. In particular,

as we shall see, positron-atom and electron-positron correlations can make Zeff � Z.

Theoretically, Zeff is equal to the average positron density at the locations of the target

electrons, i.e.,

Zeff =
N∑
i=1

∫
δ(r− ri) |Ψk(r1, . . . , rN ; r)|2 dr1 . . . drNdr, (14)

where Ψk(r1, . . . , rN ; r) is the total wave function which describes the scattering of the

positron with momentum k by the N -electron target. This wave function is normalized

at large positron-atom separations to the positron plane wave incident on the ground-state

target with the wave function Φ0:

Ψk(r1, . . . , rN ; r) ' Φ0(r1, . . . , rN)eik·r. (15)

Equation (14) has the form of an amplitude, with the electron-positron delta-function

acting as a perturbation. Hence, it is possible to derive a diagrammatic expansion for Zeff

[17, 25, 26]. Figure 4 shows the set of main annihilation diagrams. In addition to the

elements found in the self-energy diagrams, each of the Zeff diagrams contains one electron-

positron δ-function vertex. The diagrams in Fig. 4 provide a complete description of Zeff for

one-electron systems, such as hydrogen and hydrogen-like ions [28]. Algebraic expressions

for these diagrams can be found in [17]. The simplest, zeroth-order diagram, Fig. 4 (a),

corresponds to

Z
(0)
eff =

N∑
n=1

∫
|ϕn(r)|2|ψε(r)|2dr, (16)

i.e., the overlap of the electron and positron densities (ϕn being the nth electron HF ground-

state orbital). It gives Zeff in the independent-particle approximation.

For the many-electron systems considered here, it is also important to account for electron

screening in the calculation of Zeff . A series of annihilation diagrams with two Coulomb

interactions, similar to the self-energy corrections in Fig. 3, are therefore included, see Fig. 5.

The corresponding algebraic expressions are given in Appendix A.

The external lines in the Zeff diagrams represent the wave function of the incident

positron. In the lowest approximation, one can use the positron wave function in the static

9



�

�

� �

(a) (b) (c) (d)

(e) (f)

" " " " " " " "

" " " "

n n n n

n n

⌫

µ

�

�

� �

(a) (b) (c) (d)

(e) (f)

" " " " " " " "

" " " "

n n n n

n n

⌫

µ

�

�

� �

(a) (b) (c) (d)

(e) (f)

" " " " " " " "

" " " "

n n n n

n n

⌫

µ

�

�

� �

(a) (b) (c) (d)

(e) (f)

" " " " " " " "

" " " "

n n n n

n n

⌫

µ

FIG. 4. Many-body-theory diagrammatic expansion for Zeff . The solid circle in the diagrams is the

δ-function annihilation vertex, see Eq. (14). The double lines represent the fully correlated (Dyson)

positron quasiparticle wave function of Eq. (10), i.e., the HF positron wave function ‘dressed’ with

the positron self-energy in the field of the atom. Diagrams (b), (d) and (e) are multiplied by two

to account for their mirror images.

field of the HF ground-state atom, i.e., set ψε = ϕε, neglecting the effect of the correlation

potential Σε on the positron. This effect is in fact quite strong, so to obtain accurate Zeff

one needs to use the quasiparticle positron wave function of Eq. (1). Figures 4 and 5 repre-

sent the latter case, with double lines corresponding to the fully correlated (Dyson) positron

quasiparticle wave function obtained from Eq. (10), i.e., the HF positron wave functions

‘dressed’ with the positron self-energy in the field of the atom (see Figs. 1 and 3), and

normalized by the factor (12).

In order to implement the correct normalization of the incident positron wave function to

the plane wave eik·r at large distances, it is necessary to multiply the Zeff diagrams computed

for the positron wave function with angular momentum `, by

4π2

k
(2`+ 1). (17)

III. NUMERICAL IMPLEMENTATION

Below we outline the numerical implementation of the many-body theory methods de-

scribed in Sec. II.
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electron and positron Coulomb field, and electron-hole and positron-hole interactions. The top,

horizontal lines represent the positron. The double lines represent the fully correlated (Dyson)

positron quasiparticle wave function of Eq. (10). All the diagrams have equal mirror images.

A. B-spline basis

First, the Hartree-Fock ground state of the atom is calculated with a standard HF package

[46]. Using these numerical wave functions, direct and exchange potentials are constructed

and the atomic HF Hamiltonian for the positron (i.e., without exchange) or electron (with

exchange) is then diagonalized in a B-spline basis [47, 48]. The corresponding eigenvectors

are used to construct the positron and electron wave functions. This provides effectively

complete sets of positron and electron basis states covering both bound states and the

positive-energy continuum [17, 28]. These states are then used to calculate the Coulomb

and δ-function matrix elements (A1) and (A3), and to evaluate the many-body diagrams by

summing over intermediate electron and positron states.

For the calculations reported here sets of 40 splines of order 6 in a box of size R = 30 a.u.

were used. Two outermost subshells are included when calculating the self-energy and

annihilation diagrams (Figs. 1, 3, 4, and 5). The diagrams are evaluated at 8 energy points

from zero incident positron energy up to the Ps-formation threshold and then interpolated

onto the required energies. The contributions of inner shells to Zeff are calculated using the

diagrams of Fig. 4 [9].
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There is a point concerning boundary conditions satisfied by the B-spline basis states

that affects the calculation of the self-energy matrix 〈ε′|ΣE|ε〉. The self-energy matrix is

evaluated initially using the B-spline basis states |i〉 as 〈i|ΣE|j〉. The number of B-spline

basis states used in each partial wave (∼ 15) is much smaller than the number of continuous

spectrum states required for an accurate solution of Eq. (7). The change to 〈ε′|ΣE|ε〉 can

be made using the effective completeness of the B-spline basis on the interval [0, R],

〈ε′|ΣE|ε〉 =
∑
ij

〈ε′|i〉〈i|ΣE|j〉〈j|ε〉, (18)

where 〈ε|i〉 is the overlap of the HF state ε with the B-spline basis state |i〉. However,

unlike the B-spline states which satisfy the boundary condition Pi`(R) = 0, the continuous

spectrum radial wave function Pε`(r) is finite at the boundary r = R. To improve numerical

accuracy, a weighting function f(r) = R− r is inserted into Eq. (18):

〈ε′|ΣE|ε〉 =
∑
ij

〈ε′|f |i〉〈i|f−1ΣEf
−1|j〉〈j|f |ε〉, (19)

with the “weighted” self-energy matrix 〈i|f−1ΣEf
−1|j〉, being calculated rather than

〈i|ΣE|j〉.

