
An Improvement of IP Address Lookup based on Rule Filter
Analysis

Guerra Perez, K., Yang, X., & Sezer, S. (2014). An Improvement of IP Address Lookup based on Rule Filter
Analysis. In 2014 IEEE International Conference on Communications Workshops (ICC). (pp. 688-693). IEEE
Computer Society. DOI: 10.1109/ICCW.2014.6881279

Published in:
2014 IEEE International Conference on Communications Workshops (ICC)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2014 IEEE.
Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/33583531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/an-improvement-of-ip-address-lookup-based-on-rule-filter-analysis(37d3b5aa-5d62-4ffd-908e-8a64fd793e67).html

An Improvement of IP Address Lookup based on

Rule Filter Analysis

K. Guerra Pérez X. Yang S. Sezer
kguerraperez01@qub.ac.uk. x.yang@ecit.qub.ac.uk. s.sezer@ecit.qub.ac.uk.

The Institute of Electronics, Communications and Information Technology (ECIT)

Queen’s University Belfast

Belfast, UK

Abstract— Multi-bit trie is a popular approach performing

the longest prefix matching for packet classification. However, it

requires a long lookup time and inefficiently consumes memory

space.

This paper presents an in-depth study of different variations

of multi-bit trie for IP address lookup. Our main aim is to study

a method of data structure which reduces memory space. The

proposed approach has been implemented using the label method

in two approaches. Both methods present better results regarding

lookup speed, update time and memory bit consumptions.

Keywords—Packet Classification; IP lookup; multi-bit trie

algorithms; rule filter; Longest Prefix Matching

I. INTRODUCTION

Packet classification is a key function of network

processing in a wide range of applications (e.g. a

router/switch). Packet Classification has moved beyond the

basic traditional network technologies, such as Ethernet

switches or Multiprotocol Label Switching (MPLS) to

complex level and is being promoted as the basis for

Software-Defined Networking (SDN) and the OpenFlow

protocol.
The applications of the next generation network require

intensive design tasks on time/space complexity, a very large

number of rules, high speed, scalability, flexibility, etc.

 In general, the most common Ethernet Frame format used

for Packet Classification includes amongst others, the

following fields: Source and Destination Port fields, Source

and Destination IP Address fields and Protocol field from a

packet header. Longest-prefix Matching (LPM) is a common

approach used for IP address lookup. It is a special case of

Wildcard Matching that selects the entry in the prefix table

with the greatest number of match bits.

In order to operate lookup function for internet traffic at

line rates of 40Gbps and beyond, individual searches on each

header field become necessary. In such cases, IP address field

lookup becomes the bottleneck in terms of its length and the

presence of wildcard.

According to Internet Protocol version 4 (IPv4), IP address

fields -source and destination- contain 64 bits and its

classification rules are formed by 128 bits, while IPv6 presents

256 bits for IP address source and destination fields and 512

bits for rules.

Taking into account this challenge and the fact that the

number of entries in the flow tables is increasing exponentially

[1], an algorithm for IP lookup with efficient update and

lookup time is necessary for current Network applications and

requirements.

The rest of the paper is organized as follows. In section II,

we introduce the background and the related works. A filter

set is analyzed in section III. In section IV, we present

different approaches using a trie algorithm. Section V

discusses the performance evaluation results using different

filters and databases. We present a solution to improve the

lookup performance. In section VII we compare with other

structures. Finally, in section VIII, we conclude the paper.

II. RELATED WORK

Several Packet Classification solutions have been proposed

for IP address lookup for many years. Nowadays, the Packet

Classification problem is still a key for new Network

applications and platforms, such as SDN.

Different tree/trie structures based on Search on Length

Tree are considered as alternative methods to support

Wildcard Matching. Two groups can be categorized in this

kind of structures; Binary tree-based and Multi-bit trie-based

structures.

Binary Search Tree algorithms [3][4] use each data bit in

order to know the next child node of the next level. This

method requires higher latency and more storage with a larger

address width.

