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Nonconservative dynamics in long atomic wires
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The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is
investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found
to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of
the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects
in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can
be understood with the help of a simple pen and paper model. This material highlights the benefit of simple
preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides
rule of thumb criteria for the design of stable quantum wires.
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I. INTRODUCTION

The miniaturization of electronic devices results in increas-
ing current densities. These current densities generate large
forces on individual atoms with considerable effects on the
functionality and stability of the device. Understanding the
mechanisms by which electrons and ions in a nanoconductor
exchange energy is therefore essential.

The current-induced force on an atom consists of the
average force and fluctuating forces. Fluctuating forces are due
to the corpuscular nature of electrons and are responsible for
processes such as Joule heating [1-3]. The average force on the
other hand contains, among other contributions, the familiar
electron wind force [4-9]. In recent years the wind force has
become the focus of renewed attention due to the realization
that it is nonconservative [3,5,10-16]. The importance of
these nonconservative forces cannot be overestimated. Such
forces can act either constructively or destructively on a
nanoscale device. Constructive work leads to the possibility
of nanoscale engines, while destructive work can act as an
activation mechanism for electromigration and device failure
[17]. Nonconservative forces may be a prime candidate for
explaining apparent heating in atomic wires [18,19] far above
that expected from Joule heating alone [20,21].

Itis shownin [11,12] that nonconservative effects in atomic
wires require near degenerate vibrational mode frequencies.
Current can couple such modes to produce new modes that
grow or decay in time. In the simplest case of two modes, the
new modes are abstract rotors of opposite angular momentum
[13], one of which is driven by the current and the other
is attenuated. We will refer to growing or decaying modes,
generically, as waterwheel modes. The likelihood of the
formation of waterwheel modes should, in general, increase
with the number of near degeneracies. Defect-free metallic
nanowires are of special interest for these effects. The reason
is that the symmetric part of the current-induced contribution
to the dynamical response matrix [16] vanishes to lowest order
in the bias. This symmetric part is controlled by the real part of
the electronic density matrix in the real space representation. In
aperfect wire, left and right traveling electronic wave functions
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come in complex conjugate pairs and hence the repopulation
of these states under small bias leaves the real part of the
electronic density matrix unchanged.

This eliminates a central impediment to nonconservative
dynamics, namely bias-induced frequency renormalization,
which lifts the degeneracies discussed above and competes
with nonconservative energy build-up. These considerations
make metallic nanowires a prime candidate for the observation
of nonconservative effects on a grand scale.

In this paper we investigate nonconservative effects in
long defect-free one-dimensional (1D) atomic wires. As a
result of the competition between nonconservative forces and
the electronic friction the ionic kinetic energies saturate at
a bias-dependent steady state. The kinetic energy per atom
(and hence effective steady-state temperature) decreases with
increasing wire length and increases with atomic mass, while
(for long chains) the saturation current is determined solely by
the atomic mass. The results are compatible with a simple pen
and paper model and furnish criteria in the design of stable
atomic scale leads.

II. METHODS

We employ two methods: static steady-state transport
calculations, and nonequilibrium nonadiabatic electron-ion
molecular dynamics in the Ehrenfest approximation with
electronic open boundaries [11]. In both cases the electronic
structure is described in a spin-degenerate nearest-neighbor
single-orbital orthogonal tight-binding model [22] with non-
interacting electrons. The hopping integral between sites m

and n is
g € (a 4 n
mn — 2 Rmn E)

where R, is the separation between the sites. The on-site
energies are set equal to zero. The pair potential between sites

m and n is
P a )’ @)
mn — € .
Rmn

The tight-binding parameters are those for gold [22]: a =
4.08 A is a length scale, ¢ =0.007868 eV is an energy
scale, ¢ = 139.07 is a dimensionless constant controlling the
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FIG. 1. (Color online) Device C is connected to semi-infinite
electrodes L and R (blue). C consists of a central subregion (black)
of varying lengths, which later will be treated dynamically, while
holding the red subregions rigid. In the static Landauer picture,
left- and right-traveling Lippmann-Schwinger scattering electron
wave functions {W,} and {Wg} are populated with Fermi-Dirac
distributions f; and fx, corresponding to electrochemical potentials
ur.r = £ eV/2, where u is the equilibrium chemical potential.
The electrochemical potential difference eV = p; — g generates a
net flux of electrons.