B. Finite box size

In general, the finite box size may affect the results at low positron momenta kR <∼ 1. In

particular, it limits the range of the polarization potential (represented by Σε) to distances

not exceeding R. This is countered by adding a correction term to the self energy. At large

distances the correlation potential is local, energy independent and of the form −αd/2r4,

where αd is the static dipole polarizability. The contribution to the self-energy matrix

〈ε′|ΣE|ε〉 from distances outside the box can then be approximated by∫ ∞
R

Pε′`(r)
(
− αd

2r4

)
Pε`(r) dr, (20)

with the radial wave functions given by their asymptotic form,

Pε`(r) = r

√
k

π

[
j`(kr) cos δ

(0)
` − n`(kr) sin δ

(0)
`

]
, (21)

where j` and n` are the spherical Bessel and Neumann functions. The correction (20) is

added to the self-energy matrix calculated using the many-body theory for r ≤ R.
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C. Angular momentum convergence

The use of B-spline basis sets provides for a fast convergence of the perturbation-theory

sums in the self-energy and Zeff diagrams with respect to the number of intermediate electron

and positron states in a given partial wave with angular momentum l. However, the sums

in the diagrams are restricted to a finite number of partial waves up to a maximum orbital

angular momentum lmax, and the question of convergence with respect to lmax needs to be

addressed. One solution successfully tested in Ref. [17] is to use extrapolation described by

the asymptotic formulae [49],

δ`(k) = δ
[lmax]
` (k) +

A`(k)

(lmax + 1/2)3
, (22)

Zeff(k) = Z
[lmax]
eff (k) +

B`(k)

lmax + 1/2
, (23)

where δ
[lmax]
` (k) and Z

[lmax]
eff (k) are the phase shift and annihilation parameter obtained for

a given lmax, and A`(k) and B`(k) are constants specific to a particular collision target,

positron partial wave `, and momentum k. These constants and the extrapolated values of

the phase shift and Zeff are determined by fitting δ
[lmax]
` (k) and Z

[lmax]
eff (k) over a range of lmax

to Eqs. (22) and (23), respectively.

The use of Eqs. (22) and (23) to extrapolate the phase shifts and Zeff values to lmax →∞
is illustrated in Fig. 6 for xenon. It shows that the numerical calculations adhere closely

to the asymptotic form for lmax = 7–10, allowing a reliable extrapolation to be made.

This also indicates that although the extrapolation formulae are derived using perturbation

theory [49], their use is also valid for the non-perturbative calculations presented here. Note

that extrapolation is particularly important for Zeff , where it contributes up to 30% of the

total. The role of high intermediate orbital angular momenta in Zeff is large because the

annihilation probability is sensitive to small electron-positron separations at the point of

coalescence.

D. Partial-wave convergence of elastic scattering cross sections

The elastic scattering cross section is obtained as a sum over the partial waves [51],

σel =
4π

k2

∞∑
`=0

(2`+ 1) sin2 δ`. (24)
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FIG. 6. Extrapolation of phase shifts and Zeff for xenon with s-, p and d-wave incident

positrons (black, red and blue symbols, respectively) of momenta: k = 0.2 a.u. (circles);

k = 0.4 a.u. (squares); and k = 0.6 a.u. (diamonds). Symbols show values obtained with lmax = 7–

10, dotted lines are shown as a guide only, and dashed lines show extrapolation to lmax →∞.

At low positron energies only a few partial waves contribute to σel, and the contributions

decrease quickly with `. On the other hand, the contribution of higher partial waves is more

important in the differential elastic cross section,

dσel

dΩ
= |f(θ)|2, (25)

where

f(θ) =
1

2ik

∞∑
`=0

(2`+ 1)(e2iδ` − 1)P`(cos θ), (26)

is the scattering amplitude and P`(cos θ) are Legendre polynomials. Here large ` interfere

constructively at small scattering angles θ (due to the long-range polarization potential),
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producing a characteristic cusp at θ = 0.

As only s-, p- and d-wave phase shifts have been calculated in the present work, some

way must be found of accounting for the higher partial waves. This is done by noting

that for higher partial waves, the dipole term in Σ
(2)
ε + Σ

(3)
ε dominates the self-energy at

low energies. At large distances it corresponds to the local energy-independent polarization

potential −αd/2r4. It alters the low-energy effective range expansion of the scattering phase

shifts [50],

tan δ0 ' −ak
[
1− παdk

3a
− 4αdk

2

3
ln

(
C

√
αdk

4

)]−1

, (27)

δ` '
παdk

2

(2`− 1)(2`+ 1)(2`+ 3)
, (` ≥ 1), (28)

where a is the scattering length and C is a positive constant. We apply Eq. (27) to extract

the scattering length from the numerical s-wave phase shifts (see Sec. IV B), and use Eq. (28)

for ` ≥ 3 in the calculations of the differential and total elastic cross sections.

IV. RESULTS: SCATTERING

A. Phase shifts

Elastic scattering phase shifts for the noble gas atoms are tabulated in appendix B. The

general features of the phase shifts as functions of the positron momentum k are illustrated

for krypton in Fig. 7. In the HF (static-field) approximation, the phase shifts are negative,

indicating a repulsive electrostatic field, as is expected for positrons. Inclusion of the second-

order correlation potential Σ
(2)
ε leads to an attractive positron-atom potential at long range,

making the phase shifts positive for low k (dashed curves in Fig. 7). The asymptotic form of

Σ
(2)
ε (i.e., −αd/2r4) leads to terms quadratic in k in the low-energy expansions (27) and (28).

As a result, the s-wave phase shift reaches a maximum and then fall off with increasing k,

passing through zero (Ramsaur-Townsend effect) to negative phase shifts at higher k. The

higher-order contributions to the correlation potential (Σ
(3)
ε and Σ

(Γ)
ε ) have opposing effects.

Inclusion of third-order screening diagrams Σ
(3)
ε decreases the strength of the positron-atom

potential and reduces the phase shifts. The contribution of virtual positronium formation

Σ
(Γ)
ε is the greater of the the two. It increases the strength of the positron-atom potential,

giving a particulary large contribution at higher k for p and d waves.

15



0 0.2 0.4 0.6 0.8

Positron momentum k (a.u.)

-1.0

-0.5

0.0

0.5

1.0

P
h

a
s
e

 s
h

if
t 

(r
a

d
.)

Kr

s-wave

0 0.2 0.4 0.6 0.8

Positron momentum k (a.u.)

-0.4

-0.2

0.0

0.2

0.4

0.6

P
h

a
s
e

 s
h

if
t 

(r
a

d
.)

Kr
p-wave

0 0.2 0.4 0.6 0.8

Positron momentum k (a.u.)

-0.1

0.0

0.1

0.2

0.3

0.4

P
h

a
s
e

 s
h

if
t 

(r
a

d
.)