Some algorithms based on binary search are presented,

such as Practical Algorithm to Retrieve Information Coded in

Alphanumeric (PATRICIA) [5], which compresses each chain

to a single node and the full lookup is not necessary. A

PATRICIA tree loses information while compressing chains

and the lookup complexity is high and it does not support

LPM.

 Path Compressed Trie [6] reduces space requirements as

well as lookup time required by PATRICIA.

Tree structures present inefficient memory storage. H. Park

et. al. [7] proposes a method to reduce the number of empty

nodes. However this method is applied to balanced binary trie.

V. Srininvasan et. al. [8] presented Grid of Trie (GoT), is

based on a binary branching trie of tries optimal for two fields.

The incremental update is difficult in this method and even the

later versions [9] .

Multi-bit Trie algorithms [10] examine a group of bits at

the same time. Multi-bit tries still do linear search on lengths,

but since the trie is traversed in larger strides the search is

faster. This method reduces the depth of the trie and it is an

easy hardware solution mapped into pipeline stages. One of

the main disadvantages is the need to store children nodes for

each new created node, denoting an inefficient memory usage.

The branches of Multi-bit Tries in each level represent a fixed

size prefix and, consequently it is not flexible for prefixes of

different lengths. Multi-bit is traversed from root until the leaf

node is reached.

LC-trie [11] is a trie structure with combined path

compression and level compression to reduce the number of

nodes, but it is not suitable for a large number of entries and it

does not support incremental update.

Lulea [12] reduces storage consumption but its benefits

depend on the structure and it does not support incremental

update.

Variable-Stride Multi-bit Trie [13] presents a multi-bit trie

with variable and fixed-stride capacity but the memory

requirement is worse than the other algorithms.

Multi-prefix trie (2-MPT) [14] reduces the number of

lookup memory accesses. This method stores extra prefix

information in each node, sacrificing memory space.

Other approaches for IP lookup based on Search on Value

do not support LPM and have the need of extra phases to

convert from prefix to range data.

III. RULE FILTER ANALISYS

A rule is composed of five or more fields and it defines an

action. When an input packet matches against a rule, the

corresponding action is applied to the input packet. A set of

determined rules is called a filter.

Rule syntaxes are widely researched. Rules present certain

patterns that can be explored by algorithms. For example, on

one hand, trie-based algorithms build the structure according

to the rule prefixes. On the other hand, Distributed Cross-

producting Field Label (DCFL) [15] labels the unique rule

fields. DCFL applies labels into multi-bit trie algorithms for a

lookup process instead of rules.

Consequently, we examined different kinds of filters:

Accesses Control List (ACL), Firewall (FW) and IP Chain

(IPC), with different sizes [17]. The size of the given rule

filters is summarized in Table I and are named 1 K, 5 K and

10 K rules in order to simplify the denomination of rule sets.

TABLE I. NUMBER OF RULES OF THE DIFFERENT FILTER SETS

As an example, Table II shows the statistic results

concerning the number of unique rules for each dimension

extracted from the worst case filter of 10K rules.

This analysis reveals that there exists a rule field repetition

which offers design space for improvement on storage

capacity, lookup time, incremental update time, etc.

TABLE II. ANALYSIS OF RULE FILTERS

IV. LOOKUP APPROACHES AND IMPLEMENTATIONS

In this section, the goal is to study a new approach focused

on the rule set survey, independently of the algorithm. This

work studies IP address lookup which is the bottleneck in

Packet Classification.

Much research has been performed on algorithms based on

Trie/Tree structure support LPM. With the Multi-bit trie

algorithm in particular, being extensively has been

investigated due to its ability to improve both software and

hardware platforms. Our objective is to investigate and

compare the same data structure with three different

approaches. In our work, three Multi-bit trie implementations

have been performed under the same conditions using

different size ACL1, FW1 and IPC filters. For those filters,

two 32-bit IP address fields, source and destination, from the

headers are utilized.

The memory space required for Multi-bit trie nodes is

O(2
s
) where s corresponds to the number of bit of strides.

Moreover, conventional multi-bit trie presents disadvantages

of building rule filters with large prefix size. Bearing this in

mind, we divide the IP address fields into smaller segments.