relative contributions of electronic binding and the repulsive
pair potentials, and ¢ = 4 and p = 11 are the inverse power
exponents. We set the lattice parameter to 2.37 A, below the
equilibrium value of 2.52 A, to suppress a Peierls transition
and the resultant band gap that tend to occur during relaxation
otherwise. The hopping integral H then is —4.78 eV. The
hopping integral and pair potential are truncated between first
and second neighbors by a smooth tail.

A. Static current-carrying steady state

The static approach employs the Landauer picture, Fig. 1.
The one-electron steady-state density matrix is

+o00
p(V.R) = / (fL(E)D(E) + fr(E)Dr(E)dE, (3)

oo

where ﬁi(E ), with i = L, R, is the density of states operator
for the scattering states {\W;} with occupations { f;(E)}. The
total density of states operator D(E) = D, (E) 4+ Dg(E) can
be expressed in terms of the retarded and advanced Green’s
functions D(E) :A[G’(E) — G*(E)]/2ni. Spin degeneracy

is subsumed into D;.
The force on ionic degree of freedom v due to electrons is

F,(V,R) = Tr{p(V,R) F\,(R)}. “

Fy(R) = —aﬁ(R)/a R,, where H(R) is the electronic Hamil-
tonian as a function of the ion coordinates R. In general, v
labels an atom and direction; in the present case we only have
longitudinal displacements and v labels just the atom.

Small-amplitude atomic motion about a reference geometry
R is characterized by the steady-state dynamical response
matrix

dF,(V,R) 3’P(R)
R, R, OR,’
where P(R) is the sum of pair potentials from Eq. (2). This

K, (V,R) = ©)

matrix can further be split into an equilibrium part and a
current-induced correction AK,,(V,R). AK,, can then be
decomposed into a symmetric and an antisymmetric part,
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AK,, = S, + A, [16], where

Sow(V,R) = Z /M <2Re Tr{F,R(E)F, D;(E))
i=L,RVH
T a—ﬁ”b- E) )dE 6)
- r{ aR, l( } ) (

v

and

Hi
Ay (V.R) =27 Z/ Im Tr{ £, D(E)F,, D;(E)}dE,
i=L,RYH

)

with R(E) = {G~(E) + G*(E)}/2. All quantities inside the
traces above are themselves functions of R. The antisymmetric
part in Eq. (7) is the origin of the nonconservative forces
[16]. It makes the dynamical response matrix non-Hermitian
with the possibility of complex frequencies describing motion
that grows or decays exponentially in time. The larger
the antisymmetric part the greater the possibility of these
nonconservative effects.

B. Dynamical transport simulations

What do complex mode frequencies imply physically?
Will the kinetic energy of the ions increase indefinitely
leading to the eventual rupture of the wire? In a real wire
we have the cooling effect of the electronic friction, further
velocity-dependent forces [12], and possibly large and violent
departures from the perfect wire geometry. We address this
complexity by direct nonequilibrium nonadiabatic molecular
dynamics simulations, within the Ehrenfest approximation,
using the tight-binding model above [11]. Current is generated
by the open-boundary method of [23], with S an 800-atom
long 1D chain and C consisting of the 300 central atoms,
a subset of which (black in Fig. 1) are treated dynamically.
The electrodes are 250 atoms each, and the sink and source
terms are applied to all electrode atoms with I' = 0.5 eV
and A = 0.0005 eV. The dynamical simulations employ the
Ehrenfest approximation, which treats the nuclei as classical
particles interacting with the mean instantaneous electron
density. This approximation suppresses correlations between
electronic and ionic fluctuations and the microscopic noise in
the force exerted by the electrons on the ions. This in turn
suppresses Joule heating. This crucial limitation of Ehrenfest
dynamics, however, will work to our advantage: It leaves
nonconservative current-induced forces as the only energy
injection mechanism into the atomic motion, enabling us to
isolate and study its effect. In addition, as we will see later,
Joule heating would only have a weak effect in the long-time
dynamical regime reached by the system. The additional
cooling effect of lattice conduction out of the mobile region is
also not incorporated, to give us an upper bound on what the
nonconservative forces can do.