Kr
d-wave

FIG. 7. Scattering phase shifts for s-, p- and d-wave positrons on Kr in various approximations:

HF (static-field) approximation (dotted curve); HF plus second-order correlation potential Σ
(2)
ε

(dashed curve); HF + Σ
(2)
ε + Σ

(3)
ε (dot-dot-dash curve); HF + Σ

(2)
ε + Σ

(Γ)
ε (dot-dashed curve); and

total: HF + Σ
(2)
ε + Σ

(3)
ε + Σ

(Γ)
ε (solid curve). Squares are theoretical results calculated using the

polarized orbital method [52].

In Fig. 7 we also show the phase shifts from the polarized-orbital calculations of
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McEachran et al. [52] (squares). The polarized-orbital approximation makes a number

of drastic assumptions. It considers a linear response of the target to the field of a sta-

tionary (i.e., infinitely massive) particle, and drops the monopole polarization term in the

potential. Unlike Σε, the polarized-orbital potential is local and energy independent, and it

does not account for the (nonperturbative) contribution of virtual Ps formation. It is thus

remarkable, and likely fortuitous, that the polarized orbital calculations give the s-wave

phase shift in such close agreement with the many-body calculation. For p and d waves,

however, the distinct effect of virtual Ps formation for k >∼ 0.4 a.u. produces phase shifts

that are 10–20% greater than those from the polarized-orbital calculation.

This behaviour of the phase shifts, including the Ramsauer-Townsend minimum in the

s-wave scattering, is observed for all noble gas atoms. Quantitatively, the correlation effects

[i.e., the contribution of ∆δ`(k) to the phase shift (8)] become progressively larger from He

to Xe. It was this increase in positron-atom correlational attraction that led to predictions

of positron binding to neutral atoms [22].

B. Scattering lengths

A single quantity that characterizes the strength of positron-atom attraction at low en-

ergies is the scattering length a. It can be extracted from the effective-range expansion (27)

of the s-wave phase shift, written as

δ0(k) ' −ak − παdk
2

3
− 4aαd

3
k3 ln

√
αdk

4
+Dk3, (29)

where D is a constant. Equation (29) is convenient for systems in which the scattering

length is not too large. It works well for helium, neon, argon and krypton, and we use it as

a two-parameter fit over the range of momenta k = 0.02–0.06 a.u. [53]. The corresponding

values of the scattering length are shown in Table I.

Compared with other noble-gas atoms, the s-wave phase shift for xenon is large (see

Table VII), indicating a much greater scattering length. In this case it is more convenient

to analyse the behaviour of the phase shift using Eq. (27) in the form

k cot δ0 ' −
1

a
+
παdk

3a2
+

4αdk
2

3a
ln

(
C

√
αdk

4

)
. (30)

Figure 8 shows the dependence of k cot δ0 on the positron momentum k, together with a

two-parameter fit using Eq. (30), and a three-parameter fit in which a cubic term Dk3 is
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TABLE I. Positron scattering lengths a in a.u. for the noble gas atoms.

He Ne Ar Kr Xe

aa −0.435 −0.467 −4.41 −9.71 −84.5

ab – −0.43 −3.9 −9.1 ≈ −100

ac −0.53 −0.61 −5.3 −10.4 −45

ad −0.48 – – – –

ae – −0.53 −4.3 −11.2 −117

af – – −4.9± 0.7 −10.3± 1.5 −99.2± 18.4

a Present many-body calculations.
b Previous many-body calculations [23].
c Polarized orbital calculations [52].
d Kohn variational calculations [54].
e Convergent close-coupling calculations [40].
f Experiment: Ar [35], Kr [34], Xe [36].

added on the right-hand-side of Eq. (30). The two-parameter fit gives a = −86.6 a.u.,

while the three parameter fit gives a = −82.4 a.u. Given the uncertainty of the fitting

procedure, our predicted scattering length for Xe is a = −84.5 ± 2 a.u. In fact, the exact

value of the scattering length for xenon is very sensitive to the positron-atom correlation

potential. When the scattering length is large, its reciprocal κ = 1/a is known to vary linearly

with the strength of the potential [51]. We can thus compare our theoretical prediction

κ = −0.0118 a.u. with a typical value κ ∼ 0.5 a.u., compatible with the radius of the Xe

atom. (For example, the positron scattering length in the static field of the Xe atom is

a = 1.93 a.u., which corresponds to κ = 0.518 a.u.) This shows that predicting κ (and

hence, the scattering length) with 1% accuracy requires a better than 0.1% accuracy in the

calculation of the correlation potential, which is probably beyond any method for such a

complex many-electron target as Xe.

If the scattering length a is large and negative then a virtual state exists at the energy

ε = ~2/2ma2, where m is the positron mass [51]. It gives rise to enhanced elastic scattering

and annihilation (∝ |a|2) at low positron energies. Table I compares the scattering lengths

extracted from the s-wave phase shifts with other theoretical and experimental results. He-

lium and neon display close scattering lengths in the present calculation, with the result for
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FIG. 8. s-wave scattering phase shift for Xe. Circles show values from the present many-body

theory calculation; solid line is a two-parameter fit by Eq. (30) at k = 0.02 and 0.04 a.u.; dashed

line is a three-parameter fit [Eq. (30) with a cubic term Dk3 added] using k = 0.02–0.06 a.u.

neon in good agreement with previous many-body theory calculations [23], although some-

what lower than other theoretical predictions [40, 52, 54]. For argon and krypton, there is

close accord between the present many-body theory, polarized orbital [52], and CCC [40]

calculations, and the experimental results of Zecca et al. [34, 35]. The scattering length

increases across the noble-gas atom sequence, giving rise to a virtual s-wave level for xenon

with the energy of approximately 2 meV. As mentioned above, this indicates that scattering

calculations in the low-energy region for xenon will display a high sensitivity to the represen-

tation of the correlation potential. The many-body theory scattering length calculated here

for xenon is a factor of two greater than that from the polarized-orbital calculations [52],

but somewhat lower than those obtained in the earlier many-body calculations [23] and the

CCC calculations [40]. However, it is compatible with the experimental value determined

by extrapolating the measured low-energy cross section with the aid of CCC calculations

[36].
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C. Elastic scattering cross sections

The elastic scattering cross sections along the noble gas sequence are shown in Figs. 9–

13, where we compare them with existing experimental and theoretical data. The numerical

cross sections are tabulated in appendix B.