For example, 16-bit prefix segments can be divided into four

tries with fixed number of bits of each trie. Afterward, we

apply a multi-bit trie algorithm for each independent segment

in parallel. In this section, the results are analyzed for the

worst case from the independent search of the different

experiments.

The performance evaluation of the software-based

algorithms is performed according to certain standards [2].

The lookup and update speeds are evaluated by the worst case

number of memory accesses. In Packet Classification the IP

lookup using trie algorithms not only depends on the trie depth

but also the highest priority matching rule search. Incremental

update is essential for the current requirements. Finally, the

memory space is a key metric for Packet Classification where

the trie node information must be kept as well as the rule set.

Due to the recent growth of Internet traffic, a large amount of

entries is essential for Packet Classification in current

networks.

A. Original Multi-bit Search Trie

Each node of the original Multi-bit Search Trie represents

a determined n-bits prefix in the trie algorithm. Each leaf node

stores a list of rules and the highest priority matching rule

Filters 1 K rules 5 K rules 10 K rules

ACL 916 4415 9603

FW 791 4653 9311

IPC 938 4460 9037

Maximum No.

Unique Fields

ACL

(9603 rules)

FW

(9311 rules)

IP

(9037 rules)

IP Address 4784 6951 2726

Port 108 43 54

Protocol 3 3 3

(HPMR) is found using a simple linear search. Using this

methodology, it is expected that memory space as well as long

lookup time will be inefficient due to the list of rules stored in

each trie node. However, supposing there are no repeated

rules, this experiment runs at a fast insertion process.

 Different scenarios are studied for IPv4 using tries with

four levels per dimension, in order to acquire the optimal

parameters values. Table III shows an example using source

IP address fields.

TABLE III. EXAMPLE OF RULE FILTER

Rule Filter Source IP address Hexadecimal

R0 192.145.181.80/29 C0.91.B5.50

R1 192.145.181.80/32 C0.91.B5.50

R2 192.145.181.84/29 C0.91.B5.54

R3 192.145.180.00/24 C0.91.B4.00

B. Experiment 1: Multi-bit Trie with labeled rule fields

Experiment 1 (EXP_1) is based on an improved structure

of the original Multi-bit Search trie algorithm. According to

the rule filter analysis, EXP_1 performs the lookup process

using the label method [15]. This method is motivated by the

rule analysis presented in Table II, which demonstrates that

the number of unique rules is lower than the total number of

rules. Thus, the label represents all rules containing this field.

The main idea of this work is to label each unique rule field.

By storing the labels instead of the entire rule information,

memory consumption can be significantly reduced.

In our implementation, a label is assigned to the unique 16-

bit partitions of each rule field that must be stored in the multi-

bit tries. Consequently, each trie links with a certain label

filter. The independent filter information is composed of a

label and a counter in order to support incremental update.

The wildcard bits are taken into account as different labels.

An example shown in Table IV covers R0 and R1 as different

labels due to the different masks. On the contrary, R2 and R4

are named with the same label. In order to find the HPMR, the

combinations of the labels are stored in a final label filter.

With this method, we expect that this experiment will

require less memory storage than original Multi-bit trie.

Furthermore, the lookup process is expected to be faster.

However, the update processes can be compromised by the

corresponding label lookup into the filters.

TABLE IV. LABEL ASSIGNEMENT

C. Experiment 2: Multi-bit Trie with labeled nodes

Experiment 2 (EXP_2) uses label method on a multi-bit

trie. In this case, the trie nodes are labeled instead of the

unique field.

After all search results are available from each trie, the

final lookup is performed in another label filter with

combinations of labels.

The experiment demonstrates not only a reduction of

memory space, but also an improved lookup speed. Since leaf

nodes do not contain any rule list, the goal of EXP_2 is also to

avoid the linear search into the trie. Moreover, the

corresponding label does not have to be searched through a

filter beforehand. The label will be retrieved when the leaf

node is reached.

V. PERFORAMCE EVALUATION

The experiment results from the different scenarios are

presented and discussed in this section. As mentioned above,

we discuss the three experiments in the four situations shown

in Table V. All of them are constructed with 3-level multi-bit

tries with diverse level distributions.