III. RESULTS AND DISCUSSION

A. Preliminary static calculations

We examine the mode frequencies in a defect-free atomic
wire as a function of the number of mobile atoms N. The
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FIG. 2. (Color online) (a) Range of equilibrium mode frequen-
cies as a function of mobile region length N for atoms with mass
10 a.m.u. (the inset displays the individual frequencies for the two
lengths marked with an x). (b) ®, Eq. (8), as a function of N for
three biases.

mode frequencies are determined from the square root of the
eigenvalues of the dynamical response matrix, Eq. (5), for
relaxed mobile atoms (nearby geometries produce qualita-
tively similar phonon structure).

Figure 2(a) shows the range of equilibrium frequencies
Aweq = max(weq) — Min(weq) as a function of N. The range in
Fig. 2(a) saturates with N at the phonon bandwidth. Thus, the
typical spacing between frequencies decreases and, in longer
systems, more waterwheel modes should form under bias.

Next we calculate the mode frequencies under bias. Since
the dynamical response matrix is now non-Hermitian, complex
eigenvalues are possible and appear in complex conjugate
pairs. Mode frequencies also come in conjugate pairs, cor-
responding to growing or decaying waterwheel modes. For a
given bias, the number of such pairs increases in a staircaselike
fashion with the number of mobile atoms. Next we form the
quantity

1 N
¢ =) lm@o)l, ®)
a=1

as a function of N and V in Figs. 2(b) and 3. To within
a proportionality constant, this quantity provides a notional
measure of the rate of work, per atom, due to nonconservative
forces. We see that beyond N 2 40, & saturates with mobile
region length and increases linearly with bias. For a given
N and V, the modes with appreciable imaginary parts to
their frequencies tend to be a small fraction (which increases
with bias) of the total number of modes. Both the imaginary
and real parts of their frequencies are closely clustered
together. Physically these modes correspond to the directional
stimulated emission, or absorption, of traveling phonons [13].
These findings suggest that nonconservative current-induced
dynamics in longer wires might exhibit certain bias-dependent,
length-independent characteristics. This is now investigated
by full dynamical simulations in which the nonconservative
forces compete with the electronic friction.

PHYSICAL REVIEW B 90, 115430 (2014)
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FIG. 3. (Color online) ®, Eq. (8), as a function of applied bias
for different device lengths. Since the number of near degenerate
modes increases with wire length, Fig. 2(a), the critical bias required
to overcome frequency mismatches should decrease with wire length
and this can be seen in the inset. The atomic mass is 10 a.m.u.