For helium (Fig. 9) our many-body theory calculations agree closely with the variational

calculations [55], the convergent close-coupling results [56] and the earlier experimental

measurements of Refs. [57, 58], as well as the most recent ones [33]. A consensus on the

elastic scattering cross section appears to have been reached. The polarized orbital results

of [52] are not in agreement with other theoretical and experimental data, and the magnetic-

field-free experimental measurements of Nagumo et al. [61] are larger than all theory and

experimental results.
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FIG. 9. Elastic scattering cross section for He. Theory: solid, present many-body theory; dot-

dashed, polarized orbital, [52]; dashed, MBPT [23]; dotted, CCC [56]; dot-dot-dashed, Kohn vari-

ational [55]. Experiment: squares, Stein et al. [57]; circles, Mizogawa et al. [58]; stars, Karwasz et

al. [59]; diamonds, Coleman et al. [60]; crosses, Sullivan et al. [33]; triangles, Nagumo et al. [61].

For neon (Fig. 10), examining theoretical data first, the present many-body theory results

20



agree most closely with the relativistic polarized orbital results [38]. At energies below

2 eV, the present many-body theory results agree well with the previous many-body theory

calculations [23], but trend lower above this energy. The convergent close-coupling results

of [40] are higher than the other calculations, while the polarized orbital results of [52] are

considerably lower than both experiment and theory at energies above 2 eV. Comparing

with experimental data, the present many-body theory results agree most closely with the

recent measurements of Sullivan et al. [37] above 2 eV, but are lower than Sullivan’s results

below this energy, where they agree better with the measurements of Stein et al. [57].
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FIG. 10. Elastic scattering cross section for Ne. Theory: solid, present many-body theory; dot-

dashed, polarized orbital, [52]; dashed, MBPT [23]; dotted, CCC [40]; dot-dot–dashed, relativistic

polarized orbital [37]. Experiment: squares, Stein et al. [57]; circles, Sinapius et al. [62]; diamonds,

Coleman et al. [60]; crosses, Sullivan et al. [37]; triangles, Nagumo et al. [85].

For argon (Fig. 11) the many-body theory results agree well with the convergent close-

coupling results [40], but are higher than the nonrelativistic and relativistic polarized orbital

results [39, 52] above 2 eV. Comparing to experiment, the many-body theory results are in

good agreement with the measurements of Sinapius et al. [62], Zecca et al. [35] and Sullivan

et al. [37], although the latter two give slightly higher values at most energies shown. Note
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that the Ramsauer-Townsend minimum, which is very prominent in He and Ne, is not visible

in argon. This is a result of the shift of the minimum in the s-wave scattering cross section

towards higher energies, where it gets “filled” with higher partial wave contributions. This

interplay of the contributions of different partial waves produces a characteristic plateau in

the cross section, which stretches from 2 eV to the Ps formation threshold at 8.96 eV.
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FIG. 11. Elastic scattering cross section for Ar. Theory: solid, present many-body theory; dot-

dashed, polarized orbital, [52]; dashed, MBPT [23]; dotted, CCC [40]; dot-dot-dashed, relativistic

polarized orbital [37]. Experiment: squares, Stein et al. [64]; circles, Sinapius et al. [62]; stars,

Karwasz et al. [65]; diamonds, Coleman et al. [60]; triangles, Zecca et al. [35]; crosses, Sullivan et

al. [37].

For krypton, the convergent close-coupling results of [40] are in good agreement with

the many-body theory results, while the polarized orbital results (both relativistic [52] and

nonrelativistic [38]) are lower than other theoretical predictions above 1 eV. The experi-

mental data of Sinapius et al. [62], and the more recent measurements by Zecca et al. [34]

and Sullivan et al. [38] (above 2 eV) are in good agreement with each-other and with the

present many-body theory results. The measurements of Dababneh et al. [66] and Coleman

et al. [60] lie below the many-body theory results. Compared with argon, the larger s-wave
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cross section at low energies and the increased contributions of higher partial waves produces

a steadily decreasing total cross section, with no trace of the underlying Ramsauer-Townsend

minimum.
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FIG. 12. Elastic scattering cross section for Kr. Theory: solid, present many-body theory; dot-

dashed, polarized orbital, [52]; dashed, MBPT [23]; dotted, CCC [40]; dot-dot-dashed, relativistic

polarized orbital [38]. Experiment: squares, Dababneh et al. [66]; circles, Sinapius et al. [62];

diamonds, Coleman et al. [60]; triangles, Zecca et al. [34]; crosses, Sullivan et al. [38].

For xenon, the present many-body theory results are in excellent agreement with the

convergent close-coupling results of [40], lower than the previous many-body theory calcu-

lations of [23] (which employed an approximate treatment of virtual Ps formation), and

somewhat higher than the nonrelativistic and relativistic variants of the polarized orbital

method [39, 52]. Compared to experiment the present results agree most closely with the

measurements of Sinapius et al. [62] and Sullivan et al, especially towards higher energies.

The experimental results of Dababneh et al. [66] and Coleman et al. [60] lie below the other

experimental results and the present many-body theory calculations. A possible reason for

this may lie in the fact that the differential scattering cross section for positron scattering

on heavier noble gas atoms is strongly forward peaked. Poor detection of forward-scattered
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positrons [63] will cause an underestimate in the cross section.
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FIG. 13. Elastic scattering cross section for Xe. Theory: solid, many-body theory; dot-dashed,

polarized orbital [52]; dashed, MBPT [23]; dotted, CCC [40]; dot-dot-dashed, relativistic polarized

orbital [39]. Experiment: squares, Dababneh et al. [66]; circles, Sinapius et al. [62]; crosses, Sullivan

et al. [39]; diamonds, Coleman et al. [60].

Some general trends can be seen in the elastic scattering cross sections across the noble

gas sequence. The many-body theory results are in good agreement with non-perturbative

convergent close-coupling results [40], apart from neon where there is a discrepancy that

will need further investigation. The polarized orbital results [52] are seen to underestimate

the cross sections at higher energies, likely due to the neglect of virtual positronium for-

mation and the use of energy-independent correlation potential. Agreement with recent

experimental measurements [33–39] is generally close.

D. Differential cross sections

A quantity more sensitive to the accuracy of a scattering calculation is the differential

cross section, Eq. (25). By making use of Eq. (28) for higher partial waves, the scattering
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amplitude (26) can be written as,

f(θ) =

`0∑
`=0

(2`+ 1)

[
e2iδ` − 1

2ik
− παdk

2

(2`− 1)(2`+ 1)(2`+ 3)

]
P`(cos θ)− παdk

2
sin

θ

2
, (31)

where `0 is the maximum partial wave for which the phase shift has been calculated explicitly.

This procedure, or some other way of effectively summing over all partial waves up to infinity,

is necessary to describe the cusp of the differential cross section at θ = 0, which is due to

the long-range (−αd/2r4) polarization potential.
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FIG. 14. Differential elastic scattering cross section for Kr. Theory: solid, present many-body

theory; dotted, polarized orbital, [52]; dashed, CCC [34]; dot-dashed, relativistic polarized orbital

[38]; dashed-dashed-dotted, polarization potential [69]. Experiment: circles, Gilbert et al. [67];

squares, Sullivan et al. [38].