As previously mentioned, each IP address field is divided

into two 16-bit segments to be analyzed in two multi-bit tries.

The IP address lookup system is composed of four 3-level

multi-bit tries; two for source address field and two for

destination address field.

In this work, different trie distributions are explored in

order to work with the optimal multi-bit trie structure. All trie

nodes belonging to the same level have the same number of

bits.

 As shown in Table V, situation 1 has a 4-6-6 bit

distribution. The trie structures are organized as 4-4-8 bits in

situation 2. The levels are spread in 5-5-6 bits for each trie in

situation 3 and finally, situation 4 works with 4-5-7 bits.

 This survey analyses the main parameters for lookup

process and update process performance according to the

memory access requirements, and number of occupied bits.

Three kinds of filters are used with three different rule-set

sizes, at different packet databases.

Because all the experiments are based on a multi-bit search

trie structure, the number of stored nodes and the number of

memory accesses for the lookup process are the same values

in each situation.

From Table V, situation 1 and situation 3 overcome the

others in all parameters. Moreover situation 3 presents a slight

improvement over situation 1. However, the first situation is

adapted to the three experiments because it gives better result

in a general evaluation.

A. Lookup Process

As mentioned in the previous section, the IP address

lookup performs the same process in the three experiments.

Nevertheless, each experiment gives different results for

the search on the highest priority matching rule. The analysis

of HPMR lookup process is discussed in Section IV.

Because trie nodes in the original Multi-bit trie contain a

list of rules, the lookup process needs to compare the rules

contained in the four resulting lists until the common

matching rule is found using a simple linear search. The

number of memory accesses per rule for original Multi-bit trie

 Partition Labels

Higher 16-bits Label Lower 16-bits Label

C0.91/16 A

B5.50/13 A

B5.50/16 B

B5.54/16 C

B4.00/8 D

TABLE V. VALUES FOR ALL EXPERIMENTS IN EACH CASE

is quite high, achieving 5.89 x10
7
 memory accesses in the

worst-case.

For this reason, the result shown in Fig. 1 is related to the

average number of memory accesses required by EXP_1 and

EXP_2 in the corresponding filters.

Fig. 1 reveals that EXP_2 performs the worst HPMR

lookup due to this experiment using a unique very large label

filter. This filter is traversed with linear search.

 ACL Filter FW Filter IPC Filter

Fig. 1. Average number of memory accesses of Lookup process for EXP_1

and EXP_2

B. Update Process

Multi-bit trie supports incremental update and

consequently, all experiments, which are based on this

algorithm, are able to hold incremental update.

 The results for the insertion process regarding the number

of memory accesses are shown in Fig 2. This figure represents

the average number of memory accesses per rule required for

each experiment to insert a rule in the trie.

Because in the original Multi-bit trie and EXP_2 each rule

is inserted into the trie, both experiments show the same

results.

However in EXP_1, it is not necessary to insert each rule

into the trie if the label of the input rule field is already stored

in the label filter, contributing fewer memory accesses for

insertion.

A rule is inserted immediately into the trie in original

Multi-bit trie. On the contrary, an extra phase is required using

EXP_1 and EXP_2 in order to lookup the label or to add the

label in the label filter.

ACL Filter FW Filter IPC Filter

Fig. 2. Insertion Process in each experiment trie for each type of filter

In particular, in EXP_1 extra time is necessary to find the

corresponding label. It is supposed that the independent label

filters for each trie work in parallel in order to find the

corresponding label. Afterward, the resulting labels from each

trie are deposited in the final label filter as a combination.

All node labels are combined in EXP_2, including

wildcards nodes, after each trie insertion and saves into the

label filter. This experiment does not perform any search

process in the label filter for the rule insertion.

The worst case of average number of memory accesses of

label filter insertion is shown in Fig 3. The graphs prove that

in EXP_1, larger insertion time is required due to the label

pre-search in the independent filters.