B. Current-driven dynamics

The dynamical simulations under bias start from the above
relaxed geometry. Figure 4 shows the total kinetic energy of
ions with mass 10 a.m.u. as a function of time for a device
containing 200 moving atoms under a bias of 0.5 V. The
“heating” of the ions by the nonconservative current-induced
forces gives rise to the sharp initial increase in the kinetic
energy. The electronic friction, which effectively cools the
ions, then kicks in. The balance between the two causes the
kinetic energy to saturate and fluctuate about a mean value. In
Fig. 4 this happens after about 3 ps with a time-averaged
total kinetic energy thereafter of 17.5 £ 1.5 eV. The inset
in Fig. 4 displays the bond current as a function of time
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FIG. 4. (Color online) Combined kinetic energies of all 200
mobile atoms with mass 10 a.m.u. as a function of time for a bias of
0.5 V with the inset displaying the bond current for the bond in the
middle of the chain as a function of time. The quantities saturate after
about 3 ps (vertical dashed lines), enabling us to determine average
values for the energy and current.
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for the middle bond in the chain (the bond current is a
quantity that arises with atomic-orbital basis sets [23], and
with the present tight-binding model, the bond current gives
the physical current flowing between the respective two sites).
A notable feature is the current noise in Fig. 4. We
expect variations in the current, even under ideal steady-state
conditions, as the atomic geometry varies in time. However,
a significant contribution to the current fluctuations in the
simulations comes from departures from steady-state behavior.
They arise due to multiple dynamical electron scattering in
the vibrating region and result in spatial variations of the
current along the wire at any one time. These nonadiabatic
current fluctuations allow a simple analytical model. Atomic
vibrations result in variations in the hopping integrals, in space
and in time. This in turn results in variations in the bottom
of the electronic conduction band and thus in effective local
driving fields. We model the resultant electron dynamics with
the semiclassical driven diffusion equation for the electron
density p,
2
o _ e OF
ot dx? dx
where D ~ vl,, with v the Fermi velocity and [, the
electron transport mean free path, is the diffusion coeffi-
cient and o ~ Dd is the conductivity, with d the Fermi
local density of states. F = F(x,t) is the driving force
field due to the breathing of the band edge caused by
the motion of the ions. To keep the model simple, we
treat the phonons as dispersionless jellium phonons with
a displacement field X(x,7). Then F ~ —2H'dX(x,t)/0x,
where H’ is the derivative of the hopping integral with
bond length [24]. Next, expand the displacement field in
normal modes X = )", Ay sinkx sin wit. The resultant partic-
ular integral to Eq. (9) is Ap = Y, By sinkx sin (wit + ),
where B, =20 H'k>Ay /v w,% + D?k* (the exponentially de-
caying transients are subsumed into the complimentary func-
tion). From the continuity equation, dAp/dt + dAj/dx = 0,
for the fluctuating part of the particle current, we obtain
Aj =c ), Brcoskx cos (wit + ¢r) + jo(t), where jo(r) is a
divergence-free part and ¢ = w/k. Next, we consider the
spatial variance of the current: (1/L) fOL Aj*(x,t)dx — jg(t),
where L is the length of the system. The time average of this
spatial variance then becomes

®

(var(j)) ! /k H%" _SER dk (10)
var =— ,
= ). T+ (DkjeR MN

where E is the total ionic kinetic energy, R is the lattice
parameter, and M is the atomic mass and we have assumed
equipartitioning of energy between the different modes. From
then on different regimes are possible depending on the
value of Dk/c at the limits of integration. With kp,x ~ 7 /R,
Dkpax/c ~ vlgm/Re > 1, under physical conditions. Thus
we can take the upper limit to co. But with ky, = /L,
Dkuin/c ~ vlgm /cL. The average current in Fig. 4, under the
given bias, corresponds to a transmission probability of about
0.3. The rest of our simulations will also be characterized
by transmission probabilities of that order of magnitude.
Therefore, we are in a regime where [;/L is less than
unity but not much less than unity, while v/c > 1. In this

PHYSICAL REVIEW B 90, 115430 (2014)
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FIG. 5. Data for the quantities in Eq. (11) (expressed as electric
current) from a range of dynamical simulations spanning biases
between 0.5 and 2 V, masses between 1 and 40 a.m.u., and lengths
between 10 and 200 atoms. The spatial variance of the current is
found from the middle half of the dynamical region in every snapshot
and this is then time averaged.

intermediate regime, therefore, we must treat Dkp,/c as a
number considerably in excess of 1. Then Eq. (10) gives

Vvar(j)); ~ /8H?R2d*E |n*M = %\/g an

where ¢ is a factor of order unity for typical parameters.