Figures 14 and 15 compare differential cross sections calculated using our many-body

phase shifts for krypton and xenon at an incident positron energy of 2 eV with other theoret-

ical calculations and experimental data from the San Diego [67, 68] and Australian National

University (ANU) groups [38, 39]. It is important to note that these groups use positron
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traps to accumulate positrons, which are then extracted to form a pulsed, energy tunable

positron beam. This beam is magnetically guided to the target gas cell, and the differential

cross section is measured by observing the change in the longitudinal positron energy. How-

ever, the apparatus is not able to distinguish between forward-scattered and back-scattered

particles, as any back-scattered particles are reflected and passed back through the gas cell.

The measured differential cross section for a scattering angle θ is therefore the sum of the

cross sections at the angle θ and 180 − θ. Theoretical results have therefore been folded

about 90◦ where necessary.
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FIG. 15. Differential elastic scattering cross section for Xe. Theory: solid, present many-body

theory; dashed, CCC [39]; dot-dashed, relativistic polarized orbital [39]; dashed-dashed-dotted,

polarization potential [69]. Experiment: circles, Marler et al. [68]; squares, Sullivan et al. [39].

For krypton (Fig. 14) the present many-body theory calculations are in good agreement

with the CCC results [34], nonrelativistic and relativistic variants of the polarized orbital

method [38, 52], and the experimental data of [67] and [38] across the angular range, with

the CCC values trending slightly higher at small angles. (The latter is compatible with the
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larger absolute value of the scattering length in the CCC calculation, Table I.) However,

a large discrepancy is observed with the polarization calculations of [69]. In the case of

xenon (Fig. 15), there is excellent agreement between the present many-body calculations

and the CCC calculations [39], with both calculations being somewhat higher than the

relativistic polarized orbital calculations [39]. As in krypton, the present results show a

large difference with the polarization potential calculations of [69]. The many-body theory

and CCC calculations are in better agreement with the ANU experiment [39] than the data

of Ref. [68], with the two experiments in better accord above 40◦. The stronger peaking of

both many-body theory and CCC results at θ = 0 can be related to the larger values of the

scattering lengths in these calculations compared to the polarized-orbital result (Table I).

The large scattering length in Xe is behind the strongly enhanced positron annihilation

rates at low (e.g., room-temperature, thermal) energies in xenon (see Sec. V). We, therefore,

believe that the many-body theory, CCC and ANU data are more accurate for θ < 30◦.

V. POSITRON ANNIHILATION

A. Energy resolved Zeff

Figure 16 shows partial-wave contributions to Zeff for positron annihilation on the valence

shell electrons of the noble gas atoms as functions of the positron momentum. Note that at

low positron momenta k the Wigner threshold law predicts Zeff ∝ k2` for the positron with

the orbital angular momentum ` [51]. As a result, the s-wave contribution dominates at low

energies.

As one moves along the noble gas sequence, the s-wave Zeff becomes increasingly large

and strongly peaked at low energies. This strong energy dependence is due to the existence

of positron-atom virtual levels [5, 23, 25], which is signified by large scattering lengths a

for Ar, Kr and Xe. In this case the momentum dependence of Zeff at low energies can be

described analytically [23, 25, 70–72], as

Zeff(k) =
K

κ2 + k2
+ A, (32)

where K and A are constants. The first term in Eq. (32) is due to the s-wave contribution

enhanced by the virtual level (i.e., small κ = 1/a, |κ| � 1/Ra ∼ 1 a.u., where Ra is

the atomic radius). The constant term A accounts for the nonresonant background and
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FIG. 16. Contributions of the s-, p- and d-waves to the annihilation rate Zeff on the valence

subshells of the noble gases: helium (1s, solid line); neon (2s + 2p, dotted line); argon (3s + 3p,

dashed line); krypton (4s+ 4p, dash-dotted line) and xenon (5s+ 5p, dash-dash-dotted line).

contributions of higher partial waves to Zeff . Equation (32) makes it clear that if the thermal
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positron momentum k is smaller than κ then the annihilation rate will be proportional to

the scattering length squared.

The p-wave Zeff appears to show the formation of a broad shape resonance especially

prominent for Xe. This is supported by the behaviour of the p-wave phase shift, e.g., that

for Kr shown in Fig. 7. For more polarizable targets which generate stronger positron

attraction, such as Mg and Zn, p-wave resonances in Zeff become a prominent feature of the

energy dependence of the annihilation parameter [73].

B. Thermally averaged Zeff

Most of the available experimental data for Zeff in noble gases have been obtained for

thermalized positrons at room temperature [74]. As can be seen from Fig. 16, the anni-

hilation rates in helium and neon have a weak energy dependence in the range of thermal

positron momenta (k ∼ 0.045 a.u. at room temperature). Hence, for these atoms we take

the Zeff values at k = 0.04 a.u. to compare with experiment (see Table II). The Zeff values

at such low momenta are primarily due to the s-wave positron annihilation, with the p-wave

contributing only a fraction of one per cent. In addition, for neon about 0.3% is due to

positron annihilation with the core (1s) electrons (Table IV).

TABLE II. Thermally averaged Zeff for the noble gases.

He Ne Ar Kr Xe

Z̄eff
a 3.79 5.58 26.0 66.1 450

Z̄eff
b 3.88 6.98 30.5 56.3 202

Z̄eff
c 3.94 5.99 26.77 65.7 320, 400–450

Z̄eff
d – – 33.8 90.1 401

a Present many-body theory calculations.
b He: Kohn variational calculations [75]; Ne, Ar, Kr, Xe: polarized orbital calculations [52].
c Experiment: He, Ne, Ar [6]; Kr [76], Xe [76, 77].
d Experiment: Ar and Kr [78]; Xe [7].

For argon, krypton and xenon the energy dependence of Zeff becomes progressively
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stronger and we compute thermal Zeff values from the Maxwellian average

Z̄eff =

∫ ∞
0

Zeff(k)
exp(−k2/2kBT )

(2πkBT )3/2
4πk2dk, (33)

where kB is the Boltzmann constant and kBT = 9.29 × 10−4 a.u. at room temperature

T = 293 K. The integration is performed using a fit of the calculated total Zeff values (s-,

p-, and d-wave, valence and core), of the form

Zeff(k) =
K

κ2 + k2 + βk4
+ A, (34)

over the momentum range k = 0.02–0.3 a.u. This fit is based on Eq. (32), with an extra k4

term included to improve the accuracy. This is especially important for xenon where Zeff

has the most vigorous momentum dependence. Figure 17 shows the calculated Zeff for Xe

(open circles) [79], together with two fits of the form (34), experimental data from Ref. [74],

and Zeff from the polarized orbital calculations [52].
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FIG. 17. Calculated Zeff for Xe (sum of s-, p- and d-wave values including both valence and core

contributions, open circles) and their fits (34), in which κ = 1/a = −0.0118 a.u. is fixed (dashed

line), or used as a fitting parameter (solid line). Solid circles are experimental values from Ref. [74].