Deletion process is examined, erasing 50, 100 and 150

rules in 1 K rules, 5 K rules and 10 K rules respectively. In

this case, the results shown in Fig. 4 demonstrate that, in

original Multi-bit trie, the rule must be deleted from all lists

belonging to all leaf nodes found, including wildcard nodes,

using a simple linear search.

S
it
u
a
ti
o
n
 1
 Type of Filters ACL FW IPC

 Filter size 1 K 5 K 10 K 1 K 5 K 10 K 1 K 5 K 10 K

Mem. Acc. Trie Lookup 3.993 3.997 3.998 3.722 4.00 4.00 3.942 3.974 3.949

Total Stored Nodes 13952 28928 66112 12160 215599 262144 22592 33344 65920

Valid Stored Nodes 1140 3293 8480 1898 15031 36929 2287 5046 9241

S
it
u
a
ti
o
n
 2
 Type of Filters ACL FW IPC

 Filter size 1 K 5 K 10 K 1 K 5 K 10 K 1 K 5 K 10 K

Mem. Acc. Trie Lookup 3.993 3.998 3.999 3.854 4.00 4.00 3.942 3.974 3.986

Total Stored Nodes 36624 72464 150032 30160 259856 262144 58576 80096 131392

Valid Stored Nodes 946 33717 9106 1531 15837 38338 9542 27230 50546

S
it
u
a
ti
o
n
 3
 Type of Filters ACL FW IPC

 Filter size 1 K 5 K 10 K 1 K 5 K 10 K 1 K 5 K 10 K

Mem. Acc. Trie Lookup 3.993 3.996 3.998 3.615 4.00 4.00 3.942 3.974 3.949

Total Stored Nodes 13824 28160 66080 11456 215648 262144 22240 32928 65984

Valid Stored Nodes 1204 3229 8384 1340 13702 35691 2351 5110 9305

S
it
u
a
ti
o
n
 4
 Type of Filters ACL FW IPC

 Filter size 1 K 5 K 10 K 1 K 5 K 10 K 1 K 5 K 10 K

Mem. Acc. Trie Lookup 3.993 3.997 4.9981 3.723 4.00 4.00 3.942 3.974 3.949

Total Stored Nodes 21984 45536 103008 18400 251296 262144 36320 51200 95424

Valid Stored Nodes 948 2874 8241 1696 16324 38868 6721 17009 32185

 ACL Filter FW Filter IPC Filter

Fig. 3. Average number of memory accesses of Insertion Process for Label

Filter of EXP_1 and EXP_2

Likewise, in EXP_1, the linear search is used to delete the

label from a shorter label list of the leaf nodes but only if it is

necessary. This corner case happens when the corresponding

counter belonging to a label of the independent filters is set to

zero. In EXP_2, the counter of the leaf nodes is simply

decremented and deletes the node when this node counter is

changed to zero.

ACL Filter FW Filter IPC Filter

Fig. 4. Average number of memory accesses of Deletion Process in each

experiment trie

However, the results are the opposite for the label filter

searches performed in EXP_1 and EXP_2 according to Fig. 5.

The time needed to find the rule is greater for the label filter in

EXP_2. This outcome is due to the size of label filter of

EXP_2 being much larger than all independent label filters

and even the final label filter used in EXP_1. Even though any

filter is needed with original Multi-bit trie, deletion is faster

using EXP_1.

 ACL Filter FW Filter IPC Filter

Fig. 5. Average number of memory accesses of Insertion Process for

Label Filters of EXP_1 and EXP_2

C. Memory Space

The memory storage required by each experiment is

discussed in Section C and shown in Fig. 6 using a diverse set

of filters. The results show that the problem found in original

Multi-bit trie is overcome in the two following experiments by

including the label filters. Fig. 6 reveals that less memory

storage is required in EXP_1.

ACL Filter FW Filter IPC Filter

Fig. 6. Memory Space required of each experiment in Mbits.

The information stored in each experimental trie is shown

in Table VII. This information is related to the number of

stored rules in the Multi-bit trie and the number of stored

labels in the EXP_1 tries. Likewise, the size of the labels

filters used in EXP_1 and EXP_2 are shown in Table VII.