Figure 5 compares the simple result in Eq. (11) against data
from the whole pool of simulations that we have performed. In
Fig. 5 we calculate the spatial variance in bond current for all
bonds in the middle half of the dynamical region at regular
time intervals, time average these, and compare with the
quantity on the right-hand side of Eq. (11), with E determined
from the simulations, as in Fig. 4. We see clear qualitative
agreement in Fig. 5. This interesting dynamical current noise
not only explains the current fluctuations in Fig. 4 but also
provides a clear indication that, as may be expected from the
dynamical nature of the scattering mechanism, our wires are
predominantly in the diffusive (as opposed to localization)
regime. Indeed, a nonconducting system, such as an insulator
or an Anderson localized wire, would be characterized by a
vanishing Fermi density of states and therefore, from Eq. (11),
a vanishing spatial current variance.

The same general trends as in Fig. 4 were observed in all
simulations. Our next task is to investigate the macroscopic
characteristics — namely the total ionic kinetic energy and
mean current — in the long-time saturation regime as a
function of wire length, bias, and atomic mass. The defining
characteristic of this regime is that the nonconservative forces
are counterbalanced by the electronic friction. The electronic
friction is proportional to velocity wAR, where AR is a
typical ion displacement and w is a typical frequency. The
results in Sec. IIT A indicate that for large enough lengths we
can notionally think in terms of a typical length-independent
nonconservative current-induced force per atom, roughly pro-
portional to current. For the kinetic energies in the simulations,
vibrational amplitudes are still only a fraction of a bond length,
and the nonconservative force should be roughly proportional
to these displacements. Combining these considerations leads
to the bias- and length-independent relation

I x 12)

Sh
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FIG. 6. (Color online) (a) Inverse of the average current vs square
root of ion mass for a chain with 200 mobile atoms under biases of
0.5 and 1.0 V. The straight lines are fits to the data. (b) Average
current for the biases above as a function of N for ions with mass
10 a.m.u. Notice that, for small N, the conductance is almost equal
to the quantum unit.

where [ is the temporally and spatially averaged current in the
saturation regime. Relation (12) is verified in Fig. 6(a), where
1/1 is shown as a function of /M for a system with 200 atoms
under biases of 0.5 and 1.0 V: The relation is clearly linear with
only a weak bias dependence.

Relation (12) can be expressed as I = ghw/ae, where o
is a dimensionless constant and g is the quantum conductance
unit. Without loss of generality we take w to be the Einstein
frequency, which for the given tight-binding model is wg =
Kg/M = 0.265 fs~! for 10 a.m.u. We can then determine
o from the gradient in Fig. 6(a) and it is found to be 0.94 for
the 0.5 V case and 0.79 for the 1 V case. With these values
of o, Eq. (12) predicts length-independent currents of 14.3
and 17.2 pA, in close agreement with the large length limit in
Fig. 6(b).

The above considerations are fundamentally a self-
consistent condition on the ionic kinetic energy: It must settle
at a value producing a resistance such as to make the current
agree with relation (12). Figure 7 shows the saturation kinetic
energy per atom as a function of chain length. We see that
this energy, and hence effective temperature, decreases with
increasing length for N beyond about 40 atoms. From the inset,
the total kinetic energy has the following dependence on N:

En_oo(V.M)N
E ~ N—ool ) ’ (]3)

where Ey_, o is the bias- and mass-dependent asymptotic
value and b is the bias- and weakly mass-dependent slope
in the inset.