Triangles with dot-dashed line are the polarized orbital results [52].
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In the first fit shown in Fig. 17 by the dashed line, the parameter κ is fixed by the value

of the scattering length, κ = 1/a = −0.0118 a.u., and the values of the other parameters

are K = 0.683, A = 30.95 and β = 111.8 a.u. This fit gives Z̄eff = 448 at T = 293 K. In the

second fit shown by the solid line, κ is regarded as a free parameter. The corresponding set

of values K = 0.6047, κ = −0.00914, A = 26.74, and β = 50.49 a.u. produces an excellent

fit of the numerical Zeff over the whole momentum range. It gives Z̄eff = 458. Given the

2% difference between the two values, we report Z̄eff = 450 as our best prediction of the

room-temperature value for Xe.

Using Eq. (34) as a four-parameter fit for Ar (K = 0.2002, κ = −0.1048, A = 11.26, and

β = 21.68 a.u.) yields Z̄eff = 26.0 at T = 293 K. The fit for Kr (K = 0.3659, κ = −0.0696,

A = 16.04, and β = 30.74 a.u.) produces Z̄eff = 66.1. Although the momentum dependence

of Zeff in Ar and Kr is not nearly as steep as in Xe, thermal averaging is important for them.

For example, the calculated values at k = 0.04 a.u. are Zeff = 27.1 for Ar and 72.1 for Kr,

while the thermally averaged values obtained above are close to Zeff(k) at k ≈ 0.048 a.u.

The present many-body theory and the Z̄eff values obtained above are a significant im-

provement on the previous many-body theory study [23]. In Table II the calculated Z̄eff

values for the noble gas atoms are compared with available experimental data and some

theory values. For helium the many-body theory result is in good agreement with precise

variational calculations [75] and with the measurements [6], the discrepancy being less than

5%. For neon, argon and krypton the many-body results are in close agreement with the

earlier measurements [6], but differ significantly from the positron-trap results for Ar and

Kr [78], and Z̄eff from the polarized orbital calculations [52]. Even assuming an error of

5–10% in the many-body calculations, the results of Iwata et al. [78] for Ar and Kr appear

to be anomalously high. For xenon, the many-body result is much higher than that from

the polarized orbital calculations [52] and is in reasonable accord with the experiment of [7]

and one set of earlier measurements [76]. Given the approximations made in the polarized

orbital method, the discrepancy between its results and our theory are not unexpected. (In

fact it is remarkable that this relatively crude method produces such reasonable results.)

To gain a better understanding of the discrepancies between theory and experiment, it is

necessary to examine the experimental techniques used to measure Z̄eff .

The results of Refs. [6, 76, 77] were obtained using positron lifetime spectroscopy. In this

technique, positrons from a radioactive source (e.g., 22Na) are injected into a gas cell, where
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they thermalize and annihilate. The lifetime is measured as the delay between the nuclear

gamma ray emitted in the β+ decay, and the annihilation gamma ray. By measuring the

lifetime of 106 − 107 positrons it is possible to obtain a lifetime spectrum. The annihilation

rate can then be found from the exponential fit of this spectrum. For lighter noble gases (He

to Kr) thermalization occurs much faster than annihilation, which provides for a reliable

measurement of Z̄eff with fully thermalized positrons. In xenon the positron energy loss

in momentum-transfer collisions is smaller due to the large mass of the atom, while the

Zeff values in Xe are higher. As a result, the annihilation rate is measured for epithermal

positrons, resulting in Zeff values lower than expected (e.g., Z̄eff = 320 [77]). Adding small

amounts of a lighter, low-Zeff gas, e.g., He or H2, to Xe allows for fast thermalization and

produces truly thermalized annihilation rates with Z̄eff = 400–450 [76]. As seen in Table II,

these values are in good agreement with the present calculation.

The results of Refs. [7, 78] were obtained using a Penning-Malmberg positron trap. In

this type of experiment positrons from a radioactive source are slowed down to electron-volt

energies using a solid neon moderator. They are then accelerated towards the trap region,

and become trapped by loosing energy through inelastic collisions with a buffer gas, such as

N2. Differential pumping of the buffer gas allows the thermal positrons to be stored for a

long time in a high-vacuum region of the trap. A test gas is then injected into the trap at a

known low pressure, and the positron annihilation rate is found by determining the number

of remaining positrons as a function of time. In this set-up positrons are well thermalized,

and the result for Xe, Z̄eff = 401 [7] is broadly consistent with that of Ref. [76] and our

calculation. The current calculations and available experimental data thus indicate that

the value of Z̄eff for xenon lies in the range 400–450. However, the discrepancy between

the present results and those of Ref. [78] for Ar and Kr is of concern, especially given the

agreement we between our Z̄eff and the earlier gas-cell measurements [60, 76]. It would

be worthwhile for new positron-trap measurements of Z̄eff for argon and krypton to be

performed to help resolve this discrepancy.

VI. CONCLUSIONS

The many-body formalism that has been developed to study positron scattering and an-

nihilation from atoms and ions [17, 27, 29] has been applied to the noble gas sequence. Good
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agreement with experimental data and recent non-perturbative CCC calculations has been

obtained for the elastic scattering cross sections. Calculated thermally averaged Zeff for He,

Ne, Ar, and Kr are in good agreement with experimental values obtained using positron

lifetime spectroscopy in gas cells. For xenon theoretical and experimental data point to a

thermal room-temperature Z̄eff = 400–450. Theoretically, the uncertainty is related to the

difficulty in predicting the exact value of the large positron-xenon scattering length. Exper-

imentally, the gas-cell measurements are affected by slow positron thermalization in xenon

and the need to use gas mixtures to achieve thermalization. The more sophisticated positron-

trap set up allows measurements of energy-resolved Zeff . The corresponding results for Xe

(and Ar [74]) are generally in accord with the calculation, although slightly higher. Being

more difficult, trap-based measurements of absolute Zeff may suffer from larger systematic

errors. In addition, in systems with rapidly varying Zeff , such as Xe, the energy-resolved

low-energy (<∼ 0.1 eV) data can be affected by the positron-beam energy distribution, so a

more detailed comparison is required.