VI. IMPROVEMENT

As discussed in Section V, the methodology used in

EXP_1 exceeds the rest of the experiments in terms of

performance in the trie. EXP_1 also gives better results

regarding the memory space required. However, in EXP_2 a

fewer memory accesses is used for insertion and deletion

processes. It is due to the need of a previous label search for

both processes in EXP_1.

Considering the size of all filters in EXP_1, independent

label filters for each trie and a label filter for the combinations,

a hash table is used in order to reduce the lookup time. 6951

independent labels are needed in the worst case in EXP_1 for

the 10 K rule set.

The filters require the same size but they include a list of

collisions as unique difference, with the purpose of handling

the possible collisions. The average number of collisions is

two in all cases.

Consequently, the lookup time is reduced using the same

system for IP address fields search. Table VI summarizes the

number of memory accesses required for EXP_1 with a hash

table included.

TABLE VI. IP LOOKUP PERFORMANCE USING HASH-FUNCTION

Avg. No. Filters 1 K 5 K 10 K

Memory

Accesses

Insertion

ACL 2.14 2.24 2.33

FW 2.03 1.15 1.56

IPC 1.64 1.88 2.91

Memory

Accesses

Lookup

ACL 2.86 7.13 5.13

FW 10.16 1.65 3.07

IPC 5.59 53.03 24.38

Hash function can be applied to the Label Filter in EXP_2.

However, this method does not affect on the multi-bit trie

performance. However, our work overcomes DCFL by

avoiding linear search of corresponding label.

VII. COMPARISON

The search performance of EXP_1 using hash function is

similar to other algorithms such as 2-MPT with 25 memory

accesses to search the HPMR in the worst-case.

TABLE VII. INFORMATION STORED AND LABEL FILTERS

The update process is very hard in algorithms such as LC-

trie or Lulea. The update process presents high overhead in

more recent multi-bit trie IP lookup algorithms, such as Trie

Bitmap and DIR-24-8-BASIC [16],

This method obtains advantages regarding the update

process. As in multi-bit schemes, the experiments support

incremental update. Moreover, as stated in Section V, EXP_1

reduces the update time in comparison with other trie

structures. The original Multi-bit Search trie and 2-MPT need

13.95 and 16 memory accesses respectively against 5.87

memory accesses for EXP_1 in the worst-case. That is

because it is not necessary to go through the tries for every

insertion or deletion using label method as in EXP_1.

Different from binary-based trees or GoT, a multi-bit trie

has a static size, where the number of maximum nodes is

known and has a determined depth. Binary trie can achieve 32

levels for IPv4 and LC-Trie can reach 14 of trie depth, FST

can have 7 heights and 2-MPT contains 13 levels. All of them

are overcome by any of three cases studied where the

maximum trie height is three levels using 16-bit partition and

work in parallel.

Furthermore, the duplicated rules are avoided in all tries as

happens with most trie-based algorithms in EXP_1 and

EXP_2. Moreover the replication of the labels within a trie is

avoided in EXP_2.

In EXP_1, empty nodes are stored, resulting in moderate

memory inefficiency. Despite of these disadvantages, less

memory storage is required in EXP_1 than that of original

Multi-bit trie or EXP_2, including the label filters. According

to the number of the nodes, Multi-bit trie structures waste

memory space with empty nodes. In our experiment, the

maximum number of the stored nodes is 262144 with less than

15% of them containing valid information. It is solved using

path-compressed binary trie or 2-MPT where the empty nodes

are replaced by valid nodes.

VIII. CONCLUSION

Packet classification requires multiple field lookups on the

packet header. IP address fields require a major dedication due

to the large field size and the difficulty to find the matching

rule with wildcard. The contribution of this work is

summarized in four main goals. Firstly, this paper presents an

evaluation of multi-bit tries in obtaining high performance.