These results can be understood as follows. The current-
voltage relation for diffusive conduction in 1D is [25,26]

14

[=g—" 14
STy (14
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FIG. 7. (Color online) Saturation kinetic energy per atom (along
with the standard deviation) as a function of the number of mobile
atoms in the wire for ions with mass 10 a.m.u., under biases of 0.5
(blue) and 1.0 V (red). The inset displays one over the total ionic
kinetic energy as a function of 1/N for the systems in the main
figure, and for masses 5 (green) and 20 a.m.u. (black) under 1 V.

where [ is of the order of the electronic mean free path for
backscattering. Equation (14) assumes that we are in the linear
bias regime (with the present electronic bandwidth of 4|H| =
19 eV, this is likely to be the case under the biases we consider).
Assuming the mean free path to be inversely proportional
to the mean square atomic displacements, proportionality
between the kinetic and potential energies and approximate
equipartitioning of energy between vibrational modes, (12)
and (14) give

aeV

= ho, (15)
1+ E/E,

where Ej is a constant. However, Eq. (15) predicts a length-
independent total kinetic energy E, whereas we already know
from Eq. (13) that this is not the case. We can make the two
agree if we modify Eq. (15) to

aeV

1+E 1+ £
E() Nhw

with Ey_ oo = Eo(@eV/hw — 1) and b(V,M) = B/(xeV —
hw)Ey, where B is another parameter. Later we will give
an argument to explain the origin of the correction term in
brackets in Eq. (16), which will also show that 8 should be
of the order of the electron bandwidth. From the intercepts
in the inset in Fig. 7 we obtain Ey = 16.9 eV for the 0.5 V,
10 a.m.u. case and 12.9 eV for the 1 V, 10 a.m.u. case, using
the respective fitted values for o above. The corresponding
slopes in the inset give B = 23.2 and 18.7 eV, respectively.
According to the model «, Ey and S8 should be constants.
The fitted values above show some bias dependence, but it is
weak. Similarly, fitting Eq to the 1 V, 5 and 20 a.m.u. data in
Fig. 7 gives values of 15.5 and 9.3 eV, respectively, producing
a standard deviation of 20%, for a fourfold variation in mass;
the corresponding values of 8, for the green and black data in

= hw, (16)

115430-5



CUNNINGHAM, TODOROV, AND DUNDAS

2 0K ) 30 7
— 502) e atoms 5
> dY[ - -

£ 40 200 atoms /////E 7 [] -
5 30¢ gt d

2 20F ;;/I//i/if s : 4
< [ -

s 1or B TYTaL LR

< . - . | . | . | L |
v OO 0.02 0.04 0.06 0.08 0.1

Bias/Current (V/nA)

x 05V
¢+ 10V

(=1

(=)
=
=
—~

X

VM/E (amul?/ev)
S .
T
X
*
*
o
‘0
e

<
~
T

17744++4,,4¢40ig;iiif7 G
L L . | . | . | , | ) |

1 2 3 4 5 6
M (am.u.?)

(=
(=)

FIG. 8. (Color online) (a) Saturation kinetic energy as a function
of V/I for biases in the range 0.1 to 1.7 V in steps of 0.1 V for
wires with 30 (blue) and 200 (red) mobile atoms, M = 10 a.m.u.
The intercept corresponds to V/I = 1/g, i.e., one quantum unit, in
agreement with the critical bias determined from Eq. (16). (b) VM /E
vs ~/M for N = 200. The straight lines are predicted results from
relation (16). Details are discussed in the text.

Fig. 7, are 20.8 and 12.1 eV, with a similar standard deviation
[27]. Therefore, we regard the fitting as yielding support to the
model.

From Eq. (16) we can determine the dependence of energy
on applied bias and ion mass. In Fig. 8 we plot the predicted
values for the total ionic saturation kinetic energy as a function
of V /I in Fig. 8(a) and «/M/E versus ~/M in Fig. 8(b), along
with numerical data from the MD simulations. The predicted
results use the parameters from the 1 V 10 a.m.u. case above
for the following reasons. First, 1 V is a representative value
for the range of biases in Fig. 8(a). Second, Eq. (16) can be
written as

hw

9
aeV

where T is the transmission probability in the saturation
regime. For a given mass, therefore, larger bias takes us further
away from the ballistic limit and into the regime for which
the above model is designed. Finally, a mass 10 a.m.u. is
representative of the mass range covered in Fig. 8. The straight
lines in Fig. 8(b) are obtained by extracting the linear part of
the functional relation between /M /E and /M predicted by
Eq. (16) for large M.