Through this work, together with Ref. [9], the many-body theory method has provided a

near complete understanding of the positron-noble gas atom system at positron energies be-

low the Ps-formation threshold. Positron-scattering phase shifts and cross sections, and rates

and γ-spectra for positron annihilation on core and valence electrons, have been calculated

in a consistent framework that takes proper account of positron-atom and positron-electron

correlations. There are, however, a number of ways in which the many-body theory can be

developed and extended. Thus, it should be straightforward to generalize our many-body

theory to a fully relativistic formalism. This will be important in exploring the influence that

relativistic effects have on positron scattering from high-Z atoms and ions, particularly for

positron annihilation on inner shells. It will also be important to account for higher-order

polarization effects [80, 81] beyond the third order many-body diagrams included in the

present work, particularly for xenon where the low-energy cross section is highly sensitive

to correlation effects. Another area of interest is the application of the many-body theory

to open-shell systems. Although only truly rigorous for closed-shell systems, approximate

methods can be introduced that should allow a reasonably accurate application of the the-

ory to such systems. This would be particularly useful for studies of positron annihilation

on core electrons in condensed matter systems [9, 82]. Finally, the understanding gained

by studying positron-atom interactions is very valuable for gaining insights into positron-
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molecule interactions. The latter is a much more complex system, in which positron binding

and resonances, as well as the vibrational dynamics of the positron-molecule complex, play

a crucial role in providing strongly enhanced annihilation rates [83].
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Appendix A: Algebraic form of the many-body diagrams

The algebraic expressions for the various many-body diagrams are tabulated below and

complement those provided in Appendix A of Ref. [17]. The derivation of these expressions

makes extensive use of graphical techniques for performing angular momentum algebra [84].

Let us denote the direct reduced Coulomb matrix element by

〈3, 4‖Vl‖2, 1〉 =
√

[l3][l4][l2][l1]

(
l1
0

l

0

l3
0

)(
l2
0

l

0

l4
0

)
×
∫ ∫

Pε3l3(r1)Pε4l4(r2)
rl<
rl+1
>

Pε2l2(r2)Pε1l1(r1)dr1dr2, (A1)

where [l] ≡ 2l+1. Secondly, we denote the reduced Coulomb matrix element for an electron-

positron pair with the total angular momentum J by

〈3, 4‖V (J)‖1, 2〉 =
∑
l

(−1)J+l

{
J

l

l3
l2

l4
l1

}
〈3, 4‖Vl‖2, 1〉. (A2)

Note that this is similar to the ‘exchange’ matrix elements that one meets in electron scatter-

ing [12, 13, 43]. These matrix elements form the main components of the analytic expressions

represented by the diagrams. The additional rules are as follows. For closed-shell atoms,

each electron-hole ‘loop’ gives a spin factor of 2. In addition, asymmetric Zeff diagrams

should contain an extra factor of 2 arising from their mirror images. The sign of each dia-

gram is given by (−1)a+b+c, where a is the number of hole lines, b is the number of ‘loops’

and c is the number of positron-electron interactions.
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Matrix elements of the δ-function operator are defined similarly to those of the Coulomb

interaction. We denote the direct matrix element by

〈3, 4‖δl‖2, 1〉 =
[l]

4π

√
[l3][l4][l2][l1]

(
l1
0

l

0

l3
0

)(
l2
0

l

0

l4
0

)
×
∫
Pε3l3(r)Pε4l4(r)

1

r2
Pε2l2(r)Pε1l1(r)dr, (A3)

and the matrix element for a positron-electron pair coupled to an angular momentum J by

〈3, 4‖δ(J)||1, 2〉 =
∑
l

(−1)J+l

{
J

l

l3
l2

l4
l1

}
〈3, 4‖δ(J)‖2, 1〉. (A4)

The algebraic expressions for the third-order contributions to 〈ε′|ΣE|ε〉 shown by the

diagrams in Fig. 3 (a)–(e) are, respectively:

−
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

2〈ε′, n2‖Vl‖µ2, ν〉〈µ2, n1‖V (l)‖µ1, n2〉〈ν, µ1‖Vl‖n1, ε〉
(2l + 1)(2`+ 1)(E + εn2 − εν − εµ2)(E + εn1 − εν − εµ1)

, (A5)

∑
ν,µ1,µ2>F

n1,n2≤F

∑
l

4〈ε′, n2‖Vl‖µ2, ν〉〈n1, µ2‖Vl‖n2, µ1〉〈ν, µ1‖Vl‖n1, ε〉
(2l + 1)2(2`+ 1)(E + εn2 − εν − εµ2)(E + εn1 − εν − εµ1)

, (A6)

∑
ν,µ1,µ2>F

n1,n2≤F

∑
l

4〈ε′, n2‖Vl‖µ2, ν〉〈µ1, µ2‖Vl‖n2, n1〉〈ν, n1‖Vl‖µ1, ε〉
(2l + 1)2(2`+ 1)(E + εn2 − εν − εµ2)(εn1 + εn2 − εµ1 − εµ2)

, (A7)

−
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

2〈ε′, n2‖Vl‖µ1, ν〉〈µ1, µ2‖V (l)‖n1, n2〉〈ν, n1‖Vl‖µ2, ε〉
(2l + 1)(2`+ 1)(E + εn2 − εν − εµ1)(εn1 + εn2 − εµ1 − εµ2)

, (A8)

∑
ν1,ν2,µ>F

n1,n2≤F

∑
l,l′,l′′

(−1)l+`+ln1
2〈ε′, n2‖Vl′′‖µ, ν2〉〈ν2, n1‖Vl′‖n2, ν1〉〈ν1, µ‖Vl‖n1, ε〉
(2`+ 1)(E + εn2 − εν2 − εµ)(E + εn1 − εν1 − εµ)

{
lν1
l′′
l′

`

lν2
l

}{
l

ln2

l′

lµ

l′′

ln1

}
(A9)

where ` is the orbital angular momentum of the incident positron, “>F” indicates summa-

tion over the excited electron states (i.e., those above the Fermi level), and “≤F” indicates

summation over the hole states (i.e., those at or below the Fermi level).