Optimal distribution parameters for a fixed 3-level trie are

suggested to implement the proposed solution. Secondly, a

survey of different rule filters has been performed, which is

critical for our proposed method. Thirdly, the Multi-bit trie

algorithm with the best parameters has been implemented in

order to support LPM using different approaches. Both

approaches obtain better performance than the original multi-

bit trie. Finally, EXP_1, with unique rule field labeling and

hash table lookup, has been proved to be a better solution for

LPM.

This method can be applied to others algorithms with the

same structure and even combined with other methods. Our

proposed solution is straightforward implementable into

hardware platforms and is applicable to IPv6 format.

REFERENCES

[1] P. J. B. King and N. K. Vlachos “ Internet Traffic Classification and
Features: Current Levels and Future Projections” , PG Net , June 2013

[2] H. Park, H. Hong, S. Kang, “An Efficient IP address lookup
algorithm based on a small balanced tree using entry reduction”,
Computer Network, pp. 231-243, 2012.

[3] P. Gupta and N. Mckeown, "Dynamic Algorithms with Worst-case
performance Packet Classification", NETWORKING, pp. 528-539, 2000.

[4] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars
“Computational Geometric: algorithms and applications” (2008), 3rd
edition.

[5] D. R.Morrison, “PATRICIA: Practical Algorithm To Retrieve
Information Coded in Alphanumeric”, J ACM, Vol 15, pp. 514-534,
October 1968.

[6] P. Gupta and N. Mckeown, “Algorithms for packet classification”,
in IEEE Network, vol. 5, pp. 24-32, 2001.

[7] H. Park, H. Hong, S. Kang “An efficient IP address Lookup
algorithm based on a small balanced tree using entry reduction”, The
International Jornal of Computer and Telecommunications Networking,
Vol 56 pp. 231-243, Janyary 2012.

[8] V. Srinivasan, S. Suri, G. Varghese abd M. Waldvogel. “Fast and
Scalable Layer four Switching,” ACM Sigcomm, Vol. 28, pp. 191-202,
October 1998.

[9] Y. Chang, Y. Lin, C. Lin “Grid of Segment Trees for Packet
Classification”. IEEE AINA, pp. 1144-1149, 2010.

[10] M. A. Ruiz-Sanchez, E.W Biersack and W. Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms”, IEEE The Magazine of
Global Internetworking, Vol. 15, pp. 8-23, March 2001.

[11] S. Nilsson and G. Karlsson, ”IP-address lookup using LC tries,”.
IEEE Journal on Selected Areas in Communications, Vol. 17, pp. 1083-
1092, June 1999.

[12] M. Degermark, A. Brodnik, S. Carlsson and S. Pink. “Small
forwarding tables for fast routing lookups,” ACM Sigcomm, pp. 3-14,
October 1997.

[13] S. Sahni, K. S. Kim, “Efficient Construction of Variable-Stride
Multi-bit Tries For IP Lookup”. IEEE SAINT, 2002.

[14] S. Hsieh, Y. Huang, Y. Yang. “Multiprefix Trie: A New Data
Structure for Designing Dynamic Router-Tables” IEEE Transaction on
Computer, pp. 693-706, May 2011.

[15] D. E. Taylor and J.S. Turner, “Scalable Packet Classification using
Distributed Crossproducting of Field labels”, IEEE INFOCOM 2005,
Vol. 1, pp.269-280, March 2005.

[16] P. He, H. Guan, G. Xie, K. Salamatian “Evaluating and Optimizing
IP Lookup on Many core Processors”. ICCCN 2012, pp. 1-7, 2012

[17] H. Song, www.arl.wustl.edu/~hs1/PClassEval#3._Filter_Sets,
accessed on 7th January 2014

Experiments
Type of Filters ACL FW IPC

 Filter size 1 K 5 K 10 K 1 K 5 K 10 K 1 K 5 K 10 K

Original Multi-bit trie No. Stored Rules 6238 30469 64513 26183 155098 308160 13232 60683 118234

EXP_1
Label Filter sizes 1414 5999 15374 1138 10749 29689 1743 6181 12648

No. Stored Labels 1271 30471 64513 2061 16259 39385 2887 6675 12734

EXP_2 Label Filter sizes 4281 25512 51806 5519 29521 54648 10177 44749 89139