In addition to the overall agreement between the model
and the simulations, Fig. 8 illustrates an important and subtle
aspect of the problem. Since T cannot exceed 1, Eq. (17)
tells us that for a given mass there should be a critical bias
~hw /ea for nonconservative dynamics to kick in. This critical
bias, furthermore, should correspond to one quantum unit
of conductance. The simulations in Fig. 8(a) clearly show
the presence of the critical bias [28]. The ratio of bias to
current agrees quantitatively and the value of the critical
bias qualitatively. Conversely, Eq. (17) gives a critical mass
M. ~ Kg(h/aeV)* for a given bias, such that for lighter

T =

a7
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atoms nonconservative effects are suppressed. This critical
mass is the origin of the divergence in the simulation results
at small M in Fig. 8(b), although the actual value of M,
agrees only to within an order of magnitude. One can expect
this critical region to be difficult to capture in quantitative
detail. Qualitatively though, the presence of a critical bias
and a critical mass provides direct criteria for stability against
nonconservative dynamics.

C. Further discussion

We conclude this section with two further arguments to
gain additional insight into the problem. First we consider
the correction term in brackets in Eq. (16). We attribute
this correction to small residual localization effects. There
are different model arguments that lead to the need for this
correction. One ad hoc argument, which however produces
an explicit expression for the correction, is as follows. First,
we can write the transmission function for a 1D disordered
conductoras T = 1/(1 + 1/t), where 1/gt can be interpreted
as the resistance of the disordered segment itself [26], and gt
as its conductance. For metallic conduction 7 is determined by
the conductivity and the system length giving g7 = e?vi,d/L.
Next we observe that [d is proportional to the number of
states AN available to conducting particles per mean free path.
Next we consider our given transport problem. The conducting
mechanism in operation is likely to be a complicated mix of
normal diffusion, with a mean free path /, and vibrationally
assisted hopping between quasilocalized states, of typical
spatial extent /. The net effect, however, is that the motion of the
electrons can be thought of as a random walk of typical hopping
length ~/. Based on the earlier current-noise analysis, and on
the simulation results, we assume this mechanism remains
sufficiently close to metallic conduction, to enable the above
characterization in terms of the quantity AN. Even though
vibrations are classical, it remains true that electrons exchange
energy with the vibrations in amounts of Fhw (through
stimulated emission/absorption) per scattering event. Here, as
before, w is a typical vibrational angular frequency. Consider
an electron that has made it to the bulk of the conductor,
close to the middle. This has required of the order n hops,
where /n ~ L/2l. As a result of the energy exchange with
vibrations, its energy would have drifted through a root mean
square amount AE ~ /nhw ~ Lhw/2l. The typical energy
separation between quasilocalized levels, within a segment
~[, will be of the order of 8/(I/R), where f is the electronic
bandwidth. Therefore, our electrons in the bulk can access
AN ~ Lhw/2BR of those states per hop. This reasoning
assumes that AE is of the order of, or larger than, the energy
spacing B/(l/R), and that therefore AN should not be much
less than unity. This places limits on how small L or @ can
be for this argument to apply. Notice that AN is independent
of I (and therefore of the details of the diffusion mechanism),
although AE is not. Next, consider normal diffusion, that is,
diffusion without localization corrections. The same number of
states AN ~ Lhw /28R just found above remain available to
diffusing particles, due to the energy exchange with phonons.
In addition, however, further states will be available that were
not present, or at least were suppressed, above. These are the
states that the normal metallic density of states provides to
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Fermi electrons, in the localization-free conductor. If //v is
the hopping time then the number of these additional states,
accessible per mean free path, will be ~[A/(l/v)](:/R)/B,
where we have made use of the uncertainty principle [29].
In our case v ~ BR/2h, giving a constant number 7, of
order unity, of these additional states. Now, therefore, AN ~
n+ Lhw/2BR. Since AE ~ [Lhw/2l] is the same in each
case, the ratio of disordered-segment conductances, in the
normal and the present, partially thermally assisted case, is
~(1 + 2nB/Nhw), where N = L/R. Finally, in the normal
case we write 1/t = L/I, where [ is the ordinary diffusional
mean free path for backscattering. For the present case this
then gives