Similarly, the algebraic expressions for the Zeff diagrams in Fig. 5 (a)–(g), are, respec-

tively:

2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

2〈ε, n2‖δl‖µ2, ν〉〈µ2, n1‖V (l)‖µ1, n2〉〈ν, µ1‖Vl‖n1, ε〉
(2l + 1)(2`+ 1)(E + εn2 − εν − εµ2)(E + εn1 − εν − εµ1)

, (A10)
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−2
∑

ν1,ν2,µ>F

n1,n2≤F

∑
l,l′,l′′

(−1)l+`+ln1
2〈ε, n2‖δl′′‖µ, ν2〉〈ν2, n1‖Vl′‖n2, ν1〉〈ν1, µ‖Vl‖n1, ε〉
(2`+ 1)(E + εn2 − εν2 − εµ)(E + εn1 − εν1 − εµ)

{
lν1
l′′
l′

`

lν2
l

}{
l

ln2

l′

lµ

l′′

ln1

}
(A11)

− 2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

4〈ε, n2‖δl‖µ2, ν〉〈n1, µ2‖Vl‖n2, µ1〉〈ν, µ1‖Vl‖n1, ε〉
(2l + 1)2(2`+ 1)(E + εn2 − εν − εµ2)(E + εn1 − εν − εµ1)

, (A12)

− 2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

4〈ε, n2‖δl‖µ2, ν〉〈µ1, µ2‖Vl‖n2, n1〉〈ν, n1‖Vl‖µ1, ε〉
(2l + 1)2(2`+ 1)(E + εn2 − εν − εµ2)(εn1 + εn2 − εµ1 − εµ2)

, (A13)

− 2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

4〈ε, n2‖Vl‖µ2, ν〉〈µ1, µ2‖Vl‖n2, n1〉〈ν, n1‖δl‖µ1, ε〉
(2l + 1)2(2`+ 1)(E + εn2 − εν − εµ2)(εn1 + εn2 − εµ1 − εµ2)

, (A14)

2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

2〈ε, n2‖Vl‖µ1, ν〉〈µ1, µ2‖V (l)‖n1, n2〉〈ν, n1‖δl‖µ2, ε〉
(2l + 1)(2`+ 1)(E + εn2 − εν − εµ1)(εn1 + εn2 − εµ1 − εµ2)

, (A15)

2
∑

ν,µ1,µ2>F

n1,n2≤F

∑
l

2〈ε, n2‖δl‖µ1, ν〉〈µ1, µ2‖V (l)‖n1, n2〉〈ν, n1‖Vl‖µ2, ε〉
(2l + 1)(2`+ 1)(E + εn2 − εν − εµ1)(εn1 + εn2 − εµ1 − εµ2)

. (A16)

Appendix B: Tabulated numerical results

In order to facilitate comparison of the present calculations with future experimental and

theoretical data we tabulate here the s-, p- and d-wave phase shifts, elastic scattering cross

sections and s-, p-, d-wave Zeff as a function of the incident positron momentum k for the

noble gas atoms.
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TABLE III. Scattering phase shift δ` (in radians), elastic scattering cross section (10−16 cm2) and

Z
(`)
eff for `-wave positrons annihilating on helium. Numbers in brackets denote powers of ten.

k Scattering phase shift Cross Section Annihilation rate

(a.u.) δ0 δ1 δ2 (10−16 cm2) Z
(s)
eff Z

(p)
eff Z

(d)
eff

0.02 8.104[-3] 1.076[-4] 1.551[-5] 5.781[-1] 3.804[0] 1.297[-3] 1.490[-7]
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0.40 6.907[-3] 2.795[-2] 6.093[-3] 5.777[-2] 2.808[0] 4.659[-1] 2.077[-2]

0.50 -2.074[-2] 3.795[-2] 9.585[-3] 7.501[-2] 2.569[0] 6.779[-1] 4.714[-2]

0.60 -5.235[-2] 4.667[-2] 1.380[-2] 1.023[-1] 2.363[0] 8.949[-1] 8.934[-2]

0.70 -8.564[-2] 5.340[-2] 1.868[-2] 1.298[-1] 2.186[0] 1.102[0] 1.512[-1]

0.80 -1.192[-1] 5.808[-2] 2.402[-2] 1.535[-1] 2.032[0] 1.297[0] 2.302[-1]

0.90 -1.519[-1] 6.043[-2] 2.972[-2] 1.717[-1] 1.902[0] 1.465[0] 3.366[-1]
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TABLE IV. Scattering phase shift δ` (in radians), elastic scattering cross section and Z
(`)
eff for `-wave

positrons on neon. Numbers in brackets denote powers of ten.

k Scattering phase shift Cross Section Z
(s)
eff Z

(p)
eff Z

(d)
eff

(a.u.) δ0 δ1 δ2 (10−16 cm2) na (n− 1)b na (n− 1)b na (n− 1)b

0.02 8.201[-3] 2.081[-4] 3.099[-5] 5.929[-1] 5.590[0] 1.612[-2] 3.380[-3] 1.671[-6] 4.275[-7] 7.004[-12]

0.04 1.443[-2] 7.891[-4] 1.254[-4] 4.622[-1] 5.549[0] 1.602[-2] 1.353[-2] 4.674[-6] 6.834[-6] 1.121[-10]

0.06 1.873[-2] 1.691[-3] 2.759[-4] 3.517[-1] 5.465[0] 1.579[-2] 3.043[-2] 1.053[-5] 3.455[-5] 5.681[-10]

0.08 2.133[-2] 2.902[-3] 4.735[-4] 2.648[-1] 5.371[0] 1.555[-2] 5.408[-2] 1.876[-5] 1.090[-4] 1.797[-9]

0.10 2.229[-2] 4.421[-3] 7.147[-4] 1.966[-1] 5.265[0] 1.523[-2] 8.441[-2] 2.936[-5] 2.653[-4] 4.392[-9]

0.16c 1.652[-2] 1.067[-2] 1.773[-3] 8.725[-2] – – – – – –

0.18c 1.211[-2] 1.320[-2] 2.253[-3] 7.628[-2] – – – – – –

0.20 6.652[-3] 1.592[-2] 2.792[-3] 7.522[-2] 4.695[0] 1.387[-2] 3.314[-1] 1.178[-4] 4.141[-3] 7.062[-8]

0.22c 2.191[-4] 1.880[-2] 3.384[-3] 8.245[-2] – – – – – –

0.24c -7.089[-3] 2.181[-2] 4.035[-3] 9.668[-2] – – – – – –

0.30 -3.347[-2] 3.130[-2] 6.383[-3] 1.689[-1] 4.169[0] 1.268[-2] 7.122[-1] 2.626[-4] 2.005[-2] 3.577[-7]

0.40 -8.843[-2] 4.692[-2] 1.155[-2] 3.354[-1] 3.729[0] 1.180[-2] 1.174[0] 4.549[-4] 5.955[-2] 1.131[-6]

0.50 -1.520[-1] 5.943[-2] 1.824[-2] 5.014[-1] 3.368[0] 1.120[-2] 1.656[0] 6.817[-4] 1.344[-1] 2.779[-6]

0.60 -2.200[-1] 6.655[-2] 2.618[-2] 6.378[-1] 3.074[0] 1.084[-2] 2.107[0] 9.297[-4] 2.529[-1] 5.661[-6]

0.70 -2.897[-1] 6.700[-2] 3.503[-2] 7.390[-1] 2.834[0] 1.066[-2] 2.492[0] 1.191[-3] 4.248[-1] 1.020[-5]
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