1
T = (18)

L 280\’
1+—(14——
+l(+Nha)>

which, in essence, is our desired result, with the additional
insight that the parameter 8 considered in the fitting earlier
should be of the order of the bandwidth. Indeed, the fitted
values for that parameter are close to the bandwidth 4| H|.

Finally, we want to make a connection with the parameter
Ey introduced earlier. To this end, we make a standard estimate
of /. A simple, but physical, representation of the vibrations,
from the point of view of the electrons, is to treat each bond
as an independent oscillator. Then a straightforward Fermi
golden rule calculation gives

R H/2 2
- —(X7), 19

l H? sin? (vr) ) (19
where (X?) is the mean square variation in bond length and
v is the band filling. Let our bonds have an effective stiffness
K.gr. Assuming equipartioning between potential and kinetic
energy, the total vibrational kinetic energy in the system is
NKe(X?)/2. Then L/l = E/E,, where

Eo = Ko H? sin® (vir)/2H". (20)

For our tight-binding parameters, this gives Eg = R>Kst
sin? (vr)/2¢?%. Setting this equal to the fitted value for Ej
above gives K¢ ~ 88.4eV A~2. If we substitute this effective
bond stiffness into a nearest neighbor spring model, we obtain
a phonon bandwidth of \/4K¢/M ~ 0.58 fs~! for a mass of
10 a.m.u., in reasonable agreement with the actual bandwidth
seen in Fig. 2(a) (of the order of 0.4 fs~!). This model argument
tells us what factors contribute to Ey. An improved estimate
would have to take account of the actual phonon band structure,
together with the fact that Fermi electrons typically interact
with phonons with a particular wave vector (~2kp, where
kr is the Fermi wave vector of the electrons). In addition to
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the equipartitioning between potential and kinetic energy, the
above argument implicitly assumes equipartitioning of energy
between different vibrational modes, which may or may not be
obeyed under the nonconservative forces. This is an interesting
avenue for further research.

IV. SUMMARY

This study demonstrates that defect-free metallic nanowires
are a promising testbed for nonconservative current-driven
dynamics on a grand scale. We have seen that this is an
intricate problem from a physical point of view. But, in
addition, these effects raise the question of stability. The above
findings furnish practical criteria for the likely regions of
stability. Increasing wire length reduces the saturation energy
per atom, as does decreasing mass. The critical bias and mass,
below which the nonconservative effect is suppressed, define
a transition between dramatically different regimes.

There are numerous interesting directions for further work.
First, as explained earlier, the present simulations exclude a key
physical process: Joule heating. The interplay between Joule
heating and nonconservative forces is an exciting problem.
In the present case, however, in the saturation regime Joule
heating should not change the dynamics appreciably. The
reason is that Joule heating results from spontaneous phonon
emission; t}Le nonequilibrium Ncontribution to which should
scale as (eV — hw), where eV is the effective scaled bias
hw/a [corresponding to the saturation current, as seen from
Eq. (17)]. Since o =~ 1, the spontaneous phonon emission rates
should be small in the regime considered.

It is tempting to consider what happens in the limit where
the correction term in Eq. (16) is very large. However, as
explained above, our present argumentation does not allow us
to venture into that limit.

The non-steady-state current fluctuations are a curious
phenomenon where, however, electron-electron screening is
likely to play a central role. It would tend to screen out
the driving fields due to vibrations and suppress charge
fluctuations and hence the nonadiabatic current fluctuations.
Another direction is the Peierls instability that tends to occur
under compression-free conditions and ensuing dynamics in
the presence of the resultant band gap. We hope that the
present work will motivate further research into some of these
questions.
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